FREE TRIAL UPGRADE!
Thank you for investing in EnvironmentalHazmatHuman ResourcesHuman Resources, Hazmat & Environmental related content. Click 'UPGRADE' to continue.
CANCEL
YOU'RE ALL SET!
Enjoy your limited-time access to the Compliance Network!
A confirmation welcome email has been sent to your email address from ComplianceNetwork@t.jjkellercompliancenetwork.com. Please check your spam/junk folder if you can't find it in your inbox.
YOU'RE ALL SET!
Thank you for your interest in EnvironmentalHazmatHuman ResourcesHuman Resources, Hazmat & Environmental related content.
WHOOPS!
You've reached your limit of free access, if you'd like more info, please contact us at 800-327-6868.
You'll also get exclusive access to:
Already have an account? .

PHMSA is amending the Hazardous Materials Regulations (HMR) to maintain alignment with international regulations and standards by adopting various amendments, including changes to proper shipping names, hazard classes, packing groups, special provisions, packaging authorizations, air transport quantity limitations, and vessel stowage requirements. PHMSA is also withdrawing the unpublished November 28, 2022, Notice of Enforcement Policy Regarding International Standards on the use of select updated international standards in complying with the HMR during the pendency of this rulemaking.

DATES:

Effective date: This rule is effective May 10, 2024.

Voluntary compliance date: January 1, 2023.

Delayed compliance date: April 10, 2025.

This final rule is published in the Federal Register April 10, 2024.

View final rule.

§171.7 Reference material.
(t)(1), (v)(2), and (w)(32) through (81) Revised View text
(w)(82) through (92) Added View text
(aa)(3) and (dd)(1) through (4) Revised View text
§171.12 North American shipments.
(a)(4)(iii) Revised View text
§171.23 Requirements for specific materials and packagings transported under the ICAO technical instructions, IMDG code, Transport Canada TDG regulations, or the IAEA regulations.
(a)(3) Revised View text
§171.25 Additional requirements for the use of the IMDG code.
(c)(3) and (4) Revised View text
(c)(5) Added View text
§172.101 Purpose and use of the hazardous materials table.
Section heading Revised View text
(c)(12)(ii) Revised View text
Hazardous materials table, multiple entries Revised, added, removed View text
§172.102 Special provisions.
(c)(1) special provisions 78, 156, and 387 Revised View text
(c)(1) special provisions 396 and 398 Added View text
(c)(1) special provision 421 Removed and reserved View text
(c)(2) special provision A54 Revised View text
(c)(2) special provisions A224 and A225 Added View text
(c)(4) Table 2—IP Codes, special provision IP15 Revised View text
(c)(4) Table 2—IP Codes, special provision IP22 Added View text
§173.4b De minimis exceptions.
(b)(1) Revised View text
§173.21 Forbidden materials and packages.
(f) introductory text, (f)(1), and (f)(2) Revised View text
§173.27 General requirements for transportation by aircraft.
(f)(2)(i)(D) Revised View text
§173.124 Class 4, Divisions 4.1, 4.2 and 4.3— Definitions.
(a)(4)(iv) Removed View text
§173.137 Class 8—Assignment of packing group.
Introductory text Revised View text
§173.151 Exceptions for Class 4.
(d) introductory text Revised View text
§173.167 ID8000 consumer commodities.
Entire section Revised View text
§173.185 Lithium cells and batteries.
(a)(3) introductory text and (a)(3)(x) Revised View text
(a)(5) Added View text
(b)(3)(iii)(A) and (B) Revised View text
(b)(3)(iii)(C) Added View text
(b)(4)(ii) and (iii) Revised View text
(b)(4)(iv) Added View text
(b)(5), (c)(3) through (5), and (e)(5) through (7) Revised View text
§173.224 Packaging and control and emergency temperatures for self-reactive materials.
(b)(4) Revised View text
Table following (b)(7) Revised View text
§173.225 Packaging requirements and other provisions for organic peroxides.
Table 1 to paragraph (c) Revised View text
Table following paragraph (d) Retitled View text
Table following paragraph (g) Revised View text
§173.232 Articles containing hazardous materials, n.o.s.
(h) Added View text
§173.301b Additional general requirements for shipment of UN pressure receptacles.
(c)(1), (c)(2)(ii) through (iv), (d)(1), and (f) Revised View text
§173.302b Additional requirements for shipment of non-liquefied (permanent) compressed gases in UN pressure receptacles.
(g) Added View text
§173.302c Additional requirements for the shipment of adsorbed gases in UN pressure receptacles.
(k) Revised View text
§173.311 Metal Hydride Storage Systems.
Entire section Revised View text
§175.1 Purpose, scope, and applicability.
(e) Added View text
§175.10 Exceptions for passengers, crewmembers, and air operators.
(a) introductory text, (a)(14) introductory text, (a)(15)(v)(A), (a)(15)(vi)(A), (a)(17)(ii)(C), (a)(18) introductory text, and (a)(26) introductory text Revised View text
§175.33 Shipping paper and information to the pilot-in-command.
(a)(13)(iii) Revised View text
§178.37 Specification 3AA and 3AAX seamless steel cylinders.
(j) Revised View text
§178.71 Specifications for UN pressure receptacles.
(f)(4), (g), (i), (k)(1)(i) and (ii), (m), and (n) Revised View text
§178.75 Specifications for MEGCs.
(d)(3) introductory text and paragraphs (d)(3)(i) through (iii) Revised View text
§178.609 Test requirements for packagings for infectious substances.
(d)(2) Revised View text
§178.706 Standards for rigid plastic IBCs.
(c)(3) Revised View text
§178.707 Standards for composite IBCs.
(c)(3)(iii) Revised View text
§180.207 Requirements for requalification of UN pressure receptacles.
(d)(3) and (5) Revised View text
(d)(8) Added View text

Previous Text

§171.7 Reference material.

* * * * *

(t) * * *

(1) ICAO Doc 9284. Technical Instructions for the Safe Transport of Dangerous Goods by Air (ICAO Technical Instructions), 2021-2022 Edition, copyright 2020; into §§171.8; 171.22 through 171.24; 172.101; 172.202; 172.401; 172.407; 172.512; 172.519; 172.602; 173.56; 173.320; 175.10, 175.33; 178.3.

* * * * *

(v) * * *

(2) International Maritime Dangerous Goods Code (IMDG Code), Incorporating Amendment 40-20 (English Edition), (Volumes 1 and 2), 2020 Edition, copyright 2020; into §§171.22; 171.23; 171.25; 172.101; 172.202; 172.203; 172.401; 172.407; 172.502; 172.519; 172.602; 173.21; 173.56; 176.2; 176.5; 176.11; 176.27; 176.30; 176.83; 176.84; 176.140; 176.720; 176.906; 178.3; 178.274.

(w) * * *

(32) ISO 9809-2:2000(E): Gas cylinders—Refillable seamless steel gas cylinders—Design, construction and testing—Part 2: Quenched and tempered steel cylinders with tensile strength greater than or equal to 1 100 MPa., First edition, June 2000, into §§178.71; 178.75.

(33) ISO 9809-2:2010(E): Gas cylinders—Refillable seamless steel gas cylinders—Design, construction and testing—Part 2: Quenched and tempered steel cylinders with tensile strength greater than or equal to 1100 MPa., Second edition, 2010-04-15, into §§178.71; 178.75.

