FREE TRIAL UPGRADE!
Thank you for investing in EnvironmentalHazmatHuman ResourcesHuman Resources, Hazmat & Environmental related content. Click 'UPGRADE' to continue.
CANCEL
YOU'RE ALL SET!
Enjoy your limited-time access to the Compliance Network!
A confirmation welcome email has been sent to your email address from ComplianceNetwork@t.jjkellercompliancenetwork.com. Please check your spam/junk folder if you can't find it in your inbox.
YOU'RE ALL SET!
Thank you for your interest in EnvironmentalHazmatHuman ResourcesHuman Resources, Hazmat & Environmental related content.
WHOOPS!
You've reached your limit of free access, if you'd like more info, please contact us at 800-327-6868.
You'll also get exclusive access to:
Already have an account? .

PHMSA is amending the Hazardous Materials Regulations (HMR) to maintain alignment with international regulations and standards by adopting various amendments, including changes to proper shipping names, hazard classes, packing groups, special provisions, packaging authorizations, air transport quantity limitations, and vessel stowage requirements. PHMSA is also withdrawing the unpublished November 28, 2022, Notice of Enforcement Policy Regarding International Standards on the use of select updated international standards in complying with the HMR during the pendency of this rulemaking.

DATES:

Effective date: This rule is effective May 10, 2024.

Voluntary compliance date: January 1, 2023.

Delayed compliance date: April 10, 2025.

This final rule is published in the Federal Register April 10, 2024.

View final rule.

§171.7 Reference material.
(t)(1), (v)(2), and (w)(32) through (81) Revised View text
(w)(82) through (92) Added View text
(aa)(3) and (dd)(1) through (4) Revised View text
§171.12 North American shipments.
(a)(4)(iii) Revised View text
§171.23 Requirements for specific materials and packagings transported under the ICAO technical instructions, IMDG code, Transport Canada TDG regulations, or the IAEA regulations.
(a)(3) Revised View text
§171.25 Additional requirements for the use of the IMDG code.
(c)(3) and (4) Revised View text
(c)(5) Added View text
§172.101 Purpose and use of the hazardous materials table.
Section heading Revised View text
(c)(12)(ii) Revised View text
Hazardous materials table, multiple entries Revised, added, removed View text
§172.102 Special provisions.
(c)(1) special provisions 78, 156, and 387 Revised View text
(c)(1) special provisions 396 and 398 Added View text
(c)(1) special provision 421 Removed and reserved View text
(c)(2) special provision A54 Revised View text
(c)(2) special provisions A224 and A225 Added View text
(c)(4) Table 2—IP Codes, special provision IP15 Revised View text
(c)(4) Table 2—IP Codes, special provision IP22 Added View text
§173.4b De minimis exceptions.
(b)(1) Revised View text
§173.21 Forbidden materials and packages.
(f) introductory text, (f)(1), and (f)(2) Revised View text
§173.27 General requirements for transportation by aircraft.
(f)(2)(i)(D) Revised View text
§173.124 Class 4, Divisions 4.1, 4.2 and 4.3— Definitions.
(a)(4)(iv) Removed View text
§173.137 Class 8—Assignment of packing group.
Introductory text Revised View text
§173.151 Exceptions for Class 4.
(d) introductory text Revised View text
§173.167 ID8000 consumer commodities.
Entire section Revised View text
§173.185 Lithium cells and batteries.
(a)(3) introductory text and (a)(3)(x) Revised View text
(a)(5) Added View text
(b)(3)(iii)(A) and (B) Revised View text
(b)(3)(iii)(C) Added View text
(b)(4)(ii) and (iii) Revised View text
(b)(4)(iv) Added View text
(b)(5), (c)(3) through (5), and (e)(5) through (7) Revised View text
§173.224 Packaging and control and emergency temperatures for self-reactive materials.
(b)(4) Revised View text
Table following (b)(7) Revised View text
§173.225 Packaging requirements and other provisions for organic peroxides.
Table 1 to paragraph (c) Revised View text
Table following paragraph (d) Retitled View text
Table following paragraph (g) Revised View text
§173.232 Articles containing hazardous materials, n.o.s.
(h) Added View text
§173.301b Additional general requirements for shipment of UN pressure receptacles.
(c)(1), (c)(2)(ii) through (iv), (d)(1), and (f) Revised View text
§173.302b Additional requirements for shipment of non-liquefied (permanent) compressed gases in UN pressure receptacles.
(g) Added View text
§173.302c Additional requirements for the shipment of adsorbed gases in UN pressure receptacles.
(k) Revised View text
§173.311 Metal Hydride Storage Systems.
Entire section Revised View text
§175.1 Purpose, scope, and applicability.
(e) Added View text
§175.10 Exceptions for passengers, crewmembers, and air operators.
(a) introductory text, (a)(14) introductory text, (a)(15)(v)(A), (a)(15)(vi)(A), (a)(17)(ii)(C), (a)(18) introductory text, and (a)(26) introductory text Revised View text
§175.33 Shipping paper and information to the pilot-in-command.
(a)(13)(iii) Revised View text
§178.37 Specification 3AA and 3AAX seamless steel cylinders.
(j) Revised View text
§178.71 Specifications for UN pressure receptacles.
(f)(4), (g), (i), (k)(1)(i) and (ii), (m), and (n) Revised View text
§178.75 Specifications for MEGCs.
(d)(3) introductory text and paragraphs (d)(3)(i) through (iii) Revised View text
§178.609 Test requirements for packagings for infectious substances.
(d)(2) Revised View text
§178.706 Standards for rigid plastic IBCs.
(c)(3) Revised View text
§178.707 Standards for composite IBCs.
(c)(3)(iii) Revised View text
§180.207 Requirements for requalification of UN pressure receptacles.
(d)(3) and (5) Revised View text
(d)(8) Added View text

Previous Text

§171.7 Reference material.

* * * * *

(t) * * *

(1) ICAO Doc 9284. Technical Instructions for the Safe Transport of Dangerous Goods by Air (ICAO Technical Instructions), 2021-2022 Edition, copyright 2020; into §§171.8; 171.22 through 171.24; 172.101; 172.202; 172.401; 172.407; 172.512; 172.519; 172.602; 173.56; 173.320; 175.10, 175.33; 178.3.

* * * * *

(v) * * *

(2) International Maritime Dangerous Goods Code (IMDG Code), Incorporating Amendment 40-20 (English Edition), (Volumes 1 and 2), 2020 Edition, copyright 2020; into §§171.22; 171.23; 171.25; 172.101; 172.202; 172.203; 172.401; 172.407; 172.502; 172.519; 172.602; 173.21; 173.56; 176.2; 176.5; 176.11; 176.27; 176.30; 176.83; 176.84; 176.140; 176.720; 176.906; 178.3; 178.274.

(w) * * *

(32) ISO 9809-2:2000(E): Gas cylinders—Refillable seamless steel gas cylinders—Design, construction and testing—Part 2: Quenched and tempered steel cylinders with tensile strength greater than or equal to 1 100 MPa., First edition, June 2000, into §§178.71; 178.75.

(33) ISO 9809-2:2010(E): Gas cylinders—Refillable seamless steel gas cylinders—Design, construction and testing—Part 2: Quenched and tempered steel cylinders with tensile strength greater than or equal to 1100 MPa., Second edition, 2010-04-15, into §§178.71; 178.75.

(34) ISO 9809-3:2000(E): Gas cylinders—Refillable seamless steel gas cylinders—Design, construction and testing—Part 3: Normalized steel cylinders, First edition, December 2000, into §§178.71; 178.75.

(35) ISO 9809-3:2010(E): Gas cylinders—Refillable seamless steel gas cylinders—Design, construction and testing—Part 3: Normalized steel cylinders, Second edition, 2010-04-15, into §§178.71; 178.75.

(36) ISO 9809-4:2014(E), Gas cylinders—Refillable seamless steel gas cylinders—Design, construction and testing—Part 4: Stainless steel cylinders with an Rm value of less than 1 100 MPa, First edition, 2014-07-15, into §§178.71; 178.75.

(37) ISO 9978:1992(E)—Radiation protection—Sealed radioactive sources—Leakage test methods. First Edition, (February 15, 1992), into §173.469.

(38) ISO 10156:2017(E), Gas cylinders—Gases and gas mixtures—Determination of fire potential and oxidizing ability for the selection of cylinder valve outlets, Fourth edition, 2017-07; into §173.115.

(39) ISO 10297:1999(E), Gas cylinders—Refillable gas cylinder valves—Specification and type testing, First Edition, 1995-05-01; into §§173.301b; 178.71.

(40) ISO 10297:2006(E), Transportable gas cylinders—Cylinder valves—Specification and type testing, Second Edition, 2006-01-15; into §§173.301b; 178.71.

(41) ISO 10297:2014(E), Gas cylinders—Cylinder valves—Specification and type testing, Third Edition, 2014-07-15; into §§173.301b; 178.71.

(42) ISO 10297:2014/Amd 1:2017(E), Gas cylinders—Cylinder valves—Specification and type testing—Amendment 1: Pressure drums and tubes, Third Edition, 2017-03; into §§173.301b; 178.71.

(43) ISO 10461:2005(E), Gas cylinders—Seamless aluminum-alloy gas cylinders—Periodic inspection and testing, Second Edition, 2005-02-15 and Amendment 1, 2006-07-15; into §180.207.

(44) ISO 10462:2013(E), Gas cylinders—Acetylene cylinders—Periodic inspection and maintenance, Third edition, 2013-12-15; into §180.207.

(45) ISO 10692-2:2001(E), Gas cylinders—Gas cylinder valve connections for use in the micro-electronics industry—Part 2: Specification and type testing for valve to cylinder connections, First Edition, 2001-08-01; into §§173.40; 173.302c.

(46) ISO 11114-1:2012(E), Gas cylinders—Compatibility of cylinder and valve materials with gas contents—Part 1: Metallic materials, Second edition, 2012-03-15; into §§172.102; 173.301b; 178.71.

(47) ISO 11114-1:2012/Amd 1:2017(E), Gas cylinders—Compatibility of cylinder and valve materials with gas contents—Part 1: Metallic materials—Amendment 1, Second Edition, 2017-01; into §§172.102; 173.301b; 178.71.

(48) ISO 11114-2:2013(E), Gas cylinders—Compatibility of cylinder and valve materials with gas contents—Part 2: Non-metallic materials, Second edition, 2013-04; into §§173.301b; 178.71.

(49) ISO 11117:1998(E): Gas cylinders—Valve protection caps and valve guards for industrial and medical gas cylinders—Design, construction and tests, First edition, 1998-08-01; into §173.301b.

(50) ISO 11117:2008(E): Gas cylinders—Valve protection caps and valve guards—Design, construction and tests, Second edition, 2008-09-01; into §173.301b.

(51) ISO 11117:2008/Cor.1:2009(E): Gas cylinders—Valve protection caps and valve guards—Design, construction and tests, Technical Corrigendum 1, 2009-05-01; into §173.301b.

(52) ISO 11118(E), Gas cylinders—Non-refillable metallic gas cylinders—Specification and test methods, First edition, October 1999; into §178.71.

(53) ISO 11118:2015(E), Gas cylinders—Non-refillable metallic gas cylinders—Specification and test methods, Second edition, 2015-09-15; into §§173.301b; 178.71.

(54) ISO 11119-1(E), Gas cylinders—Gas cylinders of composite construction—Specification and test methods—Part 1: Hoop-wrapped composite gas cylinders, First edition, May 2002; into §178.71.

(55) ISO 11119-1:2012(E), Gas cylinders—Refillable composite gas cylinders and tubes—Design, construction and testing—Part 1: Hoop wrapped fibre reinforced composite gas cylinders and tubes up to 450 l, Second edition, 2012-08-01; into §§178.71; 178.75.

(56) ISO 11119-2(E), Gas cylinders—Gas cylinders of composite construction—Specification and test methods—Part 2: Fully wrapped fibre reinforced composite gas cylinders with load-sharing metal liners, First edition, May 2002; into §178.71.

(57) ISO 11119-2:2012(E), Gas cylinders—Refillable composite gas cylinders and tubes—Design, construction and testing—Part 2: Fully wrapped fibre reinforced composite gas cylinders and tubes up to 450 l with load-sharing metal liners, Second edition, 2012-07-15; into §§178.71; 178.75.

(58) ISO 11119-2:2012/Amd.1:2014(E), Gas cylinders—Refillable composite gas cylinders and tubes—Design, construction and testing—Part 2: Fully wrapped fibre reinforced composite gas cylinders and tubes up to 450 l with load-sharing metal liners, Amendment 1, 2014-08-15; into §§178.71; 178.75.

(59) ISO 11119-3(E), Gas cylinders of composite construction—Specification and test methods—Part 3: Fully wrapped fibre reinforced composite gas cylinders with non-load-sharing metallic or non-metallic liners, First edition, September 2002; into §178.71.

(60) ISO 11119-3:2013(E), Gas cylinders—Refillable composite gas cylinders and tubes—Design, construction and testing—Part 3: Fully wrapped fibre reinforced composite gas cylinders and tubes up to 450 l with non-load-sharing metallic or non-metallic liners, Second edition, 2013-04-15; into §§178.71; 178.75.

(61) ISO 11119-4:2016(E), Gas cylinders—Refillable composite gas cylinders—Design, construction and testing—Part 4: Fully wrapped fibre reinforced composite gas cylinders up to 150 L with load-sharing welded metallic liners, First Edition, 2016-02-15; into §§178.71; 178.75.

(62) ISO 11120(E), Gas cylinders—Refillable seamless steel tubes of water capacity between 150 l and 3000 l—Design, construction and testing, First edition, 1999-03; into §§178.71; 178.75.

(63) ISO 11120:2015(E), Gas cylinders—Refillable seamless steel tubes of water capacity between 150 l and 3000 l—Design, construction and testing, Second Edition, 2015-02-01; into §§178.71; 178.75.

(64) ISO 11513:2011(E), Gas cylinders—Refillable welded steel cylinders containing materials for sub-atmospheric gas packaging (excluding acetylene)—Design, construction, testing, use and periodic inspection, First edition, 2011-09-12; into §§173.302c; 178.71; 180.207.

(65) ISO 11621(E), Gas cylinders—Procedures for change of gas service, First edition, April 1997; into §§173.302, 173.336, 173.337.

(66) ISO 11623(E), Transportable gas cylinders—Periodic inspection and testing of composite gas cylinders, First edition, March 2002; into §180.207.

(67) ISO 11623(E):2015, Gas cylinders—Composite construction—Periodic inspection and testing, Second edition, 2015-12-01; into §180.207.

(68) ISO 13340:2001(E), Transportable gas cylinders—Cylinder valves for non-refillable cylinders—Specification and prototype testing, First edition, 2004-04-01; into §§173.301b; 178.71.

(69) ISO 13736:2008(E), Determination of flash point—Abel closed-cup method, Second Edition, 2008-09-15; into §173.120.

(70) ISO 14246:2014(E), Gas cylinders—Cylinder valves—Manufacturing tests and examination, Second Edition, 2014-06-15; into §178.71.

(71) ISO 14246:2014/Amd 1:2017(E), Gas cylinders—Cylinder valves—Manufacturing tests and examinations—Amendment 1, Second Edition, 2017-06; into §178.71.

(72) ISO 16111:2008(E), Transportable gas storage devices—Hydrogen absorbed in reversible metal hydride, First Edition, 2008-11-15; into §§173.301b; 173.311; 178.71.

(73) ISO 16148:2016(E), Gas cylinders—Refillable seamless steel gas cylinders and tubes—Acoustic emission examination (AT) and follow-up ultrasonic examination (UT) for periodic inspection and testing, Second Edition, 2016-04-15; into §180.207.

(74) ISO 17871:2015(E), Gas cylinders—Quick-release cylinder valves—Specification and type testing, First Edition, 2015-08-15; into §173.301b.

(75) ISO 17879: 2017(E), Gas cylinders—Self-closing cylinder valves—Specification and type testing, First Edition, 2017-07; into §§173.301b; 178.71.

(76) ISO 18172-1:2007(E), Gas cylinders—Refillable welded stainless steel cylinders—Part 1: Test pressure 6 MPa and below, First Edition, 2007-03-01; into §178.71.

(77) ISO 20475:2018(E), Gas cylinders—Cylinder bundles—Periodic inspection and testing, First Edition, 2018-02; into §180.207.

(78) ISO 20703:2006(E), Gas cylinders—Refillable welded aluminum-alloy cylinders—Design, construction and testing, First Edition, 2006-05-01; into §178.71.

(79) ISO 21172-1:2015(E), Gas cylinders—Welded steel pressure drums up to 3000 litres capacity for the transport of gases—Design and construction—Part 1: Capacities up to 1000 litres, First edition, 2015-04-01; into §178.71.

(80) ISO 22434:2006(E), Transportable gas cylinders—Inspection and maintenance of cylinder valves, First Edition, 2006-09-01; into §180.207.

(81) ISO/TR 11364:2012(E), Gas cylinders—Compilation of national and international valve stem/gas cylinder neck threads and their identification and marking system, First Edition, 2012-12-01; into §178.71.

* * * * *

(aa) * * *

(3) OECD Guideline for the Testing of Chemicals 431 (Test No. 431): In vitro skin corrosion: reconstructed human epidermis (RHE) test method, adopted 29 July 2016; into §173.137.

* * * * *

(dd) * * *

(1) Recommendations on the Transport of Dangerous Goods, Model Regulations (UN Recommendations), 21st revised edition, copyright 2019; into §§171.8; 171.12; 172.202; 172.401; 172.407; 172.502; 172.519; 173.22; 173.24; 173.24b; 173.40; 173.56; 173.192; 173.302b; 173.304b; 178.75; 178.274; as follows:

(i) Volume I, ST/SG/AC.10.1/21/Rev.21 (Vol. I).

(ii) Volume II, ST/SG/AC.10.1/21/Rev.21 (Vol. II).