(34) ISO 9809-3:2000(E): Gas cylinders—Refillable seamless steel gas cylinders—Design, construction and testing—Part 3: Normalized steel cylinders, First edition, December 2000, into §§178.71; 178.75.

(35) ISO 9809-3:2010(E): Gas cylinders—Refillable seamless steel gas cylinders—Design, construction and testing—Part 3: Normalized steel cylinders, Second edition, 2010-04-15, into §§178.71; 178.75.

(36) ISO 9809-4:2014(E), Gas cylinders—Refillable seamless steel gas cylinders—Design, construction and testing—Part 4: Stainless steel cylinders with an Rm value of less than 1 100 MPa, First edition, 2014-07-15, into §§178.71; 178.75.

(37) ISO 9978:1992(E)—Radiation protection—Sealed radioactive sources—Leakage test methods. First Edition, (February 15, 1992), into §173.469.

(38) ISO 10156:2017(E), Gas cylinders—Gases and gas mixtures—Determination of fire potential and oxidizing ability for the selection of cylinder valve outlets, Fourth edition, 2017-07; into §173.115.

(39) ISO 10297:1999(E), Gas cylinders—Refillable gas cylinder valves—Specification and type testing, First Edition, 1995-05-01; into §§173.301b; 178.71.

(40) ISO 10297:2006(E), Transportable gas cylinders—Cylinder valves—Specification and type testing, Second Edition, 2006-01-15; into §§173.301b; 178.71.

(41) ISO 10297:2014(E), Gas cylinders—Cylinder valves—Specification and type testing, Third Edition, 2014-07-15; into §§173.301b; 178.71.

(42) ISO 10297:2014/Amd 1:2017(E), Gas cylinders—Cylinder valves—Specification and type testing—Amendment 1: Pressure drums and tubes, Third Edition, 2017-03; into §§173.301b; 178.71.

(43) ISO 10461:2005(E), Gas cylinders—Seamless aluminum-alloy gas cylinders—Periodic inspection and testing, Second Edition, 2005-02-15 and Amendment 1, 2006-07-15; into §180.207.

(44) ISO 10462:2013(E), Gas cylinders—Acetylene cylinders—Periodic inspection and maintenance, Third edition, 2013-12-15; into §180.207.

(45) ISO 10692-2:2001(E), Gas cylinders—Gas cylinder valve connections for use in the micro-electronics industry—Part 2: Specification and type testing for valve to cylinder connections, First Edition, 2001-08-01; into §§173.40; 173.302c.

(46) ISO 11114-1:2012(E), Gas cylinders—Compatibility of cylinder and valve materials with gas contents—Part 1: Metallic materials, Second edition, 2012-03-15; into §§172.102; 173.301b; 178.71.

(47) ISO 11114-1:2012/Amd 1:2017(E), Gas cylinders—Compatibility of cylinder and valve materials with gas contents—Part 1: Metallic materials—Amendment 1, Second Edition, 2017-01; into §§172.102; 173.301b; 178.71.

(48) ISO 11114-2:2013(E), Gas cylinders—Compatibility of cylinder and valve materials with gas contents—Part 2: Non-metallic materials, Second edition, 2013-04; into §§173.301b; 178.71.

(49) ISO 11117:1998(E): Gas cylinders—Valve protection caps and valve guards for industrial and medical gas cylinders—Design, construction and tests, First edition, 1998-08-01; into §173.301b.

(50) ISO 11117:2008(E): Gas cylinders—Valve protection caps and valve guards—Design, construction and tests, Second edition, 2008-09-01; into §173.301b.

(51) ISO 11117:2008/Cor.1:2009(E): Gas cylinders—Valve protection caps and valve guards—Design, construction and tests, Technical Corrigendum 1, 2009-05-01; into §173.301b.

(52) ISO 11118(E), Gas cylinders—Non-refillable metallic gas cylinders—Specification and test methods, First edition, October 1999; into §178.71.

(53) ISO 11118:2015(E), Gas cylinders—Non-refillable metallic gas cylinders—Specification and test methods, Second edition, 2015-09-15; into §§173.301b; 178.71.

(54) ISO 11119-1(E), Gas cylinders—Gas cylinders of composite construction—Specification and test methods—Part 1: Hoop-wrapped composite gas cylinders, First edition, May 2002; into §178.71.

(55) ISO 11119-1:2012(E), Gas cylinders—Refillable composite gas cylinders and tubes—Design, construction and testing—Part 1: Hoop wrapped fibre reinforced composite gas cylinders and tubes up to 450 l, Second edition, 2012-08-01; into §§178.71; 178.75.

(56) ISO 11119-2(E), Gas cylinders—Gas cylinders of composite construction—Specification and test methods—Part 2: Fully wrapped fibre reinforced composite gas cylinders with load-sharing metal liners, First edition, May 2002; into §178.71.

(57) ISO 11119-2:2012(E), Gas cylinders—Refillable composite gas cylinders and tubes—Design, construction and testing—Part 2: Fully wrapped fibre reinforced composite gas cylinders and tubes up to 450 l with load-sharing metal liners, Second edition, 2012-07-15; into §§178.71; 178.75.

(58) ISO 11119-2:2012/Amd.1:2014(E), Gas cylinders—Refillable composite gas cylinders and tubes—Design, construction and testing—Part 2: Fully wrapped fibre reinforced composite gas cylinders and tubes up to 450 l with load-sharing metal liners, Amendment 1, 2014-08-15; into §§178.71; 178.75.

(59) ISO 11119-3(E), Gas cylinders of composite construction—Specification and test methods—Part 3: Fully wrapped fibre reinforced composite gas cylinders with non-load-sharing metallic or non-metallic liners, First edition, September 2002; into §178.71.

(60) ISO 11119-3:2013(E), Gas cylinders—Refillable composite gas cylinders and tubes—Design, construction and testing—Part 3: Fully wrapped fibre reinforced composite gas cylinders and tubes up to 450 l with non-load-sharing metallic or non-metallic liners, Second edition, 2013-04-15; into §§178.71; 178.75.

(61) ISO 11119-4:2016(E), Gas cylinders—Refillable composite gas cylinders—Design, construction and testing—Part 4: Fully wrapped fibre reinforced composite gas cylinders up to 150 L with load-sharing welded metallic liners, First Edition, 2016-02-15; into §§178.71; 178.75.

(62) ISO 11120(E), Gas cylinders—Refillable seamless steel tubes of water capacity between 150 l and 3000 l—Design, construction and testing, First edition, 1999-03; into §§178.71; 178.75.

(63) ISO 11120:2015(E), Gas cylinders—Refillable seamless steel tubes of water capacity between 150 l and 3000 l—Design, construction and testing, Second Edition, 2015-02-01; into §§178.71; 178.75.

(64) ISO 11513:2011(E), Gas cylinders—Refillable welded steel cylinders containing materials for sub-atmospheric gas packaging (excluding acetylene)—Design, construction, testing, use and periodic inspection, First edition, 2011-09-12; into §§173.302c; 178.71; 180.207.

(65) ISO 11621(E), Gas cylinders—Procedures for change of gas service, First edition, April 1997; into §§173.302, 173.336, 173.337.

(66) ISO 11623(E), Transportable gas cylinders—Periodic inspection and testing of composite gas cylinders, First edition, March 2002; into §180.207.

(67) ISO 11623(E):2015, Gas cylinders—Composite construction—Periodic inspection and testing, Second edition, 2015-12-01; into §180.207.

(68) ISO 13340:2001(E), Transportable gas cylinders—Cylinder valves for non-refillable cylinders—Specification and prototype testing, First edition, 2004-04-01; into §§173.301b; 178.71.

(69) ISO 13736:2008(E), Determination of flash point—Abel closed-cup method, Second Edition, 2008-09-15; into §173.120.

(70) ISO 14246:2014(E), Gas cylinders—Cylinder valves—Manufacturing tests and examination, Second Edition, 2014-06-15; into §178.71.

(71) ISO 14246:2014/Amd 1:2017(E), Gas cylinders—Cylinder valves—Manufacturing tests and examinations—Amendment 1, Second Edition, 2017-06; into §178.71.

(72) ISO 16111:2008(E), Transportable gas storage devices—Hydrogen absorbed in reversible metal hydride, First Edition, 2008-11-15; into §§173.301b; 173.311; 178.71.

(73) ISO 16148:2016(E), Gas cylinders—Refillable seamless steel gas cylinders and tubes—Acoustic emission examination (AT) and follow-up ultrasonic examination (UT) for periodic inspection and testing, Second Edition, 2016-04-15; into §180.207.

(74) ISO 17871:2015(E), Gas cylinders—Quick-release cylinder valves—Specification and type testing, First Edition, 2015-08-15; into §173.301b.

(75) ISO 17879: 2017(E), Gas cylinders—Self-closing cylinder valves—Specification and type testing, First Edition, 2017-07; into §§173.301b; 178.71.

(76) ISO 18172-1:2007(E), Gas cylinders—Refillable welded stainless steel cylinders—Part 1: Test pressure 6 MPa and below, First Edition, 2007-03-01; into §178.71.

(77) ISO 20475:2018(E), Gas cylinders—Cylinder bundles—Periodic inspection and testing, First Edition, 2018-02; into §180.207.

(78) ISO 20703:2006(E), Gas cylinders—Refillable welded aluminum-alloy cylinders—Design, construction and testing, First Edition, 2006-05-01; into §178.71.

(79) ISO 21172-1:2015(E), Gas cylinders—Welded steel pressure drums up to 3000 litres capacity for the transport of gases—Design and construction—Part 1: Capacities up to 1000 litres, First edition, 2015-04-01; into §178.71.

(80) ISO 22434:2006(E), Transportable gas cylinders—Inspection and maintenance of cylinder valves, First Edition, 2006-09-01; into §180.207.

(81) ISO/TR 11364:2012(E), Gas cylinders—Compilation of national and international valve stem/gas cylinder neck threads and their identification and marking system, First Edition, 2012-12-01; into §178.71.

* * * * *

(aa) * * *

(3) OECD Guideline for the Testing of Chemicals 431 (Test No. 431): In vitro skin corrosion: reconstructed human epidermis (RHE) test method, adopted 29 July 2016; into §173.137.

* * * * *

(dd) * * *

(1) Recommendations on the Transport of Dangerous Goods, Model Regulations (UN Recommendations), 21st revised edition, copyright 2019; into §§171.8; 171.12; 172.202; 172.401; 172.407; 172.502; 172.519; 173.22; 173.24; 173.24b; 173.40; 173.56; 173.192; 173.302b; 173.304b; 178.75; 178.274; as follows:

(i) Volume I, ST/SG/AC.10.1/21/Rev.21 (Vol. I).

(ii) Volume II, ST/SG/AC.10.1/21/Rev.21 (Vol. II).

(2) Manual of Tests and Criteria (UN Manual of Tests and Criteria), 7th revised edition, ST/SG/AC.10/11/Rev.7, copyright 2019; into §§171.24, 172.102; 173.21; 173.56 through 173.58; 173.60; 173.115; 173.124; 173.125; 173.127; 173.128; 173.137; 173.185; 173.220; 173.221; 173.224; 173.225; 173.232; part 173, appendix H; 175.10; 176.905; 178.274.

(3) Globally Harmonized System of Classification and Labelling of Chemicals (GHS), 8th revised edition, ST/SG/AC.10/30/Rev.8, copyright 2019; into §172.401.

(4) Agreement concerning the International Carriage of Dangerous Goods by Road (ADR), copyright 2020; into §171.8; §171.23 as follows: [Change Notice][Previous Text]

(i) Volume I, ECE/TRANS/300 (Vol. I).

(ii) Volume II, ECE/TRANS/300 (Vol. II).

(iii) Corrigendum, ECE/TRANS/300 (Corr. 1).

* * * * *

§171.12 North American shipments.

* * * * *

(a) * * *

(4) * * *

(iii) Authorized CRC, BTC, CTC or TC specification cylinders that correspond with a DOT specification cylinder are as follows:

TC DOT (some or all of these specifications may instead be marked with the prefix ICC) CTC (some or all of these specifications may instead be marked with the prefix BTC or CRC)
TC-3AM DOT-3A [ICC-3] CTC-3A
TC-3AAM DOT-3AA CTC-3AA
TC-3ANM DOT-3BN CTC-3BN
TC-3EM DOT-3E CTC-3E
TC-3HTM DOT-3HT CTC-3HT
TC-3ALM DOT-3AL
DOT-3B
CTC-3AL
CTC-3B
TC-3AXM DOT-3AX CTC-3AX
TC-3AAXM DOT-3AAX
DOT-3A480X
CTC-3AAX
CTC-3A480X
TC-3TM DOT-3T
TC-4AAM33 DOT-4AA480 CTC-4AA480
TC-4BM DOT-4B CTC-4B
TC-4BM17ET DOT-4B240ET CTC-4B240ET
TC-4BAM DOT-4BA CTC-4BA
TC-4BWM DOT-4BW CTC-4BW
TC-4DM DOT-4D CTC-4D
TC-4DAM DOT-4DA CTC-4DA
TC-4DSM DOT-4DS CTC-4DS
TC-4EM DOT-4E CTC-4E
TC-39M DOT-39 CTC-39
TC-4LM DOT-4L
DOT-8
DOT-8AL
CTC-4L
CTC-8
CTC-8AL

* * * * *

§171.23 Requirements for specific materials and packagings transported under the ICAO technical instructions, IMDG code, Transport Canada TDG regulations, or the IAEA regulations.

(a) * * *

(3) Pi-marked pressure receptacles. Pressure receptacles that are marked with a pi mark in accordance with the European Directive 2010/35/EU (IBR, see §171.7) on transportable pressure equipment (TPED) and that comply with the requirements of Packing Instruction P200 or P208 and 6.2 of the ADR (IBR, see §171.7) concerning pressure relief device use, test period, filling ratios, test pressure, maximum working pressure, and material compatibility for the lading contained or gas being filled, are authorized as follows:

(i) Filled pressure receptacles imported for intermediate storage, transport to point of use, discharge, and export without further filling; and

(ii) Pressure receptacles imported or domestically sourced for the purpose of filling, intermediate storage, and export.

(iii) The bill of lading or other shipping paper must identify the cylinder and include the following certification: “This cylinder (These cylinders) conform(s) to the requirements for pi-marked cylinders found in 171.23(a)(3).”

* * * * *

§171.25 Additional requirements for the use of the IMDG code.