(2) Manual of Tests and Criteria (UN Manual of Tests and Criteria), 7th revised edition, ST/SG/AC.10/11/Rev.7, copyright 2019; into §§171.24, 172.102; 173.21; 173.56 through 173.58; 173.60; 173.115; 173.124; 173.125; 173.127; 173.128; 173.137; 173.185; 173.220; 173.221; 173.224; 173.225; 173.232; part 173, appendix H; 175.10; 176.905; 178.274.

(3) Globally Harmonized System of Classification and Labelling of Chemicals (GHS), 8th revised edition, ST/SG/AC.10/30/Rev.8, copyright 2019; into §172.401.

(4) Agreement concerning the International Carriage of Dangerous Goods by Road (ADR), copyright 2020; into §171.8; §171.23 as follows: [Change Notice][Previous Text]

(i) Volume I, ECE/TRANS/300 (Vol. I).

(ii) Volume II, ECE/TRANS/300 (Vol. II).

(iii) Corrigendum, ECE/TRANS/300 (Corr. 1).

* * * * *

§171.12 North American shipments.

* * * * *

(a) * * *

(4) * * *

(iii) Authorized CRC, BTC, CTC or TC specification cylinders that correspond with a DOT specification cylinder are as follows:

TC DOT (some or all of these specifications may instead be marked with the prefix ICC) CTC (some or all of these specifications may instead be marked with the prefix BTC or CRC)
TC-3AM DOT-3A [ICC-3] CTC-3A
TC-3AAM DOT-3AA CTC-3AA
TC-3ANM DOT-3BN CTC-3BN
TC-3EM DOT-3E CTC-3E
TC-3HTM DOT-3HT CTC-3HT
TC-3ALM DOT-3AL
DOT-3B
CTC-3AL
CTC-3B
TC-3AXM DOT-3AX CTC-3AX
TC-3AAXM DOT-3AAX
DOT-3A480X
CTC-3AAX
CTC-3A480X
TC-3TM DOT-3T
TC-4AAM33 DOT-4AA480 CTC-4AA480
TC-4BM DOT-4B CTC-4B
TC-4BM17ET DOT-4B240ET CTC-4B240ET
TC-4BAM DOT-4BA CTC-4BA
TC-4BWM DOT-4BW CTC-4BW
TC-4DM DOT-4D CTC-4D
TC-4DAM DOT-4DA CTC-4DA
TC-4DSM DOT-4DS CTC-4DS
TC-4EM DOT-4E CTC-4E
TC-39M DOT-39 CTC-39
TC-4LM DOT-4L
DOT-8
DOT-8AL
CTC-4L
CTC-8
CTC-8AL

* * * * *

§171.23 Requirements for specific materials and packagings transported under the ICAO technical instructions, IMDG code, Transport Canada TDG regulations, or the IAEA regulations.

(a) * * *

(3) Pi-marked pressure receptacles. Pressure receptacles that are marked with a pi mark in accordance with the European Directive 2010/35/EU (IBR, see §171.7) on transportable pressure equipment (TPED) and that comply with the requirements of Packing Instruction P200 or P208 and 6.2 of the ADR (IBR, see §171.7) concerning pressure relief device use, test period, filling ratios, test pressure, maximum working pressure, and material compatibility for the lading contained or gas being filled, are authorized as follows:

(i) Filled pressure receptacles imported for intermediate storage, transport to point of use, discharge, and export without further filling; and

(ii) Pressure receptacles imported or domestically sourced for the purpose of filling, intermediate storage, and export.

(iii) The bill of lading or other shipping paper must identify the cylinder and include the following certification: “This cylinder (These cylinders) conform(s) to the requirements for pi-marked cylinders found in 171.23(a)(3).”

* * * * *

§171.25 Additional requirements for the use of the IMDG code.

* * * * *

(c) * * *

(3) Except as specified in this subpart, for a material poisonous (toxic) by inhalation, the T Codes specified in Column 13 of the Dangerous Goods List in the IMDG Code may be applied to the transportation of those materials in IM, IMO and DOT Specification 51 portable tanks, when these portable tanks are authorized in accordance with the requirements of this subchapter; and

(4) No person may offer an IM or UN portable tank containing liquid hazardous materials of Class 3, PG I or II, or PG III with a flash point less than 100°F (38°C); Division 5.1, PG I or II; or Division 6.1, PG I or II, for unloading while it remains on a transport vehicle with the motive power unit attached, unless it conforms to the requirements in §177.834(o) of this subchapter.

* * * * *

§172.101 Purpose and use of hazardous materials table.

* * * * *

(c) * * *

(12) * * *

(ii) Generic or n.o.s. descriptions. If an appropriate technical name is not shown in the Table, selection of a proper shipping name shall be made from the generic or n.o.s. descriptions corresponding to the specific hazard class, packing group, hazard zone, or subsidiary hazard, if any, for the material. The name that most appropriately describes the material shall be used; e.g, an alcohol not listed by its technical name in the Table shall be described as “Alcohol, n.o.s.” rather than “Flammable liquid, n.o.s.”. Some mixtures may be more appropriately described according to their application, such as “Coating solution” or “Extracts, flavoring, liquid”, rather than by an n.o.s. entry, such as “Flammable liquid, n.o.s.” It should be noted, however, that an n.o.s. description as a proper shipping name may not provide sufficient information for shipping papers and package markings. Under the provisions of subparts C and D of this part, the technical name of one or more constituents which makes the product a hazardous material may be required in association with the proper shipping name.

* * * * *

§172.102 Special provisions.

* * * * *

(c) * * *

(1) * * *

(78) This entry may not be used to describe compressed air which contains more than 23.5 percent oxygen. Compressed air containing greater than 23.5 percent oxygen must be shipped using the description ‘‘Compressed gas, oxidizing, n.o.s., UN3156.’’

* * * * *

(156) Asbestos that is immersed or fixed in a natural or artificial binder material, such as cement, plastic, asphalt, resins or mineral ore, or contained in manufactured products is not subject to the requirements of this subchapter.

* * * * *

(387) When materials are stabilized by temperature control, the provisions of §173.21(f) of this subchapter apply. When chemical stabilization is employed, the person offering the material for transport shall ensure that the level of stabilization is sufficient to prevent the material as packaged from dangerous polymerization at 50°C (122°F). If chemical stabilization becomes ineffective at lower temperatures within the anticipated duration of transport, temperature control is required and is forbidden by aircraft. In making this determination factors to be taken into consideration include, but are not limited to, the capacity and geometry of the packaging and the effect of any insulation present, the temperature of the material when offered for transport, the duration of the journey, and the ambient temperature conditions typically encountered in the journey (considering also the season of year), the effectiveness and other properties of the stabilizer employed, applicable operational controls imposed by regulation (e.g., requirements to protect from sources of heat, including other cargo carried at a temperature above ambient) and any other relevant factors. The provisions of this special provision will be effective until January 2, 2023, unless we terminate them earlier or extend them beyond that date by notice of a final rule in the Federal Register.

* * * * *

(421) This entry will no longer be effective on January 2, 2023, unless we terminate it earlier or extend it beyond that date by notice of a final rule in the Federal Register.

* * * * *

(2) * * *

A54 Irrespective of the quantity limits in Column 9B of the §172.101 table, a lithium battery, including a lithium battery packed with, or contained in, equipment that otherwise meets the applicable requirements of §173.185, may have a mass exceeding 35 kg if approved by the Associate Administrator prior to shipment.

* * * * *

(4) * * *

IP15 For UN2031 with more than 55% nitric acid, the permitted use of rigid plastic IBCs, and the inner receptacle of composite IBCs with rigid plastics, shall be two years from their date of manufacture.

* * * * *

§173.4b De minimis exceptions.

* * * * *

(b) * * *

(1) The specimens are:

(i) Wrapped in a paper towel or cheesecloth moistened with alcohol or an alcohol solution and placed in a plastic bag that is heat-sealed. Any free liquid in the bag must not exceed 30 mL; or

(ii) Placed in vials or other rigid containers with no more than 30 mL of alcohol or alcohol solution. The containers are placed in a plastic bag that is heat-sealed;

* * * * *

§173.21 Forbidden materials and packages.

* * * * *

(f) A package containing a material which is likely to decompose with a self-accelerated decomposition temperature (SADT) of 50°C (122 °F) or less, or polymerize at a temperature of 54°C (130 °F) or less with an evolution of a dangerous quantity of heat or gas when decomposing or polymerizing, unless the material is stabilized or inhibited in a manner to preclude such evolution. The SADT may be determined by any of the test methods described in Part II of the UN Manual of Tests and Criteria (IBR, see §171.7 of this subchapter).

(1) A package meeting the criteria of paragraph (f) of this section may be required to be shipped under controlled temperature conditions. The control temperature and emergency temperature for a package shall be as specified in the table in this paragraph based upon the SADT of the material. The control temperature is the temperature above which a package of the material may not be offered for transportation or transported. The emergency temperature is the temperature at which, due to imminent danger, emergency measures must be initiated.

Table 1 to Paragraph (f)(1)—Method of Determining Control and Emergency Temperature
SADT 1 Control temperatures Emergency temperature
SADT ≤20°C (68°F) 20°C (36°F) below SADT 10°C (18°F) below SADT.
20°C (68°F) <SADT ≤35°C (95°F) 15°C (27°F) below SADT 10°C (18°F) below SADT.
35°C (95°F) <SADT ≤50°C (122°F) 10°C (18°F) below SADT 5°C (9°F) below SADT.
50°C (122°F) <SADT (2) (2)
1 Self-accelerating decomposition temperature.
2 Temperature control not required.

(2) For self-reactive materials listed in §173.224(b) Table control and emergency temperatures, where required are shown in Columns 5 and 6, respectively. For organic peroxides listed in The Organic Peroxides Table in §173.225 control and emergency temperatures, where required, are shown in Columns 7a and 7b, respectively.

* * * * *

§173.27 General requirements for transportation by aircraft.

* * * * *

(f) * * *

(2) * * *

(i) * * *

(D) Divisions 4.1 (self-reactive), 4.2 (spontaneously combustible) (primary or subsidiary risk), and 4.3 (dangerous when wet) (liquids);

* * * * *

§173.124 Class 4, Divisions 4.1, 4.2 and 4.3— Definitions.

(a) * * *

(4) * * *

(iv) The provisions concerning polymerizing substances in paragraph (a)(4) will be effective until January 2, 2023.

* * * * *

§173.137 Class 8—Assignment of packing group.

The packing group of a Class 8 material is indicated in Column 5 of the §172.101 Table. When the §172.101 Table provides more than one packing group for a Class 8 material, the packing group must be determined using data obtained from tests conducted in accordance with the OECD Guidelines for the Testing of Chemicals, Test No. 435, “ In Vitro Membrane Barrier Test Method for Skin Corrosion” (IBR, see §171.7 of this subchapter) or Test No. 404, “Acute Dermal Irritation/Corrosion” (IBR, see §171.7 of this subchapter). A material that is determined not to be corrosive in accordance with OECD Guideline for the Testing of Chemicals, Test No. 430, “ In Vitro Skin Corrosion: Transcutaneous Electrical Resistance Test (TER)” (IBR, see §171.7 of this subchapter) or Test No. 431, “ In Vitro Skin Corrosion: Reconstructed Human Epidermis (RHE) Test Method” (IBR, see §171.7 of this subchapter) may be considered not to be corrosive to human skin for the purposes of this subchapter without further testing. However, a material determined to be corrosive in accordance with Test No. 430 must be further tested using Test No. 435 or Test No. 404. If the in vitro test results indicate that the substance or mixture is corrosive, but the test method does not clearly distinguish between assignment of packing groups II and III, the material may be considered to be in packing group II without further testing. The packing group assignment using data obtained from tests conducted in accordance with OECD Guideline Test No. 404 or Test No. 435 must be as follows:

* * * * *

§173.151 Exceptions for Class 4.

* * * * *

(d) Limited quantities of Division 4.3. Limited quantities of dangerous when wet solids (Division 4.3) in Packing Groups II and III are excepted from labeling requirements, unless the material is offered for transportation or transported by aircraft, and are excepted from the specification packaging requirements of this subchapter when packaged in combination packagings according to this paragraph. For transportation by aircraft, the package must also conform to applicable requirements of §173.27 of this part (e.g., authorized materials, inner packaging quantity limits and closure securement) and only hazardous material authorized aboard passenger-carrying aircraft may be transported as a limited quantity. A limited quantity package that conforms to the provisions of this section is not subject to the shipping paper requirements of subpart C of part 172 of this subchapter, unless the material meets the definition of a hazardous substance, hazardous waste, marine pollutant, or is offered for transportation and transported by aircraft or vessel. In addition, shipments of limited quantities are not subject to subpart F (Placarding) of part 172 of this subchapter. Each package must conform to the packaging requirements of subpart B of this part and may not exceed 30 kg (66 pounds) gross weight. Except for transportation by aircraft, the following combination packagings are authorized:

* * * * *

§173.167 Consumer commodities.

(a) Effective January 1, 2013, a “consumer commodity” (see §171.8 of this subchapter) when offered for transportation by aircraft may only include articles or substances of Class 2 (non-toxic aerosols only), Class 3 (Packing Group II and III only), Division 6.1 (Packing Group III only), UN3077, UN3082, UN3175, UN3334, and UN3335, provided such materials do not have a subsidiary risk and are authorized aboard a passenger-carrying aircraft. Consumer commodities are excepted from the specification outer packaging requirements of this subchapter. Packages prepared under the requirements of this section are excepted from labeling and shipping papers when transported by highway or rail. Except as indicated in §173.24(i), each completed package must conform to §§173.24 and 173.24a of this subchapter. Additionally, except for the pressure differential requirements in §173.27(c), the requirements of §173.27 do not apply to packages prepared in accordance with this section. Packages prepared under the requirements of this section may be offered for transportation and transported by all modes. As applicable, the following apply:

(1) Inner and outer packaging quantity limits. (i) Non-toxic aerosols, as defined in §171.8 of this subchapter and constructed in accordance with §173.306 of this part, in non-refillable, non-metal containers not exceeding 120 mL (4 fluid ounces) each, or in non-refillable metal containers not exceeding 820 mL (28 ounces) each, except that flammable aerosols may not exceed 500 mL (16.9 ounces) each;

(ii) Liquids, in inner packagings not exceeding 500 mL (16.9 ounces) each. Liquids must not completely fill an inner packaging at 55°C;

(iii) Solids, in inner packagings not exceeding 500 g (1.0 pounds) each; or

(iv) Any combination thereof not to exceed 30 kg (66 pounds) gross weight as prepared for shipment.

(2) Closures. Friction-type closures must be secured by positive means. The body and closure of any packaging must be constructed so as to be able to adequately resist the effects of temperature and vibration occurring in conditions normally incident to air transportation. The closure device must be so designed that it is unlikely that it can be incorrectly or incompletely closed.

(3) Absorbent material. Inner packagings must be tightly packaged in strong outer packagings. Absorbent and cushioning material must not react dangerously with the contents of inner packagings. Glass or earthenware inner packagings containing liquids of Class 3 or Division 6.1, sufficient absorbent material must be provided to absorb the entire contents of the largest inner packaging contained in the outer packaging. Absorbent material is not required if the glass or earthenware inner packagings are sufficiently protected as packaged for transport that it is unlikely a failure would occur and, if a failure did occur, that it would be unlikely that the contents would leak from the outer packaging.

(4) Drop test capability. Breakable inner packagings (e.g., glass, earthenware, or brittle plastic) must be packaged to prevent failure under conditions normally incident to transport. Packages of consumer commodities as prepared for transport must be capable of withstanding a 1.2 m drop on solid concrete in the position most likely to cause damage. In order to pass the test, the outer packaging must not exhibit any damage liable to affect safety during transport and there must be no leakage from the inner packaging(s).

(5) Stack test capability. Packages of consumer commodities must be capable of withstanding, without failure or leakage of any inner packaging and without any significant reduction in effectiveness, a force applied to the top surface for a duration of 24 hours equivalent to the total weight of identical packages if stacked to a height of 3.0 m (including the test sample).

(b) When offered for transportation by aircraft:

(1) Packages prepared under the requirements of this section are to be marked as a limited quantity in accordance with §172.315(b)(1) and labeled as a Class 9 article or substance, as appropriate, in accordance with subpart E of part 172 of this subchapter; and

(2) Pressure differential capability: Except for UN3082, inner packagings intended to contain liquids must be capable of meeting the pressure differential requirements (75 kPa) prescribed in §173.27(c) of this part. The capability of a packaging to withstand an internal pressure without leakage that produces the specified pressure differential should be determined by successfully testing design samples or prototypes.

§173.185 Lithium cells and batteries.

* * * * *

(a) * * *

(3) Beginning January 1, 2022 each manufacturer and subsequent distributor of lithium cells or batteries manufactured on or after January 1, 2008, must make available a test summary. The test summary must include the following elements:

* * * * *

* * * * *

(ix) Reference to the revised edition of the UN Manual of Tests and Criteria used and to amendments thereto, if any; and

* * * * *

(b) * * *

(3) * * *

(iii) * * *

(A) Be placed in inner packagings that completely enclose the cell or battery, then placed in an outer packaging. The completed package for the cells or batteries must meet the Packing Group II performance requirements as specified in paragraph (b)(3)(ii) of this section; or

(B) Be placed in inner packagings that completely enclose the cell or battery, then placed with equipment in a package that meets the Packing Group II performance requirements as specified in paragraph (b)(3)(ii) of this section.

* * * * *

(4) * * *

(ii) Equipment must be secured to prevent damage caused by shifting within the outer packaging and be packed so as to prevent accidental operation during transport; and

(iii) Any spare lithium cells or batteries packed with the equipment must be packaged in accordance with paragraph (b)(3) of this section.

* * * * *

(5) Lithium batteries that weigh 12 kg (26.5 pounds) or more and have a strong, impact-resistant outer casing may be packed in strong outer packagings; in protective enclosures (for example, in fully enclosed or wooden slatted crates); or on pallets or other handling devices, instead of packages meeting the UN performance packaging requirements in paragraphs (b)(3)(ii) and (iii) of this section. Batteries must be secured to prevent inadvertent shifting, and the terminals may not support the weight of other superimposed elements. Batteries packaged in accordance with this paragraph may be transported by cargo aircraft if approved by the Associate Administrator.