* * * * *

(c) * * *

(3) Except as specified in this subpart, for a material poisonous (toxic) by inhalation, the T Codes specified in Column 13 of the Dangerous Goods List in the IMDG Code may be applied to the transportation of those materials in IM, IMO and DOT Specification 51 portable tanks, when these portable tanks are authorized in accordance with the requirements of this subchapter; and

(4) No person may offer an IM or UN portable tank containing liquid hazardous materials of Class 3, PG I or II, or PG III with a flash point less than 100°F (38°C); Division 5.1, PG I or II; or Division 6.1, PG I or II, for unloading while it remains on a transport vehicle with the motive power unit attached, unless it conforms to the requirements in §177.834(o) of this subchapter.

* * * * *

§172.101 Purpose and use of hazardous materials table.

* * * * *

(c) * * *

(12) * * *

(ii) Generic or n.o.s. descriptions. If an appropriate technical name is not shown in the Table, selection of a proper shipping name shall be made from the generic or n.o.s. descriptions corresponding to the specific hazard class, packing group, hazard zone, or subsidiary hazard, if any, for the material. The name that most appropriately describes the material shall be used; e.g, an alcohol not listed by its technical name in the Table shall be described as “Alcohol, n.o.s.” rather than “Flammable liquid, n.o.s.”. Some mixtures may be more appropriately described according to their application, such as “Coating solution” or “Extracts, flavoring, liquid”, rather than by an n.o.s. entry, such as “Flammable liquid, n.o.s.” It should be noted, however, that an n.o.s. description as a proper shipping name may not provide sufficient information for shipping papers and package markings. Under the provisions of subparts C and D of this part, the technical name of one or more constituents which makes the product a hazardous material may be required in association with the proper shipping name.

* * * * *

§172.102 Special provisions.

* * * * *

(c) * * *

(1) * * *

(78) This entry may not be used to describe compressed air which contains more than 23.5 percent oxygen. Compressed air containing greater than 23.5 percent oxygen must be shipped using the description ‘‘Compressed gas, oxidizing, n.o.s., UN3156.’’

* * * * *

(156) Asbestos that is immersed or fixed in a natural or artificial binder material, such as cement, plastic, asphalt, resins or mineral ore, or contained in manufactured products is not subject to the requirements of this subchapter.

* * * * *

(387) When materials are stabilized by temperature control, the provisions of §173.21(f) of this subchapter apply. When chemical stabilization is employed, the person offering the material for transport shall ensure that the level of stabilization is sufficient to prevent the material as packaged from dangerous polymerization at 50°C (122°F). If chemical stabilization becomes ineffective at lower temperatures within the anticipated duration of transport, temperature control is required and is forbidden by aircraft. In making this determination factors to be taken into consideration include, but are not limited to, the capacity and geometry of the packaging and the effect of any insulation present, the temperature of the material when offered for transport, the duration of the journey, and the ambient temperature conditions typically encountered in the journey (considering also the season of year), the effectiveness and other properties of the stabilizer employed, applicable operational controls imposed by regulation (e.g., requirements to protect from sources of heat, including other cargo carried at a temperature above ambient) and any other relevant factors. The provisions of this special provision will be effective until January 2, 2023, unless we terminate them earlier or extend them beyond that date by notice of a final rule in the Federal Register.

* * * * *

(421) This entry will no longer be effective on January 2, 2023, unless we terminate it earlier or extend it beyond that date by notice of a final rule in the Federal Register.

* * * * *

(2) * * *

A54 Irrespective of the quantity limits in Column 9B of the §172.101 table, a lithium battery, including a lithium battery packed with, or contained in, equipment that otherwise meets the applicable requirements of §173.185, may have a mass exceeding 35 kg if approved by the Associate Administrator prior to shipment.

* * * * *

(4) * * *

IP15 For UN2031 with more than 55% nitric acid, the permitted use of rigid plastic IBCs, and the inner receptacle of composite IBCs with rigid plastics, shall be two years from their date of manufacture.

* * * * *

§173.4b De minimis exceptions.

* * * * *

(b) * * *

(1) The specimens are:

(i) Wrapped in a paper towel or cheesecloth moistened with alcohol or an alcohol solution and placed in a plastic bag that is heat-sealed. Any free liquid in the bag must not exceed 30 mL; or

(ii) Placed in vials or other rigid containers with no more than 30 mL of alcohol or alcohol solution. The containers are placed in a plastic bag that is heat-sealed;

* * * * *

§173.21 Forbidden materials and packages.

* * * * *

(f) A package containing a material which is likely to decompose with a self-accelerated decomposition temperature (SADT) of 50°C (122 °F) or less, or polymerize at a temperature of 54°C (130 °F) or less with an evolution of a dangerous quantity of heat or gas when decomposing or polymerizing, unless the material is stabilized or inhibited in a manner to preclude such evolution. The SADT may be determined by any of the test methods described in Part II of the UN Manual of Tests and Criteria (IBR, see §171.7 of this subchapter).

(1) A package meeting the criteria of paragraph (f) of this section may be required to be shipped under controlled temperature conditions. The control temperature and emergency temperature for a package shall be as specified in the table in this paragraph based upon the SADT of the material. The control temperature is the temperature above which a package of the material may not be offered for transportation or transported. The emergency temperature is the temperature at which, due to imminent danger, emergency measures must be initiated.

Table 1 to Paragraph (f)(1)—Method of Determining Control and Emergency Temperature
SADT 1 Control temperatures Emergency temperature
SADT ≤20°C (68°F) 20°C (36°F) below SADT 10°C (18°F) below SADT.
20°C (68°F) <SADT ≤35°C (95°F) 15°C (27°F) below SADT 10°C (18°F) below SADT.
35°C (95°F) <SADT ≤50°C (122°F) 10°C (18°F) below SADT 5°C (9°F) below SADT.
50°C (122°F) <SADT (2) (2)
1 Self-accelerating decomposition temperature.
2 Temperature control not required.

(2) For self-reactive materials listed in §173.224(b) Table control and emergency temperatures, where required are shown in Columns 5 and 6, respectively. For organic peroxides listed in The Organic Peroxides Table in §173.225 control and emergency temperatures, where required, are shown in Columns 7a and 7b, respectively.

* * * * *

§173.27 General requirements for transportation by aircraft.

* * * * *

(f) * * *

(2) * * *

(i) * * *

(D) Divisions 4.1 (self-reactive), 4.2 (spontaneously combustible) (primary or subsidiary risk), and 4.3 (dangerous when wet) (liquids);

* * * * *

§173.124 Class 4, Divisions 4.1, 4.2 and 4.3— Definitions.

(a) * * *

(4) * * *

(iv) The provisions concerning polymerizing substances in paragraph (a)(4) will be effective until January 2, 2023.

* * * * *

§173.137 Class 8—Assignment of packing group.

The packing group of a Class 8 material is indicated in Column 5 of the §172.101 Table. When the §172.101 Table provides more than one packing group for a Class 8 material, the packing group must be determined using data obtained from tests conducted in accordance with the OECD Guidelines for the Testing of Chemicals, Test No. 435, “ In Vitro Membrane Barrier Test Method for Skin Corrosion” (IBR, see §171.7 of this subchapter) or Test No. 404, “Acute Dermal Irritation/Corrosion” (IBR, see §171.7 of this subchapter). A material that is determined not to be corrosive in accordance with OECD Guideline for the Testing of Chemicals, Test No. 430, “ In Vitro Skin Corrosion: Transcutaneous Electrical Resistance Test (TER)” (IBR, see §171.7 of this subchapter) or Test No. 431, “ In Vitro Skin Corrosion: Reconstructed Human Epidermis (RHE) Test Method” (IBR, see §171.7 of this subchapter) may be considered not to be corrosive to human skin for the purposes of this subchapter without further testing. However, a material determined to be corrosive in accordance with Test No. 430 must be further tested using Test No. 435 or Test No. 404. If the in vitro test results indicate that the substance or mixture is corrosive, but the test method does not clearly distinguish between assignment of packing groups II and III, the material may be considered to be in packing group II without further testing. The packing group assignment using data obtained from tests conducted in accordance with OECD Guideline Test No. 404 or Test No. 435 must be as follows:

* * * * *

§173.151 Exceptions for Class 4.