* * * * *

(c) * * *

(3) Lithium battery mark. Each package must display the lithium battery mark except when a package contains only button cell batteries contained in equipment (including circuit boards), or when a consignment contains two packages or fewer where each package contains not more than four lithium cells or two lithium batteries contained in equipment. [Change Notice][Previous Text]

(i) The mark must indicate the UN number: “UN3090” for lithium metal cells or batteries; or “UN3480” for lithium ion cells or batteries. Where the lithium cells or batteries are contained in, or packed with, equipment, the UN number “UN3091” or “UN3481,” as appropriate, must be indicated. Where a package contains lithium cells or batteries assigned to different UN numbers, all applicable UN numbers must be indicated on one or more marks. The package must be of such size that there is adequate space to affix the mark on one side without the mark being folded.



(A) The mark must be in the form of a rectangle or a square with hatched edging. The mark must be not less than 100 mm (3.9 inches) wide by 100 mm (3.9 inches) high and the minimum width of the hatching must be 5 mm (0.2 inches), except marks of 100 mm (3.9 inches) wide by 70 mm (2.8 inches) high may be used on a package containing lithium batteries when the package is too small for the larger mark;

(B) The symbols and letters must be black on white or suitable contrasting background and the hatching must be red;

(C) The “*” must be replaced by the appropriate UN number(s) and the “**” must be replaced by a telephone number for additional information; and

(D) Where dimensions are not specified, all features shall be in approximate proportion to those shown.

(ii) [Reserved]

(iii) When packages are placed in an overpack, the lithium battery mark shall either be clearly visible through the overpack or be reproduced on the outside of the overpack and the overpack shall be marked with the word “OVERPACK”. The lettering of the “OVERPACK” mark shall be at least 12 mm (0.47 inches) high.

(4) Air transportation. (i) For transportation by aircraft, lithium cells and batteries may not exceed the limits in the following Table 1 to paragraph (c)(4)(i). The limits on the maximum number of batteries and maximum net quantity of batteries in the following table may not be combined in the same package. The limits in the following table do not apply to lithium cells and batteries packed with, or contained in, equipment.

Table 1 to Paragraph (c)(4)(i)
Contents Lithium metal cells and/or batteries with a lithium content not more than 0.3 g Lithium metal cells with a lithium content more than 0.3 g but not more than 1 g Lithium metal batteries with a lithium content more than 0.3 g but not more than 2 g Lithium ion cells and/or batteries with a watt-hour rating not more than 2.7 Wh Lithium ion cells with a watt-hour rating more than 2.7 Wh but not more than 20 Wh Lithium ion batteries with a watt-hour rating more than 2.7 Wh but not more than 100 Wh
Maximum number of cells/batteries per package No Limit 8 cells 2 batteries No Limit 8 cells 2 batteries.
Maximum net quantity (mass) per package 2.5 kg n/a n/a 2.5 kg n/a n/a.

(ii) Not more than one package prepared in accordance with paragraph (c)(4)(i) of this section may be placed into an overpack.

(iii) A shipper is not permitted to offer for transport more than one package prepared in accordance with the provisions of paragraph (c)(4)(i) of this section in any single consignment.

(iv) Each shipment with packages required to display the paragraph (c)(3)(i) lithium battery mark must include an indication on the air waybill of compliance with this paragraph (c)(4) (or the applicable ICAO Technical Instructions Packing Instruction), when an air waybill is used.

(v) Packages and overpacks of lithium batteries prepared in accordance with paragraph (c)(4)(i) of this section must be offered to the operator separately from cargo which is not subject to the requirements of this subchapter and must not be loaded into a unit load device before being offered to the operator.

(vi) For lithium batteries packed with, or contained in, equipment, the number of batteries in each package is limited to the minimum number required to power the piece of equipment, plus two spare sets, and the total net quantity (mass) of the lithium cells or batteries in the completed package must not exceed 5 kg. A “set” of cells or batteries is the number of individual cells or batteries that are required to power each piece of equipment.

(vii) Each person who prepares a package for transport containing lithium cells or batteries, including cells or batteries packed with, or contained in, equipment in accordance with the conditions and limitations of this paragraph (c)(4), must receive instruction on these conditions and limitations, corresponding to their functions.

(viii) Lithium cells and batteries must not be packed in the same outer packaging with other hazardous materials. Packages prepared in accordance with paragraph (c)(4)(i) of this section must not be placed into an overpack with packages containing hazardous materials and articles of Class 1 (explosives) other than Division 1.4S, Division 2.1 (flammable gases), Class 3 (flammable liquids), Division 4.1 (flammable solids), or Division 5.1 (oxidizers).

(5) For transportation by aircraft, a package that exceeds the number or quantity (mass) limits in the table shown in paragraph (c)(4)(i) of this section, the overpack limit described in paragraph (c)(4)(ii) of this section, or the consignment limit described in paragraph (c)(4)(iii) of this section is subject to all applicable requirements of this subchapter, except that a package containing no more than 2.5 kg lithium metal cells or batteries or 10 kg lithium ion cells or batteries is not subject to the UN performance packaging requirements in paragraph (b)(3)(ii) of this section when the package displays both the lithium battery mark in paragraph (c)(3)(i) and the Class 9 Lithium Battery label specified in §172.447 of this subchapter. This paragraph does not apply to batteries or cells packed with or contained in equipment.

* * * * *

(e) * * *

(5) Lithium batteries, including lithium batteries contained in equipment, that weigh 12 kg (26.5 pounds) or more and have a strong, impact-resistant outer casing may be packed in strong outer packagings, in protective enclosures (for example, in fully enclosed or wooden slatted crates), or on pallets or other handling devices, instead of packages meeting the UN performance packaging requirements in paragraphs (b)(3)(ii) and (iii) of this section. The battery must be secured to prevent inadvertent shifting, and the terminals may not support the weight of other superimposed elements;

(6) Irrespective of the limit specified in column (9B) of the §172.101 Hazardous Materials Table, the battery or battery assembly prepared for transport in accordance with this paragraph may have a mass exceeding 35 kg gross weight when transported by cargo aircraft;

(7) Batteries or battery assemblies packaged in accordance with this paragraph are not permitted for transportation by passenger-carrying aircraft, and may be transported by cargo aircraft only if approved by the Associate Administrator prior to transportation; and

* * * * *

§173.224 Packaging and control and emergency temperatures for self-reactive materials.

* * * * *

(b) * * *

(4) Packing method. Column 4 specifies the highest packing method which is authorized for the self-reactive material. A packing method corresponding to a smaller package size may be used, but a packing method corresponding to a larger package size may not be used. The Table of Packing Methods in §173.225(d) defines the packing methods. Bulk packagings for Type F self-reactive substances are authorized by §173.225(f) for IBCs and §173.225(h) for bulk packagings other than IBCs. The formulations listed in §173.225(f) for IBCs and in §173.225(g) for portable tanks may also be transported packed in accordance with packing method OP8, with the same control and emergency temperatures, if applicable. Additional bulk packagings are authorized if approved by the Associate Administrator.

* * * * *

Self-Reactive Materials Table
Self-reactive substance


(1)
Identification No.


(2)
Concentra-
tion—(%)


(3)
Packing method


(4)
Control
tempera-
ture— (°C)


(5)
Emer-
gency
tempera-
ture—


(6)
Notes


(7)
Notes:
1. The emergency and control temperatures must be determined in accordance with §173.21(f).
2. With a compatible diluent having a boiling point of not less than 150 °C.
3. Samples may only be offered for transportation under the provisions of paragraph (c)(3) of this section.
4. This entry applies to mixtures of esters of 2-diazo-1-naphthol-4-sulphonic acid and 2-diazo-1-naphthol-5-sulphonic acid.
5. This entry applies to the technical mixture in n-butanol within the specified concentration limits of the (Z) isomer.
Acetone-pyrogallol copolymer 2-diazo-1-naphthol-5-sulphonate 3228 100 OP8
Azodicarbonamide formulation type B, temperature controlled 3232 <100 OP5 1
Azodicarbonamide formulation type C 3224 <100 OP6
Azodicarbonamide formulation type C, temperature controlled 3234 <100 OP6 1
Azodicarbonamide formulation type D 3226 <100 OP7
Azodicarbonamide formulation type D, temperature controlled 3236 <100 OP7 1
2,2′-Azodi(2,4-dimethyl-4-methoxyvaleronitrile) 3236 100 OP7 −5 +5
2,2′-Azodi(2,4-dimethylvaleronitrile) 3236 100 OP7 +10 +15
2,2′-Azodi(ethyl 2-methylpropionate) 3235 100 OP7 +20 +25
1,1-Azodi(hexahydrobenzonitrile) 3226 100 OP7
2,2-Azodi(isobutyronitrile) 3234 100 OP6 +40 +45
2,2′-Azodi(isobutyronitrile) as a water based paste 3224 ≤50 OP6
2,2-Azodi(2-methylbutyronitrile) 3236 100 OP7 +35 +40
Benzene-1,3-disulphonylhydrazide, as a paste 3226 52 OP7
Benzene sulphohydrazide 3226 100 OP7
4-(Benzyl(ethyl)amino)-3-ethoxybenzenediazonium zinc chloride 3226 100 OP7
4-(Benzyl(methyl)amino)-3-ethoxybenzenediazonium zinc chloride 3236 100 OP7 +40 +45
3-Chloro-4-diethylaminobenzenediazonium zinc chloride 3226 100 OP7
2-Diazo-1-Naphthol sulphonic acid ester mixture 3226 <100 OP7 4
2-Diazo-1-Naphthol-4-sulphonyl chloride 3222 100 OP5
2-Diazo-1-Naphthol-5-sulphonyl chloride 3222 100 OP5
2,5-Dibutoxy-4-(4-morpholinyl)-Benzenediazonium, tetrachlorozincate (2:1) 3228 100 OP8
2,5-Diethoxy-4-morpholinobenzenediazonium zinc chloride 3236 67−100 OP7 +35 +40
2,5-Diethoxy-4-morpholinobenzenediazonium zinc chloride 3236 66 OP7 +40 +45
2,5-Diethoxy-4-morpholinobenzenediazonium tetrafluoroborate 3236 100 OP7 +30 +35
2,5-Diethoxy-4-(phenylsulphonyl)benzenediazonium zinc chloride 3236 67 OP7 +40 +45
2,5-Diethoxy-4-(4-morpholinyl)-benzenediazonium sulphate 3226 100 OP7
Diethylene glycol bis(allyl carbonate) + Diisopropylperoxydicarbonate 3237 ≥88 + ≤12 OP8 −10 0
2,5-Dimethoxy-4-(4-methylphenylsulphony)benzenediazonium zinc chloride 3236 79 OP7 +40 +45
4-Dimethylamino-6-(2-dimethylaminoethoxy)toluene-2-diazonium zinc chloride 3236 100 OP7 +40 +45
4-(Dimethylamino)-benzenediazonium trichlorozincate (-1) 3228 100 OP8
N,N′-Dinitroso-N, N′-dimethyl-terephthalamide, as a paste 3224 72 OP6
N,N′-Dinitrosopentamethylenetetramine 3224 82 OP6 2
Diphenyloxide-4,4′-disulphohydrazide 3226 100 OP7
Diphenyloxide-4,4′-disulphonylhydrazide 3226 100 OP7
4-Dipropylaminobenzenediazonium zinc chloride 3226 100 OP7
2-(N,N-Ethoxycarbonylphenylamino)-3-methoxy-4-(N-methyl-N- cyclohexylamino)benzenediazonium zinc chloride 3236 63−92 OP7 +40 +45
2-(N,N-Ethoxycarbonylphenylamino)-3-methoxy-4-(N-methyl-N- cyclohexylamino)benzenediazonium zinc chloride 3236 62 OP7 +35 +40
N-Formyl-2-(nitromethylene)-1,3-perhydrothiazine 3236 100 OP7 +45 +50
2-(2-Hydroxyethoxy)-1-(pyrrolidin-1-yl)benzene-4-diazonium zinc chloride 3236 100 OP7 +45 +50
3-(2-Hydroxyethoxy)-4-(pyrrolidin-1-yl)benzenediazonium zinc chloride 3236 100 OP7 +40 +45
2-(N,N-Methylaminoethylcarbonyl)-4-(3,4-dimethyl-phenylsulphonyl)benzene diazonium zinc chloride 3236 96 OP7 +45 +50
4-Methylbenzenesulphonylhydrazide 3226 100 OP7
3-Methyl-4-(pyrrolidin-1-yl)benzenediazonium tetrafluoroborate 3234 95 OP6 +45 +50
4-Nitrosophenol 3236 100 OP7 +35 +40
Phosphorothioic acid, O-[(cyanophenyl methylene) azanyl] O,O-diethyl ester 3227 82−91 (Z isomer) OP8 5
Self-reactive liquid, sample 3223 OP2 3
Self-reactive liquid, sample, temperature control 3233 OP2 3
Self-reactive solid, sample 3224 OP2 3
Self-reactive solid, sample, temperature control 3234 OP2 3
Sodium 2-diazo-1-naphthol-4-sulphonate 3226 100 OP7
Sodium 2-diazo-1-naphthol-5-sulphonate 3226 100 OP7
Tetramine palladium (II) nitrate 3234 100 OP6 +30 +35

§173.225 Packaging requirements and other provisions for organic peroxides.

* * * * *

(c) * * *

Table 1 to Paragraph (c)—Organic Peroxide Table
Technical name ID No. Concentration (mass %) Diluent (mass %) Water (mass %) Packing method Temperature (°C) Notes
A B I Control Emergency
(1) (2) (3) (4a) (4b) (4c) (5) (6) (7a) (7b) (8)
Acetyl acetone peroxide UN3105 ≤42 ≥48 ≥8 OP7 2
Acetyl acetone peroxide [as a paste] UN3106 ≤32 OP7 21
Acetyl cyclohexanesulfonyl peroxide UN3112 ≤82 ≥12 OP4 −10 0
Acetyl cyclohexanesulfonyl peroxide UN3115 ≤32 ≥68 OP7 −10 0
tert-Amyl hydroperoxide UN3107 ≤88 ≥6 ≥6 OP8
tert-Amyl peroxyacetate UN3105 ≤62 ≥38 OP7
tert-Amyl peroxybenzoate UN3103 ≤100 OP5
tert-Amyl peroxy-2-ethylhexanoate UN3115 ≤100 OP7 +20 +25
tert-Amyl peroxy-2-ethylhexyl carbonate UN3105 ≤100 OP7
tert-Amyl peroxy isopropyl carbonate UN3103 ≤77 ≥23 OP5
tert-Amyl peroxyneodecanoate UN3115 ≤77 ≥23 OP7 0 +10
tert-Amyl peroxyneodecanoate UN3119 ≤47 ≥53 OP8 0 +10
tert-Amyl peroxypivalate UN3113 ≤77 ≥23 OP5 +10 +15
tert-Amyl peroxypivalate UN3119 ≤32 ≥68 OP8 +10 +15
tert-Amyl peroxy-3,5,5-trimethylhexanoate UN3105 ≤100 OP7
tert-Butyl cumyl peroxide UN3109 >42−100 OP8 9
tert-Butyl cumyl peroxide UN3108 ≤52 ≥48 OP8 9
n-Butyl-4,4-di-(tert-butylperoxy)valerate UN3103 >52−100 OP5
n-Butyl-4,4-di-(tert-butylperoxy)valerate UN3108 ≤52 ≥48 OP8
tert-Butyl hydroperoxide UN3103 >79−90 ≥10 OP5 13
tert-Butyl hydroperoxide UN3105 ≤80 ≥20 OP7 4, 13
tert-Butyl hydroperoxide UN3107 ≤79 >14 OP8 13, 16
tert-Butyl hydroperoxide UN3109 ≤72 ≥28 OP8 13
tert-Butyl hydroperoxide [and] Di-tert-butylperoxide UN3103 <82 + >9 ≥7 OP5 13
tert-Butyl monoperoxymaleate UN3102 >52−100 OP5
tert-Butyl monoperoxymaleate UN3103 ≤52 ≥48 OP6
tert-Butyl monoperoxymaleate UN3108 ≤52 ≥48 OP8
tert-Butyl monoperoxymaleate [as a paste] UN3108 ≤52 OP8
tert-Butyl peroxyacetate UN3101 >52−77 ≥23 OP5
tert-Butyl peroxyacetate UN3103 >32−52 ≥48 OP6
tert-Butyl peroxyacetate UN3109 ≤32 ≥68 OP8
tert-Butyl peroxybenzoate UN3103 >77−100 OP5
tert-Butyl peroxybenzoate UN3105 >52−77 ≥23 OP7 1
tert-Butyl peroxybenzoate UN3106 ≤52 ≥48 OP7
tert-Butyl peroxybenzoate UN3109 ≤32 ≥68 OP8
tert-Butyl peroxybutyl fumarate UN3105 ≤52 ≥48 OP7
tert-Butyl peroxycrotonate UN3105 ≤77 ≥23 OP7
tert-Butyl peroxydiethylacetate UN3113 ≤100 OP5 +20 +25
tert-Butyl peroxy-2-ethylhexanoate UN3113 >52−100 OP6 +20 +25
tert-Butyl peroxy-2-ethylhexanoate UN3117 >32−52 ≥48 OP8 +30 +35
tert-Butyl peroxy-2-ethylhexanoate UN3118 ≤52 ≥48 OP8 +20 +25
tert-Butyl peroxy-2-ethylhexanoate UN3119 ≤32 ≥68 OP8 +40 +45
tert-Butyl peroxy-2-ethylhexanoate [and] 2,2-di-(tert-Butylperoxy)butane UN3106 ≤12 + ≤14 ≥14 ≥60 OP7
tert-Butyl peroxy-2-ethylhexanoate [and] 2,2-di-(tert-Butylperoxy)butane UN3115 ≤31 + ≤36 ≥33 OP7 +35 +40
tert-Butyl peroxy-2-ethylhexylcarbonate UN3105 ≤100 OP7
tert-Butyl peroxyisobutyrate UN3111 >52−77 ≥23 OP5 +15 +20
tert-Butyl peroxyisobutyrate UN3115 ≤52 ≥48 OP7 +15 +20
tert-Butylperoxy isopropylcarbonate UN3103 ≤77 ≥23 OP5
1-(2-tert-Butylperoxy isopropyl)-3-isopropenylbenzene UN3105 ≤77 ≥23 OP7
1-(2-tert-Butylperoxy isopropyl)-3-isopropenylbenzene UN3108 ≤42 ≥58 OP8
tert-Butyl peroxy-2-methylbenzoate UN3103 ≤100 OP5
tert-Butyl peroxyneodecanoate UN3115 >77−100 OP7 −5 +5
tert-Butyl peroxyneodecanoate UN3115 ≤77 ≥23 OP7 0 +10
tert-Butyl peroxyneodecanoate [as a stable dispersion in water] UN3119 ≤52 OP8 0 +10
tert-Butyl peroxyneodecanoate [as a stable dispersion in water (frozen)] UN3118 ≤42 OP8 0 +10
tert-Butyl peroxyneodecanoate UN3119 ≤32 ≥68 OP8 0 +10
tert-Butyl peroxyneoheptanoate UN3115 ≤77 ≥23 OP7 0 +10
tert-Butyl peroxyneoheptanoate [as a stable dispersion in water] UN3117 ≤42 OP8 0 +10
tert-Butyl peroxypivalate UN3113 >67−77 ≥23 OP5 0 +10
tert-Butyl peroxypivalate UN3115 >27−67 ≥33 OP7 0 +10
tert-Butyl peroxypivalate UN3119 ≤27 ≥73 OP8 +30 +35
tert-Butylperoxy stearylcarbonate UN3106 ≤100 OP7
tert-Butyl peroxy-3,5,5-trimethylhexanoate UN3105 >37−100 OP7
tert-Butyl peroxy-3,5,5-trimethlyhexanoate UN3106 ≤42 ≥58 OP7
tert-Butyl peroxy-3,5,5-trimethylhexanoate UN3109 ≤37 ≥63 OP8
3-Chloroperoxybenzoic acid UN3102 >57−86 ≥14 OP1
3-Chloroperoxybenzoic acid UN3106 ≤57 ≥3 ≥40 OP7
3-Chloroperoxybenzoic acid UN3106 ≤77 ≥6 ≥17 OP7
Cumyl hydroperoxide UN3107 >90−98 ≤10 OP8 13
Cumyl hydroperoxide UN3109 ≤90 ≥10 OP8 13, 15
Cumyl peroxyneodecanoate UN3115 ≤87 ≥13 OP7 −10 0
Cumyl peroxyneodecanoate UN3115 ≤77 ≥23 OP7 −10 0
Cumyl peroxyneodecanoate [as a stable dispersion in water] UN3119 ≤52 OP8 −10 0
Cumyl peroxyneoheptanoate UN3115 ≤77 ≥23 OP7 −10 0
Cumyl peroxypivalate UN3115 ≤77 ≥23 OP7 −5 +5
Cyclohexanone peroxide(s) UN3104 ≤91 ≥9 OP6 13
Cyclohexanone peroxide(s) UN3105 ≤72 ≥28 OP7 5
Cyclohexanone peroxide(s) [as a paste] UN3106 ≤72 OP7 5, 21
Cyclohexanone peroxide(s) Exempt ≤32 >68 Exempt 29
Diacetone alcohol peroxides UN3115 ≤57 ≥26 ≥8 OP7 +40 +45 5
Diacetyl peroxide UN3115 ≤27 ≥73 OP7 +20 +25 8,13
Di-tert-amyl peroxide UN3107 ≤100 OP8
([3R- (3R, 5aS, 6S, 8aS, 9R, 10R, 12S, 12aR**)]-Decahydro-10-methoxy-3, 6, 9-trimethyl-3, 12-epoxy-12H-pyrano [4, 3- j]-1, 2-benzodioxepin) UN3106 ≤100 OP7
2,2-Di-(tert-amylperoxy)-butane UN3105 ≤57 ≥43 OP7
1,1-Di-(tert-amylperoxy)cyclohexane UN3103 ≤82 ≥18 OP6
Dibenzoyl peroxide UN3102 >52−100 ≤48 OP2 3
Dibenzoyl peroxide UN3102 >77−94 ≥6 OP4 3
Dibenzoyl peroxide UN3104 ≤77 ≥23 OP6
Dibenzoyl peroxide UN3106 ≤62 ≥28 ≥10 OP7
Dibenzoyl peroxide [as a paste] UN3106 >52−62 OP7 21
Dibenzoyl peroxide UN3106 >35−52 ≥48 OP7
Dibenzoyl peroxide UN3107 >36−42 ≥18 ≤40 OP8
Dibenzoyl peroxide [as a paste] UN3108 ≤56.5 ≥15 OP8
Dibenzoyl peroxide [as a paste] UN3108 ≤52 OP8 21
Dibenzoyl peroxide [as a stable dispersion in water] UN3109 ≤42 OP8
Dibenzoyl peroxide Exempt ≤35 ≥65 Exempt 29
Di-(4-tert-butylcyclohexyl)peroxydicarbonate UN3114 ≤100 OP6 +30 +35
Di-(4-tert-butylcyclohexyl)peroxydicarbonate [as a stable dispersion in water] UN3119 ≤42 OP8 +30 +35
Di-(4-tert-butylcyclohexyl)peroxydicarbonate [as a paste] UN3116 ≤42 OP7 +35 +40
Di-tert-butyl peroxide UN3107 >52−100 OP8
Di-tert-butyl peroxide UN3109 ≤52 ≥48 OP8 24
Di-tert-butyl peroxyazelate UN3105 ≤52 ≥48 OP7
2,2-Di-(tert-butylperoxy)butane UN3103 ≤52 ≥48 OP6
1,6-Di-(tert-butylperoxycarbonyloxy)hexane UN3103 ≤72 ≥28 OP5
1,1-Di-(tert-butylperoxy)cyclohexane UN3101 >80−100 OP5
1,1-Di-(tert-butylperoxy)cyclohexane UN3103 >52−80 ≥20 OP5
1,1-Di-(tert-butylperoxy)-cyclohexane UN3103 ≤72 ≥28 OP5 30
1,1-Di-(tert-butylperoxy)cyclohexane UN3105 >42−52 ≥48 OP7
1,1-Di-(tert-butylperoxy)cyclohexane UN3106 ≤42 ≥13 ≥45 OP7
1,1-Di-(tert-butylperoxy)cyclohexane UN3107 ≤27 ≥25 OP8 22
1,1-Di-(tert-butylperoxy)cyclohexane UN3109 ≤42 ≥58 OP8
1,1-Di-(tert-Butylperoxy) cyclohexane UN3109 ≤37 ≥63 OP8
1,1-Di-(tert-butylperoxy)cyclohexane UN3109 ≤25 ≥25 ≥50 OP8
1,1-Di-(tert-butylperoxy)cyclohexane UN3109 ≤13 ≥13 ≥74 OP8
1,1-Di-(tert-butylperoxy)cyclohexane + tert-Butyl peroxy-2-ethylhexanoate UN3105 ≤43 + ≤16 ≥41 OP7
Di-n-butyl peroxydicarbonate UN3115 >27−52 ≥48 OP7 −15 −5
Di-n-butyl peroxydicarbonate UN3117 ≤27 ≥73 OP8 −10 0
Di-n-butyl peroxydicarbonate [as a stable dispersion in water (frozen)] UN3118 ≤42 OP8 −15 −5
Di-sec-butyl peroxydicarbonate UN3113 >52−100 OP4 −20 −10 6
Di-sec-butyl peroxydicarbonate UN3115 ≤52 ≥48 OP7 −15 −5
Di-(tert-butylperoxyisopropyl) benzene(s) UN3106 >42−100 ≤57 OP7 1, 9
Di-(tert-butylperoxyisopropyl) benzene(s) Exempt ≤42 ≥58 Exempt
Di-(tert-butylperoxy)phthalate UN3105 >42−52 ≥48 OP7
Di-(tert-butylperoxy)phthalate [as a paste] UN3106 ≤52 OP7 21
Di-(tert-butylperoxy)phthalate UN3107 ≤42 ≥58 OP8
2,2-Di-(tert-butylperoxy)propane UN3105 ≤52 ≥48 OP7
2,2-Di-(tert-butylperoxy)propane UN3106 ≤42 ≥13 ≥45 OP7
1,1-Di-(tert-butylperoxy)-3,3,5-trimethylcyclohexane UN3101 >90−100 OP5
1,1-Di-(tert-butylperoxy)-3,3,5-trimethylcyclohexane UN3103 >57−90 ≥10 OP5
1,1-Di-(tert-butylperoxy)-3,3,5-trimethylcyclohexane UN3103 ≤77 ≥23 OP5
1,1-Di-(tert-butylperoxy)-3,3,5-trimethylcyclohexane UN3103 ≤90 ≥10 OP5 30
1,1-Di-(tert-butylperoxy)-3,3,5-trimethylcyclohexane UN3110 ≤57 ≥43 OP8
1,1-Di-(tert-butylperoxy)-3,3,5-trimethylcyclohexane UN3107 ≤57 ≥43 OP8
1,1-Di-(tert-butylperoxy)-3,3,5-trimethylcyclohexane UN3107 ≤32 ≥26 ≥42 OP8
Dicetyl peroxydicarbonate UN3120 ≤100 OP8 +30 +35
Dicetyl peroxydicarbonate [as a stable dispersion in water] UN3119 ≤42 OP8 +30 +35
Di-4-chlorobenzoyl peroxide UN3102 ≤77 ≥23 OP5
Di-4-chlorobenzoyl peroxide Exempt ≤32 ≥68 Exempt 29
Di-2,4-dichlorobenzoyl peroxide [as a paste] UN3118 ≤52 OP8 +20 +25
Di-4-chlorobenzoyl peroxide [as a paste] UN3106 ≤52 OP7 21
Dicumyl peroxide UN3110 >52−100 ≤48 OP8 9
Dicumyl peroxide Exempt ≤52 ≥48 Exempt 29
Dicyclohexyl peroxydicarbonate UN3112 >91−100 OP3 +10 +15
Dicyclohexyl peroxydicarbonate UN3114 ≤91 ≥9 OP5 +10 +15
Dicyclohexyl peroxydicarbonate [as a stable dispersion in water] UN3119 ≤42 OP8 +15 +20
Didecanoyl peroxide UN3114 ≤100 OP6 +30 +35
2,2-Di-(4,4-di(tert-butylperoxy)cyclohexyl)propane UN3106 ≤42 ≥58 OP7
2,2-Di-(4,4-di(tert-butylperoxy)cyclohexyl)propane UN3107 ≤22 ≥78 OP8
Di-2,4-dichlorobenzoyl peroxide UN3102 ≤77 ≥23 OP5
Di-2,4-dichlorobenzoyl peroxide [as a paste with silicone oil] UN3106 ≤52 OP7
Di-(2-ethoxyethyl) peroxydicarbonate UN3115 ≤52 ≥48 OP7 −10 0
Di-(2-ethylhexyl) peroxydicarbonate UN3113 >77−100 OP5 −20 −10
Di-(2-ethylhexyl) peroxydicarbonate UN3115 ≤77 ≥23 OP7 −15 −5
Di-(2-ethylhexyl) peroxydicarbonate [as a stable dispersion in water] UN3119 ≤62 OP8 −15 −5
Di-(2-ethylhexyl) peroxydicarbonate [as a stable dispersion in water] UN3119 ≤52 OP8 −15 −5
Di-(2-ethylhexyl) peroxydicarbonate [as a stable dispersion in water (frozen)] UN3120 ≤52 OP8 −15 −5
2,2-Dihydroperoxypropane UN3102 ≤27 ≥73 OP5
Di-(1-hydroxycyclohexyl)peroxide UN3106 ≤100 OP7
Diisobutyryl peroxide UN3111 >32−52 ≥48 OP5 −20 −10
Diisobutyryl peroxide [as a stable dispersion in water] UN3119 ≤42 OP8 −20 −10
Diisobutyryl peroxide UN3115 ≤32 ≥68 OP7 −20 −10
Diisopropylbenzene dihydroperoxie UN3106 ≤82 ≥5 ≥5 OP7 17
Diisopropyl peroxydicarbonate UN3112 >52−100 OP2 −15 −5
Diisopropyl peroxydicarbonate UN3115 ≤52 ≥48 OP7 −20 −10
Diisopropyl peroxydicarbonate UN3115 ≤32 ≥68 OP7 −15 −5
Dilauroyl peroxide UN3106 ≤100 OP7
Dilauroyl peroxide [as a stable dispersion in water] UN3109 ≤42 OP8
Di-(3-methoxybutyl) peroxydicarbonate UN3115 ≤52 ≥48 OP7 −5 +5
Di-(2-methylbenzoyl)peroxide UN3112 ≤87 ≥13 OP5 +30 +35
Di-(4-methylbenzoyl)peroxide [as a paste with silicone oil] UN3106 ≤52 OP7
Di-(3-methylbenzoyl) peroxide + Benzoyl (3-methylbenzoyl) peroxide + Dibenzoyl peroxide UN3115 ≤20 + ≤18 + ≤4 ≥58 OP7 +35 +40
2,5-Dimethyl-2,5-di-(benzoylperoxy)hexane UN3102 >82−100 OP5
2,5-Dimethyl-2,5-di-(benzoylperoxy)hexane UN3106 ≤82 ≥18 OP7
2,5-Dimethyl-2,5-di-(benzoylperoxy)hexane UN3104 ≤82 ≥18 OP5
2,5-Dimethyl-2,5-di-(tert-butylperoxy)hexane UN3103 >90−100 OP5
2,5-Dimethyl-2,5-di-(tert-butylperoxy)hexane UN3105 >52—90 ≥10 OP7
2,5-Dimethyl-2,5-di-(tert-butylperoxy)hexane UN3108 ≤77 ≥23 OP8
2,5-Dimethyl-2,5-di-(tert-butylperoxy)hexane UN3109 ≤52 ≥48 OP8
2,5-Dimethyl-2,5-di-(tert-butylperoxy)hexane [as a paste] UN3108 ≤47 OP8
2,5-Dimethyl-2,5-di-(tert-butylperoxy)hexyne-3 UN3101 >86−100 OP5
2,5-Dimethyl-2,5-di-(tert-butylperoxy)hexyne-3 UN3103 >52−86 ≥14 OP5
2,5-Dimethyl-2,5-di-(tert-butylperoxy)hexyne-3 UN3106 ≤52 ≥48 OP7
2,5-Dimethyl-2,5-di-(2-ethylhexanoylperoxy)hexane UN3113 ≤100 OP5 +20 +25
2,5-Dimethyl-2,5-dihydroperoxyhexane UN3104 ≤82 ≥18 OP6
2,5-Dimethyl-2,5-di-(3,5,5-trimethylhexanoylperoxy)hexane UN3105 ≤77 ≥23 OP7
1,1-Dimethyl-3-hydroxybutylperoxyneoheptanoate UN3117 ≤52 ≥48 OP8 0 +10
Dimyristyl peroxydicarbonate UN3116 ≤100 OP7 +20 +25
Dimyristyl peroxydicarbonate [as a stable dispersion in water] UN3119 ≤42 OP8 +20 +25
Di-(2-neodecanoylperoxyisopropyl)benzene UN3115 ≤52 ≥48 OP7 −10 0
Di-(2-neodecanoyl-peroxyisopropyl) benzene, as stable dispersion in water UN3119 ≤42 OP8 −15 −5
Di-n-nonanoyl peroxide UN3116 ≤100 OP7 0 +10
Di-n-octanoyl peroxide UN3114 ≤100 OP5 +10 +15
Di-(2-phenoxyethyl)peroxydicarbonate UN3102 >85−100 OP5
Di-(2-phenoxyethyl)peroxydicarbonate UN3106 ≤85 ≥15 OP7
Dipropionyl peroxide UN3117 ≤27 ≥73 OP8 +15 +20
Di-n-propyl peroxydicarbonate UN3113 ≤100 OP3 −25 −15
Di-n-propyl peroxydicarbonate UN3113 ≤77 ≥23 OP5 −20 −10
Disuccinic acid peroxide UN3102 >72−100 OP4 18
Disuccinic acid peroxide UN3116 ≤72 ≥28 OP7 +10 +15
Di-(3,5,5-trimethylhexanoyl) peroxide UN3115 >52−82 ≥18 OP7 0 +10
Di-(3,5,5-trimethylhexanoyl)peroxide [as a stable dispersion in water] UN3119 ≤52 OP8 +10 +15
Di-(3,5,5-trimethylhexanoyl) peroxide UN3119 >38−52 ≥48 OP8 +10 +15
Di-(3,5,5-trimethylhexanoyl)peroxide UN3119 ≤38 ≥62 OP8 +20 +25
Ethyl 3,3-di-(tert-amylperoxy)butyrate UN3105 ≤67 ≥33 OP7
Ethyl 3,3-di-(tert-butylperoxy)butyrate UN3103 >77−100 OP5
Ethyl 3,3-di-(tert-butylperoxy)butyrate UN3105 ≤77 ≥23 OP7
Ethyl 3,3-di-(tert-butylperoxy)butyrate UN3106 ≤52 ≥48 OP7
1-(2-ethylhexanoylperoxy)-1,3-Dimethylbutyl peroxypivalate UN3115 ≤52 ≥45 ≥10 OP7 −20 −10
tert-Hexyl peroxyneodecanoate UN3115 ≤71 ≥29 OP7 0 +10
tert-Hexyl peroxypivalate UN3115 ≤72 ≥28 OP7 +10 +15
3-Hydroxy-1,1-dimethylbutyl peroxyneodecanoate UN3115 ≤77 ≥23 OP7 −5 +5
3-Hydroxy-1,1-dimethylbutyl peroxyneodecanoate [as a stable dispersion in water] UN3119 ≤52 OP8 −5 +5
3-Hydroxy-1,1-dimethylbutyl peroxyneodecanoate UN3117 ≤52 ≥48 OP8 −5 +5
Isopropyl sec-butyl peroxydicarbonat + Di-sec-butyl peroxydicarbonate + Di-isopropyl peroxydicarbonate UN3111 ≤52 + ≤28 + ≤22 OP5 −20 −10
Isopropyl sec-butyl peroxydicarbonate + Di-sec-butyl peroxydicarbonate + Di-isopropyl peroxydicarbonate UN3115 ≤32 + ≤15 −18 + ≤12 −15 ≥38 OP7 −20 −10
Isopropylcumyl hydroperoxide UN3109 ≤72 ≥28 OP8 13
p-Menthyl hydroperoxide UN3105 >72−100 OP7 13
p-Menthyl hydroperoxide UN3109 ≤72 ≥28 OP8
Methylcyclohexanone peroxide(s) UN3115 ≤67 ≥33 OP7 +35 +40
Methyl ethyl ketone peroxide(s) UN3101 ≤52 ≥48 OP5 5, 13
Methyl ethyl ketone peroxide(s) UN3105 ≤45 ≥55 OP7 5
Methyl ethyl ketone peroxide(s) UN3107 ≤40 ≥60 OP8 7
Methyl isobutyl ketone peroxide(s) UN3105 ≤62 ≥19 OP7 5, 23
Methyl isopropyl ketone peroxide(s) UN3109 (See remark 31) ≥70 OP8 31
Organic peroxide, liquid, sample UN3103 OP2 12
Organic peroxide, liquid, sample, temperature controlled UN3113 OP2 12
Organic peroxide, solid, sample UN3104 OP2 12
Organic peroxide, solid, sample, temperature controlled UN3114 OP2 12
3,3,5,7,7-Pentamethyl-1,2,4-Trioxepane UN3107 ≤100 OP8
Peroxyacetic acid, type D, stabilized UN3105 ≤43 OP7 13, 20
Peroxyacetic acid, type E, stabilized UN3107 ≤43 OP8 13, 20
Peroxyacetic acid, type F, stabilized UN3109 ≤43 OP8 13, 20, 28
Peroxyacetic acid or peracetic acid [with not more than 7% hydrogen peroxide] UN3107 ≤36 ≥15 OP8 13, 20, 28
Peroxyacetic acid or peracetic acid [with not more than 20% hydrogen peroxide] Exempt ≤6 ≥60 Exempt 28
Peroxyacetic acid or peracetic acid [with not more than 26% hydrogen peroxide] UN3109 ≤17 OP8 13, 20, 28
Peroxylauric acid UN3118 ≤100 OP8 +35 +40
1-Phenylethyl hydroperoxide UN3109 ≤38 ≥62 OP8
Pinanyl hydroperoxide UN3105 >56−100 OP7 13
Pinanyl hydroperoxide UN3109 ≤56 ≥44 OP8
Polyether poly-tert-butylperoxycarbonate UN3107 ≤52 ≥48 OP8
Tetrahydronaphthyl hydroperoxide UN3106 ≤100 OP7
1,1,3,3-Tetramethylbutyl hydroperoxide UN3105 ≤100 OP7
1,1,3,3-Tetramethylbutyl peroxy-2-ethylhexanoate UN3115 ≤100 OP7 +15 +20
1,1,3,3-Tetramethylbutyl peroxyneodecanoate UN3115 ≤72 ≥28 OP7 −5 +5
1,1,3,3-Tetramethylbutyl peroxyneodecanoate [as a stable dispersion in water] UN3119 ≤52 OP8 −5 +5
1,1,3,3-tetramethylbutyl peroxypivalate UN3115 ≤77 ≥23 OP7 0 +10
3,6,9-Triethyl-3,6,9-trimethyl-1,4,7-triperoxonane UN3110 ≤17 ≥18 ≥65 OP8
3,6,9-Triethyl-3,6,9-trimethyl-1,4,7-triperoxonane UN3105 ≤42 ≥58 OP7 26
Notes:
1. For domestic shipments, OP8 is authorized.
2. Available oxygen must be <4.7%.
3. For concentrations <80% OP5 is allowed. For concentrations of at least 80% but <85%, OP4 is allowed. For concentrations of at least 85%, maximum package size is OP2.
4. The diluent may be replaced by di-tert-butyl peroxide.
5. Available oxygen must be ≤9% with or without water.
6. For domestic shipments, OP5 is authorized.
7. Available oxygen must be ≤8.2% with or without water.
8. Only non-metallic packagings are authorized.
9. For domestic shipments this material may be transported under the provisions of paragraph (h)(3)(xii) of this section.
10. [Reserved]
11. [Reserved]
12. Samples may only be offered for transportation under the provisions of paragraph (b)(2) of this section.
13. “Corrosive” subsidiary risk label is required.
14. [Reserved]
15. No “Corrosive” subsidiary risk label is required for concentrations below 80%.
16. With <6% di-tert-butyl peroxide.
17. With ≤8% 1-isopropylhydroperoxy-4-isopropylhydroxybenzene.
18. Addition of water to this organic peroxide will decrease its thermal stability.
19. [Reserved]
20. Mixtures with hydrogen peroxide, water and acid(s).
21. With diluent type A, with or without water.
22. With ≥36% diluent type A by mass, and in addition ethylbenzene.
23. With ≥19% diluent type A by mass, and in addition methyl isobutyl ketone.
24. Diluent type B with boiling point >100 C.
25. No “Corrosive” subsidiary risk label is required for concentrations below 56%.
26. Available oxygen must be ≤7.6%.
27. Formulations derived from distillation of peroxyacetic acid originating from peroxyacetic acid in a concentration of not more than 41% with water, total active oxygen less than or equal to 9.5% (peroxyacetic acid plus hydrogen peroxide).
28. For the purposes of this section, the names “Peroxyacetic acid” and “Peracetic acid” are synonymous.
29. Not subject to the requirements of this subchapter for Division 5.2.
30. Diluent type B with boiling point >130°C (266°F).
31. Available oxygen ≤6.7%.