* * * * *

(d) Limited quantities of Division 4.3. Limited quantities of dangerous when wet solids (Division 4.3) in Packing Groups II and III are excepted from labeling requirements, unless the material is offered for transportation or transported by aircraft, and are excepted from the specification packaging requirements of this subchapter when packaged in combination packagings according to this paragraph. For transportation by aircraft, the package must also conform to applicable requirements of §173.27 of this part (e.g., authorized materials, inner packaging quantity limits and closure securement) and only hazardous material authorized aboard passenger-carrying aircraft may be transported as a limited quantity. A limited quantity package that conforms to the provisions of this section is not subject to the shipping paper requirements of subpart C of part 172 of this subchapter, unless the material meets the definition of a hazardous substance, hazardous waste, marine pollutant, or is offered for transportation and transported by aircraft or vessel. In addition, shipments of limited quantities are not subject to subpart F (Placarding) of part 172 of this subchapter. Each package must conform to the packaging requirements of subpart B of this part and may not exceed 30 kg (66 pounds) gross weight. Except for transportation by aircraft, the following combination packagings are authorized:

* * * * *

§173.167 Consumer commodities.

(a) Effective January 1, 2013, a “consumer commodity” (see §171.8 of this subchapter) when offered for transportation by aircraft may only include articles or substances of Class 2 (non-toxic aerosols only), Class 3 (Packing Group II and III only), Division 6.1 (Packing Group III only), UN3077, UN3082, UN3175, UN3334, and UN3335, provided such materials do not have a subsidiary risk and are authorized aboard a passenger-carrying aircraft. Consumer commodities are excepted from the specification outer packaging requirements of this subchapter. Packages prepared under the requirements of this section are excepted from labeling and shipping papers when transported by highway or rail. Except as indicated in §173.24(i), each completed package must conform to §§173.24 and 173.24a of this subchapter. Additionally, except for the pressure differential requirements in §173.27(c), the requirements of §173.27 do not apply to packages prepared in accordance with this section. Packages prepared under the requirements of this section may be offered for transportation and transported by all modes. As applicable, the following apply:

(1) Inner and outer packaging quantity limits. (i) Non-toxic aerosols, as defined in §171.8 of this subchapter and constructed in accordance with §173.306 of this part, in non-refillable, non-metal containers not exceeding 120 mL (4 fluid ounces) each, or in non-refillable metal containers not exceeding 820 mL (28 ounces) each, except that flammable aerosols may not exceed 500 mL (16.9 ounces) each;

(ii) Liquids, in inner packagings not exceeding 500 mL (16.9 ounces) each. Liquids must not completely fill an inner packaging at 55°C;

(iii) Solids, in inner packagings not exceeding 500 g (1.0 pounds) each; or

(iv) Any combination thereof not to exceed 30 kg (66 pounds) gross weight as prepared for shipment.

(2) Closures. Friction-type closures must be secured by positive means. The body and closure of any packaging must be constructed so as to be able to adequately resist the effects of temperature and vibration occurring in conditions normally incident to air transportation. The closure device must be so designed that it is unlikely that it can be incorrectly or incompletely closed.

(3) Absorbent material. Inner packagings must be tightly packaged in strong outer packagings. Absorbent and cushioning material must not react dangerously with the contents of inner packagings. Glass or earthenware inner packagings containing liquids of Class 3 or Division 6.1, sufficient absorbent material must be provided to absorb the entire contents of the largest inner packaging contained in the outer packaging. Absorbent material is not required if the glass or earthenware inner packagings are sufficiently protected as packaged for transport that it is unlikely a failure would occur and, if a failure did occur, that it would be unlikely that the contents would leak from the outer packaging.

(4) Drop test capability. Breakable inner packagings (e.g., glass, earthenware, or brittle plastic) must be packaged to prevent failure under conditions normally incident to transport. Packages of consumer commodities as prepared for transport must be capable of withstanding a 1.2 m drop on solid concrete in the position most likely to cause damage. In order to pass the test, the outer packaging must not exhibit any damage liable to affect safety during transport and there must be no leakage from the inner packaging(s).

(5) Stack test capability. Packages of consumer commodities must be capable of withstanding, without failure or leakage of any inner packaging and without any significant reduction in effectiveness, a force applied to the top surface for a duration of 24 hours equivalent to the total weight of identical packages if stacked to a height of 3.0 m (including the test sample).

(b) When offered for transportation by aircraft:

(1) Packages prepared under the requirements of this section are to be marked as a limited quantity in accordance with §172.315(b)(1) and labeled as a Class 9 article or substance, as appropriate, in accordance with subpart E of part 172 of this subchapter; and

(2) Pressure differential capability: Except for UN3082, inner packagings intended to contain liquids must be capable of meeting the pressure differential requirements (75 kPa) prescribed in §173.27(c) of this part. The capability of a packaging to withstand an internal pressure without leakage that produces the specified pressure differential should be determined by successfully testing design samples or prototypes.

§173.185 Lithium cells and batteries.

* * * * *

(a) * * *

(3) Beginning January 1, 2022 each manufacturer and subsequent distributor of lithium cells or batteries manufactured on or after January 1, 2008, must make available a test summary. The test summary must include the following elements:

* * * * *

* * * * *

(ix) Reference to the revised edition of the UN Manual of Tests and Criteria used and to amendments thereto, if any; and

* * * * *

(b) * * *

(3) * * *

(iii) * * *

(A) Be placed in inner packagings that completely enclose the cell or battery, then placed in an outer packaging. The completed package for the cells or batteries must meet the Packing Group II performance requirements as specified in paragraph (b)(3)(ii) of this section; or

(B) Be placed in inner packagings that completely enclose the cell or battery, then placed with equipment in a package that meets the Packing Group II performance requirements as specified in paragraph (b)(3)(ii) of this section.

* * * * *

(4) * * *

(ii) Equipment must be secured to prevent damage caused by shifting within the outer packaging and be packed so as to prevent accidental operation during transport; and

(iii) Any spare lithium cells or batteries packed with the equipment must be packaged in accordance with paragraph (b)(3) of this section.

* * * * *

(5) Lithium batteries that weigh 12 kg (26.5 pounds) or more and have a strong, impact-resistant outer casing may be packed in strong outer packagings; in protective enclosures (for example, in fully enclosed or wooden slatted crates); or on pallets or other handling devices, instead of packages meeting the UN performance packaging requirements in paragraphs (b)(3)(ii) and (iii) of this section. Batteries must be secured to prevent inadvertent shifting, and the terminals may not support the weight of other superimposed elements. Batteries packaged in accordance with this paragraph may be transported by cargo aircraft if approved by the Associate Administrator.