(d) *****

Table to Paragraph (d): Maximum Quantity per Packaging/Package

* * * * *

(g) * * *

Table to Paragraph (g) —Organic Peroxide Portable Tank Table
UN No. Hazardous material Minimum test pressure (bar) Minimum shell thickness (mm-reference steel) See . . . Bottom opening requirements See . . . Pressure-relief requirements See . . . Filling limits Control temperature Emergency temperature
3109 ORGANIC PEROXIDE, TYPE F, LIQUID
tert-Butyl hydroperoxide, not more than 72% with water.
*Provided that steps have been taken to achieve the safety equivalence of 65% tert-Butyl hydroperoxide and 35% water.
4 §178.274(d)(2) §178.275(d)(3) §178.275(g)(1) Not more than 90% at 59°F (15°C)
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
Note: 1. “Corrosive” subsidiary risk placard is required.

* * * * *

§173.301b Additional general requirements for shipment of UN pressure receptacles.

* * * * *

(c) * * *

(1) When the use of a valve is prescribed, the valve must conform to the requirements in ISO 10297:2014(E) and ISO 10297:2014/Amd 1:2017 (IBR, see §171.7 of this subchapter). Quick release cylinder valves for specification and type testing must conform to the requirements in ISO 17871:2015(E) (IBR, see §171.7 of this subchapter). Until December 31, 2022, the manufacture of a valve conforming to the requirements in ISO 10297:2014(E) is authorized. Until December 31, 2020, the manufacture of a valve conforming to the requirements in ISO 10297:2006(E) (IBR, see §171.7 of this subchapter) was authorized. Until December 31, 2008, the manufacture of a valve conforming to the requirements in ISO 10297:1999(E) (IBR, see §171.7 of this subchapter) was authorized.

(2) * * *

(ii) By equipping the UN pressure receptacle with a valve cap conforming to the requirements in ISO 11117:2008(E) and Technical Corrigendum 1 (IBR, see §171.7 of this subchapter). Until December 31, 2014, the manufacture of a valve cap conforming to the requirements in ISO 11117:1998(E) (IBR, see §171.7 of this subchapter) was authorized. The cap must have vent-holes of sufficient cross-sectional area to evacuate the gas if leakage occurs at the valve;

(iii) By protecting the valves by shrouds or guards conforming to the requirements in ISO 11117:2008(E) and Technical Corrigendum 1 (IBR; see §171.7 of this subchapter). Until December 31, 2014, the manufacture of a shroud or guard conforming to the requirements in ISO 11117:1998(E) (IBR, see §171.7 of this subchapter) was authorized. For metal hydride storage systems, by protecting the valves in accordance with the requirements in ISO 16111:2008(E) (IBR; see §171.7 of this subchapter).

(iv) By using valves designed and constructed with sufficient inherent strength to withstand damage in accordance with Annex B of ISO 10297:2014(E)/Amd. 1: 2017;

* * * * *

(d) Non-refillable UN pressure receptacles. (1) When the use of a valve is prescribed, the valve must conform to the requirements in ISO 11118:2015(E), (IBR, see §171.7 of this subchapter). Manufacture of valves to ISO 13340:2001(E) is authorized until December 31, 2020;

* * * * *

(f) Hydrogen bearing gases. A steel UN pressure receptacle bearing an ‘‘H’’ mark must be used for hydrogen bearing gases or other embrittling gases that have the potential of causing hydrogen embrittlement.

* * * * *

§173.302c Additional requirements for the shipment of adsorbed gases in UN pressure receptacles.

* * * * *

(k) The filling procedure must be in accordance with Annex A of ISO 11513 (IBR, see §171.7 of this subchapter).

* * * * *

§173.311 Metal hydride storage systems.

The following packing instruction is applicable to transportable UN Metal hydride storage systems (UN3468) with pressure receptacles not exceeding 150 liters (40 gallons) in water capacity and having a maximum developed pressure not exceeding 25 MPa. Metal hydride storage systems must be designed, constructed, initially inspected and tested in accordance with ISO 16111 (IBR, see §171.7 of this subchapter) as authorized under §178.71(m) of this subchapter. Steel pressure receptacles or composite pressure receptacles with steel liners must be marked in accordance with §173.301b(f) of this part which specifies that a steel UN pressure receptacle bearing an “H” mark must be used for hydrogen bearing gases or other gases that may cause hydrogen embrittlement. Requalification intervals must be no more than every five years as specified in §180.207 of this subchapter in accordance with the requalification procedures prescribed in ISO 16111.

§175.10 Exceptions for passengers, crewmembers, and air operators.

(a) This subchapter does not apply to the following hazardous materials when carried by aircraft passengers or crewmembers provided the requirements of §§171.15 and 171.16 (see paragraph (c) of this section) and the requirements of this section are met:

* * * * *

(14) Battery powered heat-producing devices (e.g., battery-operated equipment such as diving lamps and soldering equipment) as checked or carry-on baggage and with the approval of the operator of the aircraft. The heating element, the battery, or other component (e.g., fuse) must be isolated to prevent unintentional activation during transport. Any battery that is removed must be carried in accordance with the provisions for spare batteries in paragraph (a)(18) of this section.

* * * * *

(15) * * *

(v) * * *

(A) Securely attached to the wheelchair or mobility aid;

* * * * *

(vi) * * *

(A) Securely attached to the wheelchair or mobility aid; or

* * * * *

(17) * * *

(ii) * * *

(C) The battery must be securely attached to the mobility aid; and

* * * * *

(18) Except as provided in §173.21 of this subchapter, portable electronic devices (e.g., watches, calculating machines, cameras, cellular phones, laptop and notebook computers, camcorders, medical devices, etc.) containing dry cells or dry batteries (including lithium cells or batteries) and spare dry cells or batteries for these devices, when carried by passengers or crew members for personal use. Portable electronic devices powered by lithium batteries may be carried in either checked or carry-on baggage. When carried in checked baggage, portable electronic devices powered by lithium batteries must be completely switched off (not in sleep or hibernation mode) and protected to prevent unintentional activation or damage. Spare lithium batteries must be carried in carry-on baggage only. Each installed or spare lithium battery must be of a type proven to meet the requirements of each test in the UN Manual of Tests and Criteria, Part III, Sub-section 38.3, and each spare lithium battery must be individually protected so as to prevent short circuits (e.g., by placement in original retail packaging, by otherwise insulating terminals by taping over exposed terminals, or placing each battery in a separate plastic bag or protective pouch). In addition, each installed or spare lithium battery:

* * * * *

(26) Baggage equipped with lithium battery(ies) must be carried as carry-on baggage unless the battery(ies) is removed from the baggage. Removed battery(ies) must be carried in accordance with the provision for spare batteries prescribed in paragraph (a)(18) of this section. The provisions of this paragraph do not apply to baggage equipped with lithium batteries not exceeding:

* * * * *

§175.33 Shipping paper and information to the pilot-in-command.

(a) * * *

(13) * * *

(iii) For UN3480, UN3481, UN3090, and UN3091 prepared in accordance with §173.185(c), except those prepared in accordance with §173.185(c)(4)(vi), are not required to appear on the information to the pilot-in-command.

* * * * *

§178.37 Specification 3AA and 3AAX seamless steel cylinders.

* * * * *

(j) Flattening test. A flattening test must be performed on one cylinder taken at random out of each lot of 200 or less, by placing the cylinder between wedge shaped knife edges having a 60° included angle, rounded to ½-inch radius. The longitudinal axis of the cylinder must be at a 90-degree angle to knife edges during the test. For lots of 30 or less, flattening tests are authorized to be made on a ring at least 8 inches long cut from each cylinder and subjected to the same heat treatment as the finished cylinder. Cylinders may be subjected to a bend test in lieu of the flattening test. Two bend test specimens must be taken in accordance with ISO 9809–1 or ASTM E 290 (IBR, see §171.7 of this subchapter), and must be subjected to the bend test specified therein.

* * * * *

§178.71 Specifications for UN pressure receptacles.

* * * * *

(f) * * *

(4) ISO 21172-1:2015(E) Gas cylinders—Welded steel pressure drums up to 3,000 litres capacity for the transport of gases—Design and construction—Part 1: Capacities up to 1,000 litres (IBR, see §171.7 of this subchapter). Irrespective of section 6.3.3.4 of this standard, welded steel gas pressure drums with dished ends convex to pressure may be used for the transport of corrosive substances provided all applicable additional requirements are met.

(g) Design and construction requirements for UN refillable seamless steel cylinders. In addition to the general requirements of this section, UN refillable seamless steel cylinders must conform to the following ISO standards, as applicable:

(1) ISO 9809-1:2010 Gas cylinders—Refillable seamless steel gas cylinders—Design, construction and testing—Part 1: Quenched and tempered steel cylinders with tensile strength less than 1100 MPa. (IBR, see §171.7 of this subchapter). Until December 31, 2018, the manufacture of a cylinder conforming to the requirements in ISO 9809-1:1999 (IBR, see §171.7 of this subchapter) is authorized.

(2) ISO 9809-2: Gas cylinders—Refillable seamless steel gas cylinders—Design, construction and testing—Part 2: Quenched and tempered steel cylinders with tensile strength greater than or equal to 1100 MPa. (IBR, see §171.7 of this subchapter). Until December 31, 2018, the manufacture of a cylinder conforming to the requirements in ISO 9809-2:2000 (IBR, see §171.7 of this subchapter) is authorized.

(3) ISO 9809-3: Gas cylinders—Refillable seamless steel gas cylinders—Design, construction and testing—Part 3: Normalized steel cylinders. (IBR, see §171.7 of this subchapter). Until December 31, 2018, the manufacture of a cylinder conforming to the requirements in ISO 9809-3:2000 (IBR, see §171.7 of this subchapter) is authorized.

(4) ISO 9809-4:2014(E) (IBR, see §171.7 of this subchapter).

* * * * *

(i) Design and construction requirements for UN non-refillable metal cylinders. In addition to the general requirements of this section, UN non-refillable metal cylinders must conform to ISO 11118:2015(E) Gas cylinders—Non-refillable metallic gas cylinders—Specification and test methods (IBR, see §171.7 of this subchapter). Until December 31, 2020, cylinders conforming to ISO 11118:1999(E) Gas cylinders—Non-refillable metallic gas cylinders—Specification and test methods (IBR, see §171.7 of this subchapter) are authorized.

* * * * *

(k) * * *

(1) * * *

(i) ISO 9809-1:2010 Gas cylinders—Refillable seamless steel gas cylinders—Design, construction and testing—Part 1: Quenched and tempered steel cylinders with tensile strength less than 1100 MPa. Until December 31, 2018, the manufacture of a cylinder conforming to the requirements in ISO 9809-1:1999 (IBR, see §171.7 of this subchapter) is authorized.

(ii) ISO 9809-3: Gas cylinders—Refillable seamless steel gas cylinders—Design, construction and testing—Part 3: Normalized steel cylinders. Until December 31, 2018, the manufacture of a cylinder conforming to the requirements in ISO 9809-3:2000 (IBR, see §171.7 of this subchapter) is authorized.

* * * * *

(m) Design and construction requirements for UN metal hydride storage systems. In addition to the general requirements of this section, metal hydride storage systems must conform to the following ISO standards, as applicable: ISO 16111: Transportable gas storage devices—Hydrogen absorbed in reversible metal hydride (IBR, see §171.7 of this subchapter).

(n) Design and construction requirements for UN cylinders for the transportation of adsorbed gases. In addition to the general requirements of this section, UN cylinders for the transportation of adsorbed gases must conform to the following ISO standards, as applicable: ISO 11513:2011, Gas cylinders—Refillable welded steel cylinders containing materials for sub-atmospheric gas packaging (excluding acetylene)—Design, construction, testing, use and periodic inspection, or ISO 9809-1:2010: Gas cylinders—Refillable seamless steel gas cylinders—Design, construction and testing—Part 1: Quenched and tempered steel cylinders with tensile strength less than 1100 MPa. (IBR, see §171.7 of this subchapter.)

* * * * *

§178.75 Specifications for MEGCs.