* * * * *

(c) * * *

(3) Lithium battery mark. Each package must display the lithium battery mark except when a package contains only button cell batteries contained in equipment (including circuit boards), or when a consignment contains two packages or fewer where each package contains not more than four lithium cells or two lithium batteries contained in equipment. [Change Notice][Previous Text]

(i) The mark must indicate the UN number: “UN3090” for lithium metal cells or batteries; or “UN3480” for lithium ion cells or batteries. Where the lithium cells or batteries are contained in, or packed with, equipment, the UN number “UN3091” or “UN3481,” as appropriate, must be indicated. Where a package contains lithium cells or batteries assigned to different UN numbers, all applicable UN numbers must be indicated on one or more marks. The package must be of such size that there is adequate space to affix the mark on one side without the mark being folded.



(A) The mark must be in the form of a rectangle or a square with hatched edging. The mark must be not less than 100 mm (3.9 inches) wide by 100 mm (3.9 inches) high and the minimum width of the hatching must be 5 mm (0.2 inches), except marks of 100 mm (3.9 inches) wide by 70 mm (2.8 inches) high may be used on a package containing lithium batteries when the package is too small for the larger mark;

(B) The symbols and letters must be black on white or suitable contrasting background and the hatching must be red;

(C) The “*” must be replaced by the appropriate UN number(s) and the “**” must be replaced by a telephone number for additional information; and

(D) Where dimensions are not specified, all features shall be in approximate proportion to those shown.

(ii) [Reserved]

(iii) When packages are placed in an overpack, the lithium battery mark shall either be clearly visible through the overpack or be reproduced on the outside of the overpack and the overpack shall be marked with the word “OVERPACK”. The lettering of the “OVERPACK” mark shall be at least 12 mm (0.47 inches) high.

(4) Air transportation. (i) For transportation by aircraft, lithium cells and batteries may not exceed the limits in the following Table 1 to paragraph (c)(4)(i). The limits on the maximum number of batteries and maximum net quantity of batteries in the following table may not be combined in the same package. The limits in the following table do not apply to lithium cells and batteries packed with, or contained in, equipment.

Table 1 to Paragraph (c)(4)(i)
Contents Lithium metal cells and/or batteries with a lithium content not more than 0.3 g Lithium metal cells with a lithium content more than 0.3 g but not more than 1 g Lithium metal batteries with a lithium content more than 0.3 g but not more than 2 g Lithium ion cells and/or batteries with a watt-hour rating not more than 2.7 Wh Lithium ion cells with a watt-hour rating more than 2.7 Wh but not more than 20 Wh Lithium ion batteries with a watt-hour rating more than 2.7 Wh but not more than 100 Wh
Maximum number of cells/batteries per package No Limit 8 cells 2 batteries No Limit 8 cells 2 batteries.
Maximum net quantity (mass) per package 2.5 kg n/a n/a 2.5 kg n/a n/a.

(ii) Not more than one package prepared in accordance with paragraph (c)(4)(i) of this section may be placed into an overpack.

(iii) A shipper is not permitted to offer for transport more than one package prepared in accordance with the provisions of paragraph (c)(4)(i) of this section in any single consignment.

(iv) Each shipment with packages required to display the paragraph (c)(3)(i) lithium battery mark must include an indication on the air waybill of compliance with this paragraph (c)(4) (or the applicable ICAO Technical Instructions Packing Instruction), when an air waybill is used.

(v) Packages and overpacks of lithium batteries prepared in accordance with paragraph (c)(4)(i) of this section must be offered to the operator separately from cargo which is not subject to the requirements of this subchapter and must not be loaded into a unit load device before being offered to the operator.

(vi) For lithium batteries packed with, or contained in, equipment, the number of batteries in each package is limited to the minimum number required to power the piece of equipment, plus two spare sets, and the total net quantity (mass) of the lithium cells or batteries in the completed package must not exceed 5 kg. A “set” of cells or batteries is the number of individual cells or batteries that are required to power each piece of equipment.

(vii) Each person who prepares a package for transport containing lithium cells or batteries, including cells or batteries packed with, or contained in, equipment in accordance with the conditions and limitations of this paragraph (c)(4), must receive instruction on these conditions and limitations, corresponding to their functions.

(viii) Lithium cells and batteries must not be packed in the same outer packaging with other hazardous materials. Packages prepared in accordance with paragraph (c)(4)(i) of this section must not be placed into an overpack with packages containing hazardous materials and articles of Class 1 (explosives) other than Division 1.4S, Division 2.1 (flammable gases), Class 3 (flammable liquids), Division 4.1 (flammable solids), or Division 5.1 (oxidizers).

(5) For transportation by aircraft, a package that exceeds the number or quantity (mass) limits in the table shown in paragraph (c)(4)(i) of this section, the overpack limit described in paragraph (c)(4)(ii) of this section, or the consignment limit described in paragraph (c)(4)(iii) of this section is subject to all applicable requirements of this subchapter, except that a package containing no more than 2.5 kg lithium metal cells or batteries or 10 kg lithium ion cells or batteries is not subject to the UN performance packaging requirements in paragraph (b)(3)(ii) of this section when the package displays both the lithium battery mark in paragraph (c)(3)(i) and the Class 9 Lithium Battery label specified in §172.447 of this subchapter. This paragraph does not apply to batteries or cells packed with or contained in equipment.

* * * * *

(e) * * *

(5) Lithium batteries, including lithium batteries contained in equipment, that weigh 12 kg (26.5 pounds) or more and have a strong, impact-resistant outer casing may be packed in strong outer packagings, in protective enclosures (for example, in fully enclosed or wooden slatted crates), or on pallets or other handling devices, instead of packages meeting the UN performance packaging requirements in paragraphs (b)(3)(ii) and (iii) of this section. The battery must be secured to prevent inadvertent shifting, and the terminals may not support the weight of other superimposed elements;

(6) Irrespective of the limit specified in column (9B) of the §172.101 Hazardous Materials Table, the battery or battery assembly prepared for transport in accordance with this paragraph may have a mass exceeding 35 kg gross weight when transported by cargo aircraft;

(7) Batteries or battery assemblies packaged in accordance with this paragraph are not permitted for transportation by passenger-carrying aircraft, and may be transported by cargo aircraft only if approved by the Associate Administrator prior to transportation; and

* * * * *

§173.224 Packaging and control and emergency temperatures for self-reactive materials.

* * * * *

(b) * * *

(4) Packing method. Column 4 specifies the highest packing method which is authorized for the self-reactive material. A packing method corresponding to a smaller package size may be used, but a packing method corresponding to a larger package size may not be used. The Table of Packing Methods in §173.225(d) defines the packing methods. Bulk packagings for Type F self-reactive substances are authorized by §173.225(f) for IBCs and §173.225(h) for bulk packagings other than IBCs. The formulations listed in §173.225(f) for IBCs and in §173.225(g) for portable tanks may also be transported packed in accordance with packing method OP8, with the same control and emergency temperatures, if applicable. Additional bulk packagings are authorized if approved by the Associate Administrator.

* * * * *

Self-Reactive Materials Table
Self-reactive substance


(1)
Identification No.