* * * * *

(d) * * *

(3) Each pressure receptacle of a MEGC must be of the same design type, seamless steel, or composite, and constructed and tested according to one of the following ISO standards, as appropriate:

(i) ISO 9809-1: Gas cylinders—Refillable seamless steel gas cylinders—Design, construction and testing—Part 1: Quenched and tempered steel cylinders with tensile strength less than 1100 MPa. (IBR, see §171.7 of this subchapter). Until December 31, 2018, the manufacture of a cylinder conforming to the requirements in ISO 9809-1:1999 (IBR, see §171.7 of this subchapter) is authorized;

(ii) ISO 9809-2: Gas cylinders—Refillable seamless steel gas cylinders—Design, construction and testing—Part 2: Quenched and tempered steel cylinders with tensile strength greater than or equal to 1100 MPa. (IBR, see §171.7 of this subchapter). Until December 31, 2018, the manufacture of a cylinder conforming to the requirements in ISO 9809-2:2000 (IBR, see §171.7 of this subchapter) is authorized;

(iii) ISO 9809-3: Gas cylinders—Refillable seamless steel gas cylinders—Design, construction and testing—Part 3: Normalized steel cylinders. (IBR, see §171.7 of this subchapter). Until December 31, 2018, the manufacture of a cylinder conforming to the requirements in ISO 9809-3:2000 (IBR, see §171.7 of this subchapter) is authorized; or

* * * * *

§178.609 Test requirements for packagings for infectious substances.

* * * * *

(d) * * *

(2) Where the samples are in the shape of a drum, three samples must be dropped, one in each of the following orientations:

(i) Diagonally on the top chime, with the center of gravity directly above the point of impact;

(ii) Diagonally on the base chime; and

(iii) Flat on the side.

* * * * *

§178.706 Standards for rigid plastic IBCs.

* * * * *

(c) * * *

(3) No used material other than production residues or regrind from the same manufacturing process may be used in the manufacture of rigid plastic IBCs.

* * * * *

§178.707 Standards for composite IBCs.

* * * * *

(c) * * *

(3) * * *

(iii) No used material other than production residues or regrind from the same manufacturing process may be used in the manufacture of inner receptacles.

* * * * *

§180.207 Requirements for requalification of UN pressure receptacles.

* * * * *

(d) * * *

(3) Dissolved acetylene UN cylinders: Each dissolved acetylene cylinder must be requalified in accordance with ISO 10462:2013(E) (IBR, see §171.7 of this subchapter). A cylinder previously requalified in accordance with the second edition of ISO 10462(E) up until December 31, 2018, may continue to be used until the next required requalification. The porous mass and the shell must be requalified no sooner than 3 years, 6 months, from the date of manufacture. Thereafter, subsequent requalifications of the porous mass and shell must be performed at least once every ten years.

* * * * *

(5) UN cylinders for adsorbed gases: Each UN cylinder for adsorbed gases must be inspected and tested in accordance with §173.302c and ISO 11513:2011 (IBR, see §171.7 of this subchapter).

* * * * *

Specialized Industries

Go beyond the regulations! Visit the Institute for in-depth guidance on a wide range of compliance subjects in safety and health, transportation, environment, and human resources.

J. J. Keller® COMPLIANCE NETWORK is a premier online safety and compliance community, offering members exclusive access to timely regulatory content in workplace safety (OSHA), transportation (DOT), environment (EPA), and human resources (DOL).

Interact With Our Compliance Experts

Puzzled by a regulatory question or issue? Let our renowned experts provide the answers and get your business on track to full compliance!

Upcoming Events

Reference the Compliance Network Safety Calendar to keep track of upcoming safety and compliance events. Browse by industry or search by keyword to see relevant dates and observances, including national safety months, compliance deadlines, and more.

SAFETY & COMPLIANCE NEWS

Keep up with the latest regulatory developments from OSHA, DOT, EPA, DOL, and more.

REGSENSE® REGULATORY REFERENCE

Explore a comprehensive database of word-for-word regulations on a wide range of compliance topics, with simplified explanations and best practices advice from our experts.

THE J. J. KELLER INSTITUTE

The Institute is your destination for in-depth content on 120+ compliance subjects. Discover articles, videos, and interactive exercises that will strengthen your understanding of regulatory concepts relevant to your business.

ADD HAZMAT, ENVIRONMENTAL, & HR RESOURCES

Unlock exclusive content offering expert insights into hazmat, environmental, and human resources compliance with a COMPLIANCE NETWORK EDGE membership.

DIRECT ACCESS TO COMPLIANCE EXPERTS

Struggling with a compliance challenge? Get the solution from our in-house team of experts! You can submit a question to our experts by email, set up a phone or video call, or request a detailed research report.

EVENTS

Register to attend live online events hosted by our experts. These webcasts and virtual conferences feature engaging discussions on important compliance topics in a casual, knowledge-sharing environment.

Most Recent Highlights In Environmental

Stay on track with mobile off-road emission rules
2025-01-16T06:00:00Z

Stay on track with mobile off-road emission rules

Just like all-terrain tires, mobile emission regulations are built for paved and unpaved landscapes. The Environmental Protection Agency (EPA) sets federal emission standards for mobile sources, and the rules extend beyond vehicles on the road. The requirements also apply to off-road mobile sources, ranging from the humble lawnmower to imposing construction equipment.

While most requirements affect off-road vehicle, engine, and equipment manufacturers, certain rules apply to owners and operators. So, before you fire up the forklift or any other mobile off-road source, ensure your equipment complies.

What qualifies as a mobile off-road source?

Mobile sources, according to EPA, include vehicles, engines, and motorized equipment with exhaust and evaporative emissions. There are two types of mobile sources:

  • On-road sources, such as passenger and commercial vehicles; and
  • Off-road (or nonroad) sources, like chain saws, generators, and excavators.

Nonroad emission requirements are based on the source and emission system types.

EPA's mobile nonroad emission regulations
Nonroad sourceEmission systemRegulations (40 CFR)
AircraftExhaustPart 1031
Part 1065
Part 1068
Nonroad compression-ignition enginesExhaustPart 1039
Part 1065
Part 1068
Nonroad large spark-ignition enginesExhaust
Evaporative
Part 1048
Part 1065
Part 1068
LocomotivesExhaustPart 1033
Part 1065
Part 1068
Marine compression-ignition engines and vesselsExhaustPart 1042
Part 1065
Part 1068
Marine spark-ignition engines and vesselsExhaust
Evaporative
Part 1045
Part 1065
Part 1068
Nonroad recreational engines and vehiclesExhaust
Evaporative
Part 1051
Part 1065
Part 1068
Nonroad small spark-ignition engines (up to 19 kilowatts)Exhaust
Evaporative
Part 1054
Part 1065
Part 1068
Manufacturers must demonstrate that their nonroad equipment complies with EPA’s regulations to obtain a Certificate of Conformity. This certification allows manufacturers to produce and sell their products.

How do the regulations impact mobile nonroad source owners and operators?

The rules for owners and operators primarily relate to handling, maintaining, and rebuilding the emission-controlling components on nonroad vehicles, engines, and equipment.

Don’t tamper with emission controls

The regulation at 1068.101(b) bans owners, operators, and everyone else from impeding or removing emission controls from certified mobile nonroad vehicles, engines, and equipment. Examples include using software to increase emissions, removing emission control devices from equipment, and operating engines with incorrect fuel.

It also prohibits anyone from making, selling, or using defeat devices to bypass, impair, defeat, or disable emission controls.

Follow the manufacturer’s instructions

Manufacturers are required to provide emission-related installation and maintenance instructions as well as a warranty that the nonroad engine or equipment complies with EPA’s regulations. Owners and operators are responsible for maintaining the product (1068.110(e)).

Implement these actions to help ensure proper maintenance of your nonroad engine or equipment:

  • Follow the manufacturer’s emission-related installation and maintenance guidelines.
  • Operate the vehicle, engine, or equipment solely according to the manufacturer’s instructions.
  • Understand the terms of the manufacturer’s warranty. In addition to improper maintenance (like using an unauthorized service facility if applicable), other actions can void the warranty, such as using the engine or equipment outside its intended purposes stated by the manufacturer.

Rebuild engines according to the regulations

Anyone who installs or has a rebuilt engine installed in a regulated piece of nonroad equipment must confirm that the engine complies with 1068.120. These are some of the major requirements:

  • Only use a rebuilt engine that’s built/rebuilt to a certified configuration that meets the same or more stringent emission standards.
  • If you install an engine rebuilt by someone else, check all emission-related components per the original manufacturer’s recommended practice.
  • Keep required records for all rebuilt engines (except for certain spark-ignition engines with low total displacement) for at least two years.

Key to remember: EPA regulates emissions from all mobile sources, including off-road vehicles, engines, and equipment.

EHS Monthly Round Up - December 2024

EHS Monthly Round Up - December 2024

In this December 2024 roundup video, we’ll review the most impactful environmental, health, and safety news.

Hi everyone! Welcome to the monthly news roundup video, where we’ll review the most impactful environmental, health, and safety news. Please view the content links in the transcript for more information about the topics I’ll be covering today. Let’s get started!

OSHA’s personal protective equipment in construction final rule takes effect January 13. Employers must ensure PPE is of safe design and construction for the work to be performed and properly fits employees.

OSHA extended the comment deadline to January 14 for its proposed heat illness prevention rule. This gives stakeholders two more weeks to review the proposal and comment on it. An informal public hearing on the rule is scheduled for June 16.

OSHA released its Fall 2024 regulatory agenda on December 13. Many final and proposed rulemakings have been pushed into the first half of 2025, and a few have been bumped into the third quarter of the year.

OSHA updated its arc flash guidance for employees working on energized electrical equipment. Arc flash incidents can ignite clothing, cause structural fires, and cause severe or fatal burns. The guidance covers protecting employees from arc flash hazards, common electrical work myths, establishing boundaries around arc flash hazards, and being aware of arc flash hazards.

Warehouse, delivery, and retail workers are at increased risk for injuries and illnesses during the holidays due to higher volumes of work to meet consumer demand. OSHA reminds employers to protect workers by ensuring they’re trained to recognize and prevent hazards.

And finally, turning to environmental news, EPA released its Fall 2024 regulatory agenda on December 13. It includes projected publication dates for several final and proposed rules that may impact industry compliance with air, land, and water regulations.

Thanks for tuning in to the monthly news roundup. We’ll see you next month!

EHS Monthly Round Up - October 2024

EHS Monthly Round Up - October 2024

In this October 2024 roundup video, we'll review the most impactful environmental, health, and safety news.

Hi everyone! Welcome to the monthly news roundup video, where we’ll review the most impactful environmental, health, and safety news. Please view the content links in the transcript for more information about the topics I’ll be covering today. Let’s get started!

A Government Accountability Office report says OSHA can do more to protect warehouse and delivery workers from ergonomic injuries. The report recommends several steps for OSHA to consider, including ensuring compliance officers can easily obtain data on when musculoskeletal disorders occurred.

OSHA updated its inspection guidance for animal slaughtering and processing industries. Inspections will focus on several hazards, including sanitation, ergonomics, and machine guarding. Among other changes, compliance officers will conduct inspections during off-shift times and identify workplace activities that impact employees most at risk such as temporary employees.

OSHA urges workers involved in hurricane cleanup and recovery efforts to be mindful of hazards, especially those associated with restoring electricity, removing debris, and trimming trees. Proper training, experience, and familiarity with related equipment helps ensure worker safety.

And finally, turning to environmental news, EPA extended the 2024 Chemical Data Reporting deadline to November 22 due to technical difficulties with its electronic reporting tool. The 2024 report covers activities that occurred between calendar years 2020 and 2023.

Thanks for tuning in to the monthly news roundup. We’ll see you next month!

EHS Monthly Round Up - May 2023

EHS Monthly Round Up - May 2023

In this monthly roundup video, we'll review the most impactful environmental, safety, and health news.

Hi everyone! Welcome to the monthly news roundup video, where we’ll review the most impactful environmental, health, and safety news. Please view the content links in the transcript to take a deeper dive into the topics I’ll be covering today. With that said, let’s get started!

First, let’s take a look at what’s happening in safety and health. The week of May 1 marked the 10th annual Stand-Down to Prevent Falls in Construction. Employers were encouraged to have safety talks or demonstrations on the use of fall protection.

A new National Emphasis Program on fall prevention covers all industries, with a focus on construction and specific general industry activities. It took effect May 1; however, programmed inspections will begin after a 90-day outreach period.

With the start of lawn-care season, a recent OSHA case highlights some of the risks involved. The Agency found a lawn service contractor operating in Kentucky ignored safety requirements to save time.

A forklift operator suffered fatal injuries after falling into a recycling baler while trying to remove a jam. Investigators found a lack of training and communication were contributing factors.

In response to larger, more frequent wildfires, the state of Washington has proposed permanent wildfire smoke rules. They include year-round requirements for employers that will be in effect whenever there’s a risk that workers will be exposed to wildfire smoke.

And finally, turning to environmental news, EPA finalized changes to the new source performance standards for Automobile and Light Duty Truck Surface Coating Operations. The rule adds more emissions requirements for such operations.

Thanks for tuning in to the monthly news roundup. We’ll see you next month!

EHS Monthly Round Up - January 2023

EHS Monthly Round Up - January 2023

In this monthly roundup video, we’ll review the most impactful environmental, safety, and health news.

Hi everyone! Welcome to the monthly roundup video, where we’ll review the most impactful environmental, safety, and health news. First, let’s take a look at what’s happening in safety and health.

If you haven’t already done so, now is the time to post your OSHA 300A Summary. Employers are required to post the Summary in a conspicuous place from February 1st through April 30th.

As required by law, OSHA increased its penalties for inflation in mid-January. Penalties went up 7.7 percent, effective January 17th.

Also in January, OSHA released its long-awaited Fall 2022 regulatory agenda. Along with numerous proposed rules in the works, three major final rules are slated for 2023 – COVID-19 in healthcare, Injury and Illness tracking, and an update to the hazard communication standard.

OSHA recently released two new letters of interpretation, which address exit signs and lockout/tagout. Specifically, OSHA states that the International Standards Organization emergency exit symbol can be located beside the mandatory EXIT text on an existing sign.

The second letter addresses the applicability of lockout/tagout and the maintenance and operations of cathodic protection rectifiers when working on pipelines.

New York’s Warehouse Worker Protection Act was signed into law in December and takes effect in late February. It protects warehouse distribution workers from undisclosed or unlawful work speed quotas and includes protections for workers who fail to meet these quotas.

In 2021, a worker died every 101 minutes from a work-related injury, according to the Bureau of Labor Statistics. A total of 5,190 fatal work injuries was recorded in the U.S. in 2021, an 8.9 percent increase over 2020.

Turning to environmental news, EPA automatically added nine per- and polyfluoroalkyl substances, or PFAS, to the Toxics Release Inventory, or TRI, list. Four PFAS were added since they are no longer claimed as confidential business information.

EPA released its Fall 2022 regulatory agenda in early January. Included are major regulations impacting the National Ambient Air Quality Standards, waters of the United States, and modifications to the Risk Management Program under the Clean Air Act.

There are also a number of rules related to the National Emission Standards for Hazardous Air Pollutants in various rule stages.

And finally, beginning with model year 2027, heavy-duty trucks will be required to meet clean air standards that are 80 percent more stringent than current requirements.

EPA says this final rule is aimed at reducing smog- and soot-forming emissions, increasing the life of governed vehicles by up to 250 percent, and increasing emissions warranty periods up to 450 percent.

Thanks for tuning in to the monthly news roundup!

See More

Most Recent Highlights In Transportation

EHS Monthly Round Up - January 2024

EHS Monthly Round Up - January 2024

In this monthly video, we'll review the most impactful environmental, health, and safety news.

Hi everyone! Welcome to the monthly news roundup video, where we’ll go over the most impactful environmental, health, and safety news. Please view the content links in the transcript for more information about the topics I’ll be covering today. Let’s get started!

Effective January 15, OSHA penalties increased 3.2 percent for inflation. Most penalties increased to $16,131. Willful and serious violations, however, increased to $161,323.

Construction workers aged 45 and older suffer more severe injuries and higher associated costs than other age groups. Most injuries are due to slips, trips, and falls.

Washington State updated its process safety management rules to better protect workers in petroleum refineries from the hazards of volatile chemicals. The rules take effect December 27, 2024.

Bloodborne pathogens topped the list of OSHA violations for the healthcare industry in 2023. Hazard Communication was the second most cited standard, followed by respiratory protection.

OSHA Region 2 launched a regional emphasis program that targets tree trimming, tree removal, and land clearing operations. Region 2 includes New York, New Jersey, Puerto Rico, and the U.S. Virgin Islands.

EPA continues to strengthen its regulation of per- and polyfluoroalkyl — or PFAS — substances. A new rule prevents facilities from using any of the 300+ inactive PFAS before EPA conducts a risk determination and, if necessary, regulates the activity.

Thanks for tuning in to the monthly news roundup. We’ll see you next month!

EHS Monthly Round Up - August 2023

EHS Monthly Round Up - August 2023

In this monthly roundup video, we'll review the most impactful environmental, health, and safety news.

Hi everyone! Welcome to the monthly news roundup video, where we'll review the most impactful environmental, health, and safety news. Please view the content links in the transcript to take a deeper dive into the topics I'll be covering today. With that said, let's get started!

In response to soaring temperatures across the country, OSHA issued a heat hazard alert reminding employers of their obligation to protect workers against heat illness. OSHA also ramped up enforcement activities in high-risk industries like construction and agriculture.

OSHA's annual Safe and Sound Week was held the week of August 7. It highlighted the importance of workplace safety and health programs. This year's focus was on mental health and well-being.

OSHA wants to know how you use your safety and health program to ensure a positive workplace safety culture. The agency has drawn up questions related to work safety values, safety messaging, and more, and will use your feedback to develop educational materials. November 30 is the deadline for comments.

Though the current hurricane season has been relatively quiet, it's important to be prepared as the height of the season approaches. Both OSHA and NIOSH have provided resources to help emergency responders, recovery workers, and employers prepare in advance for anticipated weather disasters.

Workplace deaths due to unintentional overdoses of fentanyl and methamphetamine continue to rise. In 2021, there were 464 such fatalities, a 19.6 percent increase over 2020.

And finally, turning to environmental news, receiving facilities will see increased user fees for the e-Manifest system in fiscal years 2024 and 2025. EPA sets these user fees based on how the manifest is submitted and processing costs for each manifest type. Using fully electronic waste manifests will cost significantly less.

Thanks for tuning in to the monthly news roundup. We'll see you next month!

EHS Monthly Roundup - March 2023

EHS Monthly Roundup - March 2023

This monthly video spotlights EHS news highlights from March 2023.

Hi everyone! Welcome to the monthly news roundup video, where we’ll review the most impactful environmental, health, and safety news. Please view the content links in the transcript to take a deeper dive into the topics I’ll be covering today. With that said, let’s get started!

First, let’s take a look at what’s happening in safety and health. OSHA revised its combustible dust national emphasis program. It adds several industries with a higher likelihood of having combustible dust hazards.

California’s Safety and Health Appeals Board says drinking water must be “as close as practicable” to outdoor employees.

The Pipeline and Hazardous Materials Safety Administration says that some forklift operators may be considered hazmat employees. If operators handle hazmat cargo, such as moving it from the truck to an aircraft, they need hazmat training.

OSHA posted a letter of interpretation that answers hazard communication questions related to lithium batteries. The agency says workers may be exposed to hazards during storage, handling, and maintenance activities.

Stand Up 4 Grain Safety Week was held the week of March 27. Employers were encouraged to hold toolbox talks or safety demonstrations related to grain handling and storage.

Turning to environmental news, EPA issued significant new use rules for chemical substances that were the subject of premanufacture notices. This change brings added reporting and recordkeeping.

Thanks for tuning in to the monthly news roundup. We’ll see you next month!

EHS Monthly Round Up - September 2024

EHS Monthly Round Up - September 2024

In this September 2024 video, we'll review the most impactful environmental, health, and safety news.

Hi everyone! Welcome to the monthly news roundup video, where we’ll review the most impactful environmental, health, and safety news. Please view the content links in the transcript for more information about the topics I’ll be covering today. Let’s get started!

OSHA published its proposed heat illness rule on August 30. It applies to both indoor and outdoor work in general industry, construction, agriculture, and maritime. Comments on the proposal will be accepted until December 30. OSHA encourages both employers and workers to submit comments.

Fall protection for construction remained number one on OSHA’s list of Top 10 violations for the 14th year in a row. There was little movement among the other Top 10 entries, with Hazard Communication at number 2 and ladders at number 3.

OSHA may exclude volunteer emergency response organizations from its proposed emergency response rule. During the rule’s public comment period, the agency received numerous comments that raised serious economic feasibility concerns.

During its silica enforcement inspections, OSHA also found violations of the hazard communication, respiratory protection, and noise standards. Over 200 companies were targeted as part of the agency’s respirable crystalline silica emphasis program.

Employers can view workplace injury and illness trends using OSHA’s Severe Injury Report dashboard. This new online tool allows users to search the agency’s severe injury report database. Severe injuries and illnesses are those that result in inpatient hospitalization, amputation, or loss of an eye.

And finally, turning to environmental news, an EPA final rule impacts facilities that reclassify from major to area source status under the National Emission Standards for Hazardous Air Pollutants program. These facilities must continue to meet the major source emission standards for seven hazardous air pollutants.

Thanks for tuning in to the monthly news roundup. We’ll see you next month!

EHS Monthly Round Up - April 2024

EHS Monthly Round Up - April 2024

In this monthly roundup video, we’ll review the most impactful environmental, safety, and health news.

Hi everyone! Welcome to the monthly news roundup video, where we’ll go over the most impactful environmental, health, and safety news. Please view the content links in the transcript for more information about the topics I’ll be covering today. Let’s get started!

OSHA’s worker walkaround rule takes effect May 31st. It expands the criteria for who employees can authorize to act as their representative during an inspection.

Between 2015 and 2022, there were about 1,500 worker injuries involving food processing machinery. A new OSHA alert raises awareness of these hazards. It addresses hazard recognition, corrective measures, and workers’ rights.

The National Institute for Occupational Safety and Health (NIOSH) seeks stakeholder input on protecting outdoor workers from wildfire smoke. The agency intends to develop a hazard review document that provides recommendations to protect workers.

The Mine Safety and Health Administration published a final rule that lowers miners’ exposure to silica dust. It also revises the standard to reflect the latest advances in respiratory protection and practices.

OSHA released 2023 injury and illness data. The agency provides public access to this information in an effort to identify unsafe conditions and workplace hazards that may lead to injuries and illnesses.

And turning to environmental news, EPA finalized a rule to designate two widely used PFAS as hazardous substances under the Comprehensive Environmental Response, Compensation, and Liability Act, or CERCLA. The rule requires immediate release notifications for the two PFAS. It also gives EPA the authority to hold polluters responsible for contamination.

Thanks for tuning in to the monthly news roundup. We’ll see you next month!

See More

Most Recent Highlights In Safety & Health

EHS Monthly Roundup - February 2023

EHS Monthly Roundup - February 2023

This monthly video spotlights EHS news highlights from February 2023.

Hi everyone! Welcome to the monthly roundup video, where we’ll review the most impactful environmental, safety, and health news.

First, let’s take a look at what’s happening in safety and health. Machine guarding and hazard communication topped OSHA’s list of most frequently cited serious violations in fiscal year 2022. Over 1,300 citations were issued for machine guarding and over 1,800 were issued for HazCom.

Effective March 26, OSHA will cite certain types of violations as “instance-by-instance” citations, when inspectors identify high-gravity, serious violations specific to the following: falls, trenching, machine guarding, respiratory protection, permit required confined space, and lockout/tagout, as well as other-than-serious violations specific to recordkeeping.

California’s COVID-19 prevention non-emergency regulations, which require employers to protect workers from the hazards related to COVID-19, took effect February 3, and will remain in effect for two years.

A new OSHA fact sheet outlines measures to protect shipyard employees from the physical hazards of confined spaces. In the maritime sector, physical hazards in confined spaces can increase a worker’s risk of injury.

OSHA says it will withdraw its proposal to revoke Arizona’s State Plan. The state has taken measures to remain compliant with federal OSHA. However, OSHA continues to work closely with Arizona to address other state-plan concerns that weren’t part of its original withdrawal proposal.

And turning to environmental news, EPA issued a rule that finalizes first-time standards for inorganic hazardous air pollutants in miscellaneous coating manufacturing that will limit emissions and require effective controls. Final amendments include provisions for inorganic hazardous air pollutant standards for process vessels. The rule took effect February 22.

Thanks for tuning in to the monthly news roundup. We'll see you next month!

EHS Monthly Round Up - March 2024

EHS Monthly Round Up - March 2024

In this monthly roundup video, we’ll review the most impactful environmental, safety, and health news.

Hi everyone! Welcome to the monthly news roundup video, where we’ll go over the most impactful environmental, health, and safety news. Please view the content links in the transcript for more information about the topics I’ll be covering today. Let’s get started! The Office of Management and Budget completed its review of OSHA’s worker walkaround final rule on March 20. The next step is publication in the Federal Register. The rule expands the criteria for who employees can authorize to act as their representative during an OSHA inspection.

Stand Up 4 Grain Safety Week was held the week of March 25. This annual event brings attention to hazards in the grain handling and storage industry and encourages employers to focus on safe work practices.

Over 100 people die in ladder-related deaths each year, and thousands more suffer disabling injuries. During Ladder Safety Month, which is held each March, the American Ladder Institute promotes ladder safety to decrease the number of injuries and fatalities.

Between 2010 and 2023, 11 miners drowned in incidents involving submerged mobile equipment. In response, the Mine Safety and Health Administration issued a safety alert. It recommends measures miners should take when operating equipment near water.

And finally, turning to environmental news, EPA finalized amendments to its Risk Management Program in an effort to improve safety at facilities that use and distribute hazardous chemicals. The rule seeks to improve chemical process safety; assist in planning for, preparing for, and responding to accidents; and increase public awareness of chemical hazards at regulated sites.

Thanks for tuning in to the monthly news roundup. We’ll see you next month!

EHS Monthly Round-Up - August 2024

EHS Monthly Round-Up - August 2024

In this August 2024 roundup, we'll review the most impactful environmental, health, and safety news.

Hi everyone! Welcome to the monthly news roundup video, where we’ll review the most impactful environmental, health, and safety news. Please view the content links in the transcript for more information about the topics I’ll be covering today. Let’s get started!

Two State Plan agencies allegedly provided advance notice of workplace inspections to employers, a practice that’s prohibited under the Occupational Safety and Health Act. Now, lawmakers have requested that the Department of Labor’s acting secretary address the allegations and explain what challenges OSHA faces when monitoring and enforcing State Plan compliance.

A recent study shows jobs in agriculture, forestry, fishing, and hunting are among California’s most dangerous, accounting for the highest number of fatalities among full-time workers. Transportation and utilities jobs ranked second and construction was third.

Remote isolation of process equipment can quickly stop the release of hazardous materials, which can help prevent fatalities and injuries, limit facility damage, and better protect communities and the environment. A U.S. Chemical Safety Board study explores their use and makes recommendations for their utilization in chemical facilities.

A National Safety Council report explores the role of diversity, equity, and inclusion on work-related musculoskeletal disorders, or MSDs. MSDs are the most common workplace injury and often lead to worker disability, early retirement, and employment limitations.

And finally, turning to environmental news, EPA published a final rule that revises its hazardous waste export manifest regulations. All hazardous waste shipments and manifest-related reports will be managed electronically through the agency’s e-Manifest program.

Thanks for tuning in to the monthly news roundup. We’ll see you next month!

Section 404 permits: Does your project need a permit to fill?
2025-01-03T06:00:00Z

Section 404 permits: Does your project need a permit to fill?

Some commercial and industrial projects place materials (called fill) in a body of water for various reasons, such as building a facility, adding a road to a facility site, or installing intake and outfall pipes at a power plant. If the project affects any of the waters of the United States (WOTUS), you must first obtain a permit.

Section 404 of the Clean Water Act requires a permit to discharge dredged or fill material into any WOTUS (including wetlands). Before conducting any activities at your facility’s site, it’s crucial to find out whether your project requires a permit to fill.

What’s considered fill material?

The regulations at 40 CFR 232.2 define fill material as any material placed in WOTUS that:

  • Replaces any part of WOTUS with dry land, or
  • Changes the bottom elevation of WOTUS.

Fill material excludes trash and garbage. Common examples of fill material are:

  • Construction debris,
  • Materials used to create a structure/infrastructure,
  • Rock,
  • Sand, and
  • Soil.

Whenever fill material is dumped, placed, or deposited in WOTUS, a “discharge of fill material” occurs. Examples (according to 232.2) range from road fills to commercial and industrial site development fills.

The Environmental Protection Agency and the U.S. Army Corps of Engineers (USACE) jointly administer the Section 404 permit program. The USACE typically issues the permits unless a state or tribal program is authorized to issue them.

Does your project require a permit to fill?

To answer this question, you’ll need to address a few more questions:

1. Will fill materials enter WOTUS?

The first step is to determine whether Section 404 regulations cover any on-site waterbodies.

The Aquatic Resource Delineation Report is a required part of the permitting process. It identifies any on-site aquatic resources (i.e., waterbodies or wetlands) subject to permitting rules. Businesses typically hire consultants to develop the report.

If you need help figuring out the status of your aquatic resources, you can request the USACE to make a written jurisdictional determination of whether Section 404 rules apply to any on-site waterbodies or wetlands.

2. Is the planned discharge of fill exempt?

Not all fill discharges require a Section 404 permit. Examples include:

  • Conducting ongoing farming and ranching activities (such as minor drainage and harvesting);
  • Maintaining drainage ditches, dams, and levees; and
  • Building and maintaining irrigation ditches, farm and stock ponds, and farm and forest roads.

See 232.3 for the comprehensive list of discharge activities that don’t require a permit.

3. What impact will the fill discharge have?

The potential impact that your project will have on WOTUS determines the type of permit you need: general or individual.

General permits are issued for discharges that have only minimal adverse effects on WOTUS. They’re based on specific activities and typically require much less processing time, allowing projects to begin sooner. The types of general permits include:

  • Nationwide permits (authorize activities across the U.S.),
  • Regional general permits (authorize activities in a specific area), and
  • Programmatic general permits (authorize activities already regulated by existing state, local, or federal programs).

Individual permits are issued for discharges that may have significant impacts on WOTUS. They require case-by-case evaluations of each project.

When starting the Section 404 permitting process, keep these things in mind:

  • The permit requirements apply both to permanent and temporary projects, like using fills to access a work area for a limited time.
  • You can request to meet with the USACE before applying for a permit. It’s an informal meeting during which the USACE offers guidance and insights that could help reduce your application’s processing time.
  • Check with the state to identify any state-level permitting requirements.

Key to remember: If a project’s discharges of fill material could impact the waters of the United States, it may require a Section 404 permit under the Clean Water Act.

The next 5: EPA's latest step in chemical risk evaluations
2024-12-31T06:00:00Z

The next 5: EPA's latest step in chemical risk evaluations

Are the chemicals in your home and workplace safe? The Environmental Protection Agency (EPA) is working to answer this question with the recent launch of risk evaluations for five chemicals under the Toxic Substances Control Act (TSCA):

  • Acetaldehyde,
  • Acrylonitrile,
  • Benzenamine,
  • 4,4’-methylene bis(2-chloroaniline) (or MBOCA), and
  • Vinyl chloride.

EPA selected the chemicals through a rigorous process (under TSCA section 6(b)(1)(A)) that considers potential hazards, exposure levels, and other relevant factors. A critical component of this process is the prioritization of chemicals for risk evaluation.

The prioritization process is the cornerstone of EPA's TSCA implementation. It ensures that the agency's resources are directed toward chemicals with the greatest potential to cause harm. This systematic approach allows the agency to efficiently evaluate a vast number of existing chemicals and make informed decisions about their safety.

Prioritizing existing chemicals under TSCA can include up to seven stages:

  1. Approach to prioritization: EPA selects a prioritization approach that’s appropriate for the purposes of the evaluation.
  2. Candidate selection: In this stage, EPA identifies potential candidates for prioritization using a variety of sources, including industry reports, scientific studies, and public input.
  3. Initiation: Once the agency selects a candidate chemical, it initiates the prioritization process by gathering relevant information on the chemical's hazards, exposures, and potential risks.
  4. Screening review: During this stage, EPA conducts a screening-level risk assessment to evaluate the potential risks of the chemical.
  5. Proposed designation: Based on the screening review, the agency proposes a designation for the chemical as either high- or low-priority for further evaluation. Chemicals designated as High-Priority Substances enter the TSCA risk evaluation process.
  6. Final designation: After considering public comments, EPA finalizes the chemical’s designation.
  7. Revision of designation: EPA may revise the designation of a low-priority substance to high-priority if new information suggests that the chemical may present an unreasonable risk of injury to health or the environment.

Risk evaluation: Assessing unreasonable risks

Following prioritization, EPA immediately starts risk evaluations for chemicals designated as High-Priority Substances. The evaluations involve a comprehensive assessment of potential hazards, exposure pathways, and potential risks to human health and the environment. The goal is to determine whether a chemical presents an "unreasonable risk of injury to health or the environment."

If a risk evaluation identifies an unreasonable risk, EPA can take various regulatory actions under TSCA. These actions may include restrictions on the use, manufacture, or distribution of the chemical. The agency tailors the regulatory approach to the unique characteristics and risks of each chemical.

Key to remember: EPA recently announced the initiation of risk evaluations for five chemicals under TSCA. The chemicals were selected through a rigorous prioritization process that considers potential hazards, exposure levels, and other relevant factors.

See More

Most Recent Highlights In Human Resources

Agency adds new temporary hazardous waste storage, transfer codes
2024-12-30T06:00:00Z

Agency adds new temporary hazardous waste storage, transfer codes

The Environmental Protection Agency (EPA) has added new Management Method Codes to describe how hazardous waste will be managed after temporary storage and transfer. The codes are used for Biennial Hazardous Waste Reports and e-Manifests required by the Resource Conservation and Recovery Act (RCRA).

What are the changes?

The new “S Codes” are effective as of January 1, 2025. The S Codes will ultimately replace code H141 for Storage and Transfer for the RCRA Biennial Reports and e-Manifests. EPA will remove Code H141 from the Biennial Report and e-Manifest on January 1, 2027.

Hazardous waste handlers will use the S Codes on the Biennial Report Waste Generation and Management (GM) forms. The S Codes indicate that (a) hazardous waste was received to be stored or transferred and (b) the hazardous waste will later be managed by a final receiving facility using a specific method.

What are the new codes?

The new Management Method Codes include the following:

S CodeDescription
S010Stored and transferred for metals recovery
S011Stored and transferred for mercury recovery
S015Stored and transferred for deployment/deactivation of airbag waste
S020Stored and transferred for solvents recovery
S039Stored and transferred for other recovery or reclamation for reuse
S040Stored and transferred for incineration
S041Stored and transferred for open burning/open detonation
S042Stored and transferred for thermal desorption
S070Stored and transferred for chemical treatment
S081Stored and transferred for biological treatment
S090Stored and transferred for polymerization
S100Stored and transferred for physical treatment only
S110Stored and transferred for stabilization
S113Stored and transferred for stabilization to remove HW characteristics or to achieve delisting levels
S120Stored and transferred for comb. of chemical, biological, and/or physical TRT
S121Stored and transferred for neutralization only
S122Stored and transferred for evaporation
S129Stored and transferred for other treatment
S130Stored and transferred for surface impoundment that will be closed as landfill
S131Stored and transferred for land treatment or application
S132Stored and transferred for landfill (with prior treatment and/or stabilization)
S134Stored and transferred for deepwell or underground injection

When do the new codes apply?