(2)
Concentra-
tion—(%)


(3)
Packing method


(4)
Control
tempera-
ture— (°C)


(5)
Emer-
gency
tempera-
ture—


(6)
Notes


(7)
Notes:
1. The emergency and control temperatures must be determined in accordance with §173.21(f).
2. With a compatible diluent having a boiling point of not less than 150 °C.
3. Samples may only be offered for transportation under the provisions of paragraph (c)(3) of this section.
4. This entry applies to mixtures of esters of 2-diazo-1-naphthol-4-sulphonic acid and 2-diazo-1-naphthol-5-sulphonic acid.
5. This entry applies to the technical mixture in n-butanol within the specified concentration limits of the (Z) isomer.
Acetone-pyrogallol copolymer 2-diazo-1-naphthol-5-sulphonate 3228 100 OP8
Azodicarbonamide formulation type B, temperature controlled 3232 <100 OP5 1
Azodicarbonamide formulation type C 3224 <100 OP6
Azodicarbonamide formulation type C, temperature controlled 3234 <100 OP6 1
Azodicarbonamide formulation type D 3226 <100 OP7
Azodicarbonamide formulation type D, temperature controlled 3236 <100 OP7 1
2,2′-Azodi(2,4-dimethyl-4-methoxyvaleronitrile) 3236 100 OP7 −5 +5
2,2′-Azodi(2,4-dimethylvaleronitrile) 3236 100 OP7 +10 +15
2,2′-Azodi(ethyl 2-methylpropionate) 3235 100 OP7 +20 +25
1,1-Azodi(hexahydrobenzonitrile) 3226 100 OP7
2,2-Azodi(isobutyronitrile) 3234 100 OP6 +40 +45
2,2′-Azodi(isobutyronitrile) as a water based paste 3224 ≤50 OP6
2,2-Azodi(2-methylbutyronitrile) 3236 100 OP7 +35 +40
Benzene-1,3-disulphonylhydrazide, as a paste 3226 52 OP7
Benzene sulphohydrazide 3226 100 OP7
4-(Benzyl(ethyl)amino)-3-ethoxybenzenediazonium zinc chloride 3226 100 OP7
4-(Benzyl(methyl)amino)-3-ethoxybenzenediazonium zinc chloride 3236 100 OP7 +40 +45
3-Chloro-4-diethylaminobenzenediazonium zinc chloride 3226 100 OP7
2-Diazo-1-Naphthol sulphonic acid ester mixture 3226 <100 OP7 4
2-Diazo-1-Naphthol-4-sulphonyl chloride 3222 100 OP5
2-Diazo-1-Naphthol-5-sulphonyl chloride 3222 100 OP5
2,5-Dibutoxy-4-(4-morpholinyl)-Benzenediazonium, tetrachlorozincate (2:1) 3228 100 OP8
2,5-Diethoxy-4-morpholinobenzenediazonium zinc chloride 3236 67−100 OP7 +35 +40
2,5-Diethoxy-4-morpholinobenzenediazonium zinc chloride 3236 66 OP7 +40 +45
2,5-Diethoxy-4-morpholinobenzenediazonium tetrafluoroborate 3236 100 OP7 +30 +35
2,5-Diethoxy-4-(phenylsulphonyl)benzenediazonium zinc chloride 3236 67 OP7 +40 +45
2,5-Diethoxy-4-(4-morpholinyl)-benzenediazonium sulphate 3226 100 OP7
Diethylene glycol bis(allyl carbonate) + Diisopropylperoxydicarbonate 3237 ≥88 + ≤12 OP8 −10 0
2,5-Dimethoxy-4-(4-methylphenylsulphony)benzenediazonium zinc chloride 3236 79 OP7 +40 +45
4-Dimethylamino-6-(2-dimethylaminoethoxy)toluene-2-diazonium zinc chloride 3236 100 OP7 +40 +45
4-(Dimethylamino)-benzenediazonium trichlorozincate (-1) 3228 100 OP8
N,N′-Dinitroso-N, N′-dimethyl-terephthalamide, as a paste 3224 72 OP6
N,N′-Dinitrosopentamethylenetetramine 3224 82 OP6 2
Diphenyloxide-4,4′-disulphohydrazide 3226 100 OP7
Diphenyloxide-4,4′-disulphonylhydrazide 3226 100 OP7
4-Dipropylaminobenzenediazonium zinc chloride 3226 100 OP7
2-(N,N-Ethoxycarbonylphenylamino)-3-methoxy-4-(N-methyl-N- cyclohexylamino)benzenediazonium zinc chloride 3236 63−92 OP7 +40 +45
2-(N,N-Ethoxycarbonylphenylamino)-3-methoxy-4-(N-methyl-N- cyclohexylamino)benzenediazonium zinc chloride 3236 62 OP7 +35 +40
N-Formyl-2-(nitromethylene)-1,3-perhydrothiazine 3236 100 OP7 +45 +50
2-(2-Hydroxyethoxy)-1-(pyrrolidin-1-yl)benzene-4-diazonium zinc chloride 3236 100 OP7 +45 +50
3-(2-Hydroxyethoxy)-4-(pyrrolidin-1-yl)benzenediazonium zinc chloride 3236 100 OP7 +40 +45
2-(N,N-Methylaminoethylcarbonyl)-4-(3,4-dimethyl-phenylsulphonyl)benzene diazonium zinc chloride 3236 96 OP7 +45 +50
4-Methylbenzenesulphonylhydrazide 3226 100 OP7
3-Methyl-4-(pyrrolidin-1-yl)benzenediazonium tetrafluoroborate 3234 95 OP6 +45 +50
4-Nitrosophenol 3236 100 OP7 +35 +40
Phosphorothioic acid, O-[(cyanophenyl methylene) azanyl] O,O-diethyl ester 3227 82−91 (Z isomer) OP8 5
Self-reactive liquid, sample 3223 OP2 3
Self-reactive liquid, sample, temperature control 3233 OP2 3
Self-reactive solid, sample 3224 OP2 3
Self-reactive solid, sample, temperature control 3234 OP2 3
Sodium 2-diazo-1-naphthol-4-sulphonate 3226 100 OP7
Sodium 2-diazo-1-naphthol-5-sulphonate 3226 100 OP7
Tetramine palladium (II) nitrate 3234 100 OP6 +30 +35

§173.225 Packaging requirements and other provisions for organic peroxides.