Handlers may use the new S Codes on the 2025 Biennial Report GM form, on the 2026 Annual Report in some states, and for e-Manifests. While handlers may continue using code H141, EPA recommends shifting to S Codes before January 1, 2027, when code H141 will be removed.

Key to remember: EPA’s new S Codes for Biennial Reports and e-Manifests indicate how the final receiving facility will manage temporarily stored and transferred hazardous waste.

EPA's Fall 2024 regulatory agenda impacts air, land, water rules
2024-12-16T06:00:00Z

EPA's Fall 2024 regulatory agenda impacts air, land, water rules

The Environmental Protection Agency (EPA) published the Fall 2024 Semiannual Agenda of Regulatory and Deregulatory Actions on December 13, 2024. The agenda reveals the agency’s upcoming regulatory actions and where each action is in the rulemaking process.

The agenda includes major EPA updates, such as:

  • Finalizing a rule to add 16 individual per- and polyfluoroalkyl substances (PFAS) and 15 PFAS categories to the Toxics Release Inventory as chemicals of special concern, making them subject to reporting (final rule expected August 2025);
  • Establishing greenhouse gas emission guidelines for existing fossil fuel-fired combustion turbine electric generating units (proposed rule expected February 2025);
  • Lowering the 2024 cellulosic biofuel volume and associated percentage standard requirements under the Renewable Fuel Standard program (final rule expected in March 2025);
  • Issuing renewal decisions for each of the six applications of hydrofluorocarbons (HFCs) prioritized under the HFC allowance allocation program starting in calendar year 2026 (final rule expected in July 2025); and
  • Proposing and finalizing regulations to control unreasonable risks from multiple chemical substances regulated under the Toxic Substances Control Act, like:
    • C. I. Pigment Violet 29 (proposed rule expected in April 2025),
    • N-methylpyrrolidone (final rule expected in August 2025), and
    • 1,4-dioxane (proposed rule expected in October 2025).

This article highlights some of the major rules we’re watching closely. You’ll want to review the entire agenda to learn about all the rulemakings on EPA’s docket. Please note that the agenda dates are tentative; they're when the agency seeks to publish the rulemakings in the Federal Register.

Final Rule Stage
Project Publication DateTitle
December 2024New Source Performance Standards (NSPS) and Emission Guidelines (EG) for Large Municipal Waste Combustors (MWCs)  
December 2024Removal of Affirmative Defense Provisions From Specified New Source Performance Standards and National Emission Standards for Hazardous Air Pollutants
January 2025Water System Restructuring Assessment Rule
March 2025Regulatory Requirements for New HAP Additions to Part 63
July 2025Listing of Specific PFAS as Hazardous Constituents 
August 2025Clean Water Act Effluent Limitations Guidelines and Standards for the Meat and Poultry Products Point Source Category 
October 2025Revisions to Standards for the Open Burning/Open Detonation of Waste Explosives
November 2025Stationary Combustion Turbines New Source Performance Standards (NSPS) Technology Review
Proposed Rule Stage
Projected publication date of Notice of Proposed RulemakingTitle
December 2024Reconsideration of Standards of Performance for New, Reconstructed and Modified Sources and Emissions Guidelines for Existing Sources: Oil and Natural Gas Sector Climate Review 
January 2025National Emission Standards for Hazardous Air Pollutants for the Polyether Polyols Production Industry
March 2025Clean Water Act Effluent Limitations Guidelines and Standards for PFAS Manufacturers Under the Organic Chemicals, Plastics and Synthetic Fibers Point Source Category
April 2025Phasedown of Hydrofluorocarbons: Reconsideration of Technology Transitions Final Rule Under the American Innovation and Manufacturing Act of 2020 
May 2025National Emission Standards for Hazardous Air Pollutants: Stationary Combustion Turbines; Amendments 
June 2025Improving Recycling and Management of Renewable Energy Wastes: Universal Waste Regulations for Solar Panels and Lithium Batteries
June 2025PFAS Requirements in NPDES Permit Applications
June 2025Tiered Data Reporting to Inform Prioritization, Risk Evaluation and Risk Management Under the Toxic Substances Control Act (TSCA) 
November 2025Revisions to Establish the Sixth Unregulated Contaminant Monitoring Rule (UCMR 6) for Public Water Systems
November 2025Revise/Update the Standards of Performance and Emission Guidelines for Municipal Solid Waste Landfills 
Pre-Rule Stage
Projected publication date or other actionTitle
December 2024 (Notice of Proposed Rulemaking)Lead Wheel Weights; Regulatory Investigation Under the Toxic Substances Control Act (TSCA)
January 2025 (End Review)610 Review of Standards of Performance for New Residential Wood Heathers, New Residential Hydronic Heaters and Forced-Air Furnaces
January 2025 (Advanced Notice of Proposed Rulemaking Comment Period End)Regulatory Investigation of N-(1,3-Dimethylbutyl)-N′-phenyl-p-phenylenediamine ("6PPD") and its Transformation Product, 6PPD-quinone Under the Toxic Substances Control Act (TSCA)
Key to remember: EPA’s Fall 2024 regulatory agenda includes upcoming actions with possible impacts on industry compliance with air, land, and water rules.
New chemical review: What are the 5 possible results?
2024-12-11T06:00:00Z

New chemical review: What are the 5 possible results?

Before a new chemical substance can enter the marketplace, it first travels through the New Chemicals Review Program. Section 5 of the Toxic Substances Control Act (TSCA) requires the Environmental Protection Agency (EPA) to review new chemicals for any unreasonable risk of injury they may pose to human or environmental health. The agency determines (a) whether the substances can enter the marketplace and (b) if they require restrictions to manage any unreasonable risk.

To manufacture (including import) a chemical for commercial purposes that’s not on the TSCA Chemical Substance Inventory (i.e., a new chemical), you have to submit a premanufacture notice (PMN) to EPA. In December 2024, EPA finalized the new chemicals review rule. It clarifies that when you submit a PMN, you may not manufacture the new chemical substance until the agency issues a safety determination and completes any associated actions (like developing rules to limit its use).

Start the PMN process by conducting your own review! Evaluate and prepare for the possible determinations EPA will make for your new chemical substance.

Safety determinations

Submitting a PMN sparks the beginning of the new chemicals review process. EPA completes the review process by making one of five possible safety determinations for the new chemical.

It’s important to note that three types of determinations fall under the scope of Section 5(e) actions. If EPA makes any determination under Section 5(e), it must issue a Section 5(e) order with requirements that limit or ban the manufacture, processing, distribution in commerce, use, or disposal of the new chemical. Examples include toxicity testing, personal protective equipment for exposed workers, and environmental release restrictions.

Let’s take a look at each one.

Section 5(a)(3)(C): Not likely to present an unreasonable risk

In the most straightforward scenario, EPA can find that the new chemical isn’t likely to pose an unreasonable risk.

In this case, the agency will notify you and publish its findings in the Federal Register. Once you receive the Section 5(a)(3)(C) notice from EPA, you may begin manufacturing the new chemical substance, even if the applicable review period isn’t over.

Section 5(f): Presents an unreasonable risk

The agency may find that a new chemical presents an unreasonable risk of injury.

It will use Section 5(f) to limit or ban the manufacture, processing, distribution in commerce, use, or disposal of the new chemical through either:

  • A proposed rule that takes immediate effect, or
  • An issued order.

Section 5(e): Insufficient information

The agency may determine that it doesn’t have enough information to make a “reasoned evaluation” of the new chemical’s impact on health and the environment.

EPA will issue a Section 5(e) order with restrictions to mitigate or eliminate the unreasonable risk.

Section 5(e): May present an unreasonable risk

If EPA doesn’t have enough information, it can alternatively determine that the new chemical poses an unreasonable risk due to insufficient information.

The agency will issue a Section 5(e) order with restrictions to mitigate or eliminate the unreasonable risk.

Section 5(e): Presents unreasonable risk due to quantity

On the other hand, EPA may determine that the new chemical will be produced in substantial quantities that could (a) be released in large amounts to the environment or (b) result in significant human exposure.

EPA will issue a Section 5(e) order with restrictions to mitigate or eliminate the unreasonable risk.

Regulatory action

In December 2024, EPA finalized changes to the rule for new chemical reviews. It clarifies that the agency must make one of five statutory determinations for each PMN, significant new use notice, and microbial commercial activity notice it receives.

The final rule also:

  • Eliminates full review exemptions for per- and polyfluoroalkyl substances (or PFAS) as well as for persistent, bioaccumulative, and toxic (PBT) chemicals if environmental releases of or potentially unreasonable exposures to PBT chemicals are expected;
  • Clarifies the information required in new chemical notices;
  • Changes EPA’s procedures for reviewing notices with incomplete information or errors;
  • Updates the application form on the EPA Central Data Exchange; and
  • Streamlines the suspension request process for submitters.

Key to remember: EPA reviews each new chemical and makes one of five possible safety determinations that dictate both if and how the substance can enter the marketplace.

Chemical management: Minimizing risks, maximizing compliance
2024-12-10T06:00:00Z

Chemical management: Minimizing risks, maximizing compliance

In 2022, the National Institute for Occupational Safety and Health (NIOSH) reported a staggering 658,000 workers were exposed to harmful chemicals, resulting in 839 fatalities. These statistics highlight the significant health and safety risks that an unexpected exposure to a hazardous chemical, or a substantial threat of a hazardous substance release, can pose to workers, organizations, and communities. A thorough understanding of chemical management regulations is crucial to ensure potential hazardous exposures are minimized.

Hazard communication (HazCom)

OSHA’s HazCom standard (29 CFR 1910.1200) is designed to inform workers about chemical hazards and how to protect themselves.

Key definitions: A "hazardous chemical" is any chemical which is classified as a physical hazard or a health hazard, a simple asphyxiant, combustible dust, or other hazards not that may not be classified but still pose a serious danger.

Indicators: Any workplace where hazardous chemicals are used, stored, or processed needs a hazard communication program. Labels, safety data sheets (SDSs), and employee training are essential components.

Training requirements: Training must cover how to read and understand labels, the purpose and location of SDSs, and specific protective measures when handling hazardous chemicals. Training must be provided upon initial assignment and updated whenever new chemical hazards are introduced.

Hazardous materials (Hazmat)

The DOT’s hazmat regulations (DOT 49 CFR Parts 171-180) include substances that, if transported improperly, can harm people, property, or the environment. By correctly handling and moving these materials, organizations can avoid accidents and safeguard both public health and the environment.

Key definitions: A "hazardous material" is any substance or material capable of posing an unreasonable risk when transported in commerce. This can include flammable, toxic, and reactive substances.

Indicators: Activities involving the loading, unloading, and handling of hazardous materials require adherence to hazmat regulations. This requirement also applies to organizations that make or maintain packaging, or a part of packaging, that's marked or sold as suitable for transporting hazardous materials commercially.

Training requirements: Workers handling hazmat must undergo specific training on material classification, safe handling, emergency response, and transportation. Training must be provided within 90 days of initial assignment and a refresher at least once every three years. Training must also be documented and retained for a minimum of three years.

Hazardous waste (Hazwaste)

The EPA’s hazwaste regulations (40 CFR Parts 260-299) refer to any waste material that could potentially harm the environment or human health if not managed correctly. Additionally, many states have hazardous waste requirements beyond EPA regulations.

Key Definitions: Hazardous waste includes materials classified as toxic, ignitable, corrosive, or reactive, based on specific criteria.

Indicators: Managing hazardous waste follows the material’s entire lifecycle including the generation, transportation, treatment, storage, and disposal, known as "cradle-to-grave." Requirements are based on the quantity of waste generated.

Training requirements: Employees involved in hazardous waste management must receive training on waste handling, storage, labeling, and disposal procedures. Annual training requirements are based on generator quantity status.

Hazardous waste operations and emergency response (HAZWOPER)

OSHA’s HAZWOPER standard (29 CFR 1910.120) protects workers involved in hazardous waste management and emergency response. HAZWOPER covers a wide range of activities, including cleanup operations and responses to hazardous substance releases.

Key definitions: A hazardous substance is any material that can harm health and safety if released into the environment. In the context of HAZWOPER, this includes materials that pose risks in emergencies, such as spills, leaks, or other uncontrolled releases.

Indicators: Workers and organizations tasked with hazardous waste cleanup, spill response, and emergency operations require specialized training, equipment, and procedures.

Training requirements: HAZWOPER training is intensive and includes specific requirements depending on job roles. Training levels include 24-hour, 40-hour, and 8-hour refresher courses for different exposure risks. Employees learn about hazardous substance properties, emergency response procedures, PPE use, and decontamination processes.

Process Safety Management (PSM)

OSHA’s PSM standard (29 CFR 1910.119) aims to prevent accidental chemical releases that could seriously harm employees or the environment by including safety measures, risk assessments, and employee training to ensure safe operations. It is especially important in industries handling highly hazardous chemicals including facilities with high-risk chemical processes.

Key definitions: OSHA defines a "highly hazardous chemical" as any substance that poses a significant risk of causing serious harm to people, property, or the environment due to its toxic, reactive, flammable, or explosive properties.

Indicators: Any workplace handling large volumes of hazardous chemicals or using complex chemical processes including chemicals that are specifically listed by OSHA in appendix A of the standard, are present in quantities above specified thresholds, or exhibit properties that make them likely to cause a major incident.

Training requirements: PSM training covers safe operating procedures, hazard analysis, and incident investigation for employees involved in high-risk processes. Training must be provided at initial assignment and a refresher at least once every three years.

Key to remember: Chemical management is a complex task. Understanding what regulatory requirements apply will ensure compliance as well as minimize the chance for dangerous incidents.

Deadliest chemical disaster still haunts, decades later
2024-12-03T06:00:00Z

Deadliest chemical disaster still haunts, decades later

December 2024 marks the 40th anniversary of one of history’s worst industrial incidents — the release of a deadly gas at a chemical plant in Bhopal, India. This incident, along with another in West Virginia in 1985, spurred U.S. legislative and regulatory action. However, some might say that work is not finished.

Think of the Emergency Planning and Community Right-to-Know Act (EPCRA) of 1986, the EPA Risk Management Program (RMP) standard, and the OSHA Process Safety Management (PSM) standard, for example. You’ll find roots to the Bhopal disaster.

What happened in Bhopal?

It was late on December 2, 1984, at a chemical facility. A faulty valve leaked water into a tank of methyl isocyanate (or MIC). This prompted a violent reaction inside the tank. History tells us that at about 1:00 a.m. on that fateful December 3, the failure of a safety valve triggered a massive release. A dense, lethal cloud of MIC and other chemicals drifted over the city of Bhopal.

By dawn, thousands of residents were dead, along with birds, dogs, cows, and other animals. The injured flocked to hospitals in overwhelming numbers. A lack of information about just what the chemicals were, however, compounded the catastrophe.

India officials reported half a million or more chemical exposures. Estimates vary, but as many as 10,000 people perished in the initial few days. Tens of thousands died prematurely in the decades to follow, according to sources.

What happened in West Virginia?

In August 1985, a chemical release in Institute, West Virginia, showed Americans that a “Bhopal-like” incident could happen here. Aldicarb oxime and other chemicals released from the facility, and over 125 residents landed in the hospital. Again, a lack of available chemical information was noteworthy. Many U.S. citizens began to fear they faced catastrophic risks.

What happened next?

In the wake of the incidents, Congress enacted laws:

Together, they required EPA and OSHA to issue regulations to:

  • Increase community chemical emergency preparedness,
  • Require companies to report worst-case release scenarios,
  • Require companies to develop RMPs and PSM programs to protect communities and workers, respectively.

Congress also established the Chemical Safety and Hazard Investigation Board (CSB) to investigate chemical incidents and recommend measures to prevent them. Despite these actions, the U.S. continues to experience serious chemical incidents. A visit to the CSB or National Response Center (NRC) websites reveals countless incident reports since 1990. A look at the 2024 data finds:

CSB video

Ten years ago, on the 30th anniversary of the Bhopal disaster, CSB posted a six-minute video explaining how the tragedy occurred. The video also examines more recent U.S. incidents. It emphasizes what more could be done to prevent similar incidents.

CSB investigations around the time of the video found deficiencies in design and PSM, similar to those uncovered in Bhopal! CSB Chairperson Rafael Moure-Eraso argued: “Process safety management regulations are in need of reform. There must be more emphasis on preventing the occurrence of major chemical accidents through safer design. Responding to emergencies and punishing people after the fact are not enough.”

Push for regulatory reform

Another headline-making incident in April 2013 involved a massive explosion of ammonium nitrate at a fertilizer storage/distribution facility in West, Texas. It fatally injured 12 volunteer firefighters and two members of the public and caused hundreds of injuries. The incident prompted the Executive Order on Improving Chemical Facility Safety and Security (EO 13650) on August 1, 2013. The order directed the federal government to:

  • Improve operational coordination with state and local partners;
  • Enhance federal agency coordination and information sharing;
  • Modernize policies, regulations, and standards; and
  • Work with stakeholders to identify best practices.

The feds held listening sessions and issued a flurry of fact sheets, alerts, and enforcement policy changes (See here and here.). Note that the RMP regulation at 40 CFR 68 was eventually amended this year on March 11, 2024. The PSM standard remains unchanged, despite a request for information on December 9, 2013. In an about-face, Congress allowed the Chemical Facility Anti-Terrorism Standards program (at 6 CFR 27) to expire on July 28, 2023, but many in Congress and industry would like to see its return.

Key to remember

This month marks the 40th anniversary of the Bhopal chemical disaster. It sparked the U.S. Congress to take steps back then to prevent such a disaster from occurring here. Those actions did not spell the end to all chemical disasters in the U.S. In response, a renewed push for regulatory reforms popped up in the last decade.

See More
New Network Poll
What is most holding you back from achieving full safety compliance within your organization?

What is most holding you back from achieving full safety compliance within your organization?


No active poll
Please come back soon!
See More
See More
See More
See More
Saved to my EVENT CALENDAR!
View your saved links by clicking the arrow next to your profile picture located in the header. Then, click “My Activity” to view the Event Calendar on your Activity page.