* * * * *

(c) * * *

Table 1 to Paragraph (c)—Organic Peroxide Table
Technical name ID No. Concentration (mass %) Diluent (mass %) Water (mass %) Packing method Temperature (°C) Notes
A B I Control Emergency
(1) (2) (3) (4a) (4b) (4c) (5) (6) (7a) (7b) (8)
Acetyl acetone peroxide UN3105 ≤42 ≥48 ≥8 OP7 2
Acetyl acetone peroxide [as a paste] UN3106 ≤32 OP7 21
Acetyl cyclohexanesulfonyl peroxide UN3112 ≤82 ≥12 OP4 −10 0
Acetyl cyclohexanesulfonyl peroxide UN3115 ≤32 ≥68 OP7 −10 0
tert-Amyl hydroperoxide UN3107 ≤88 ≥6 ≥6 OP8
tert-Amyl peroxyacetate UN3105 ≤62 ≥38 OP7
tert-Amyl peroxybenzoate UN3103 ≤100 OP5
tert-Amyl peroxy-2-ethylhexanoate UN3115 ≤100 OP7 +20 +25
tert-Amyl peroxy-2-ethylhexyl carbonate UN3105 ≤100 OP7
tert-Amyl peroxy isopropyl carbonate UN3103 ≤77 ≥23 OP5
tert-Amyl peroxyneodecanoate UN3115 ≤77 ≥23 OP7 0 +10
tert-Amyl peroxyneodecanoate UN3119 ≤47 ≥53 OP8 0 +10
tert-Amyl peroxypivalate UN3113 ≤77 ≥23 OP5 +10 +15
tert-Amyl peroxypivalate UN3119 ≤32 ≥68 OP8 +10 +15
tert-Amyl peroxy-3,5,5-trimethylhexanoate UN3105 ≤100 OP7
tert-Butyl cumyl peroxide UN3109 >42−100 OP8 9
tert-Butyl cumyl peroxide UN3108 ≤52 ≥48 OP8 9
n-Butyl-4,4-di-(tert-butylperoxy)valerate UN3103 >52−100 OP5
n-Butyl-4,4-di-(tert-butylperoxy)valerate UN3108 ≤52 ≥48 OP8
tert-Butyl hydroperoxide UN3103 >79−90 ≥10 OP5 13
tert-Butyl hydroperoxide UN3105 ≤80 ≥20 OP7 4, 13
tert-Butyl hydroperoxide UN3107 ≤79 >14 OP8 13, 16
tert-Butyl hydroperoxide UN3109 ≤72 ≥28 OP8 13
tert-Butyl hydroperoxide [and] Di-tert-butylperoxide UN3103 <82 + >9 ≥7 OP5 13
tert-Butyl monoperoxymaleate UN3102 >52−100 OP5
tert-Butyl monoperoxymaleate UN3103 ≤52 ≥48 OP6
tert-Butyl monoperoxymaleate UN3108 ≤52 ≥48 OP8
tert-Butyl monoperoxymaleate [as a paste] UN3108 ≤52 OP8
tert-Butyl peroxyacetate UN3101 >52−77 ≥23 OP5
tert-Butyl peroxyacetate UN3103 >32−52 ≥48 OP6
tert-Butyl peroxyacetate UN3109 ≤32 ≥68 OP8
tert-Butyl peroxybenzoate UN3103 >77−100 OP5
tert-Butyl peroxybenzoate UN3105 >52−77 ≥23 OP7 1
tert-Butyl peroxybenzoate UN3106 ≤52 ≥48 OP7
tert-Butyl peroxybenzoate UN3109 ≤32 ≥68 OP8
tert-Butyl peroxybutyl fumarate UN3105 ≤52 ≥48 OP7
tert-Butyl peroxycrotonate UN3105 ≤77 ≥23 OP7
tert-Butyl peroxydiethylacetate UN3113 ≤100 OP5 +20 +25
tert-Butyl peroxy-2-ethylhexanoate UN3113 >52−100 OP6 +20 +25
tert-Butyl peroxy-2-ethylhexanoate UN3117 >32−52 ≥48 OP8 +30 +35
tert-Butyl peroxy-2-ethylhexanoate UN3118 ≤52 ≥48 OP8 +20 +25
tert-Butyl peroxy-2-ethylhexanoate UN3119 ≤32 ≥68 OP8 +40 +45
tert-Butyl peroxy-2-ethylhexanoate [and] 2,2-di-(tert-Butylperoxy)butane UN3106 ≤12 + ≤14 ≥14 ≥60 OP7
tert-Butyl peroxy-2-ethylhexanoate [and] 2,2-di-(tert-Butylperoxy)butane UN3115 ≤31 + ≤36 ≥33 OP7 +35 +40
tert-Butyl peroxy-2-ethylhexylcarbonate UN3105 ≤100 OP7
tert-Butyl peroxyisobutyrate UN3111 >52−77 ≥23 OP5 +15 +20
tert-Butyl peroxyisobutyrate UN3115 ≤52 ≥48 OP7 +15 +20
tert-Butylperoxy isopropylcarbonate UN3103 ≤77 ≥23 OP5
1-(2-tert-Butylperoxy isopropyl)-3-isopropenylbenzene UN3105 ≤77 ≥23 OP7
1-(2-tert-Butylperoxy isopropyl)-3-isopropenylbenzene UN3108 ≤42 ≥58 OP8
tert-Butyl peroxy-2-methylbenzoate UN3103 ≤100 OP5
tert-Butyl peroxyneodecanoate UN3115 >77−100 OP7 −5 +5
tert-Butyl peroxyneodecanoate UN3115 ≤77 ≥23 OP7 0 +10
tert-Butyl peroxyneodecanoate [as a stable dispersion in water] UN3119 ≤52 OP8 0 +10
tert-Butyl peroxyneodecanoate [as a stable dispersion in water (frozen)] UN3118 ≤42 OP8 0 +10
tert-Butyl peroxyneodecanoate UN3119 ≤32 ≥68 OP8 0 +10
tert-Butyl peroxyneoheptanoate UN3115 ≤77 ≥23 OP7 0 +10
tert-Butyl peroxyneoheptanoate [as a stable dispersion in water] UN3117 ≤42 OP8 0 +10
tert-Butyl peroxypivalate UN3113 >67−77 ≥23 OP5 0 +10
tert-Butyl peroxypivalate UN3115 >27−67 ≥33 OP7 0 +10
tert-Butyl peroxypivalate UN3119 ≤27 ≥73 OP8 +30 +35
tert-Butylperoxy stearylcarbonate UN3106 ≤100 OP7
tert-Butyl peroxy-3,5,5-trimethylhexanoate UN3105 >37−100 OP7
tert-Butyl peroxy-3,5,5-trimethlyhexanoate UN3106 ≤42 ≥58 OP7
tert-Butyl peroxy-3,5,5-trimethylhexanoate UN3109 ≤37 ≥63 OP8
3-Chloroperoxybenzoic acid UN3102 >57−86 ≥14 OP1
3-Chloroperoxybenzoic acid UN3106 ≤57 ≥3 ≥40 OP7
3-Chloroperoxybenzoic acid UN3106 ≤77 ≥6 ≥17 OP7
Cumyl hydroperoxide UN3107 >90−98 ≤10 OP8 13
Cumyl hydroperoxide UN3109 ≤90 ≥10 OP8 13, 15
Cumyl peroxyneodecanoate UN3115 ≤87 ≥13 OP7 −10 0
Cumyl peroxyneodecanoate UN3115 ≤77 ≥23 OP7 −10 0
Cumyl peroxyneodecanoate [as a stable dispersion in water] UN3119 ≤52 OP8 −10 0
Cumyl peroxyneoheptanoate UN3115 ≤77 ≥23 OP7 −10 0
Cumyl peroxypivalate UN3115 ≤77 ≥23 OP7 −5 +5
Cyclohexanone peroxide(s) UN3104 ≤91 ≥9 OP6 13
Cyclohexanone peroxide(s) UN3105 ≤72 ≥28 OP7 5
Cyclohexanone peroxide(s) [as a paste] UN3106 ≤72 OP7 5, 21
Cyclohexanone peroxide(s) Exempt ≤32 >68 Exempt 29
Diacetone alcohol peroxides UN3115 ≤57 ≥26 ≥8 OP7 +40 +45 5
Diacetyl peroxide UN3115 ≤27 ≥73 OP7 +20 +25 8,13
Di-tert-amyl peroxide UN3107 ≤100 OP8
([3R- (3R, 5aS, 6S, 8aS, 9R, 10R, 12S, 12aR**)]-Decahydro-10-methoxy-3, 6, 9-trimethyl-3, 12-epoxy-12H-pyrano [4, 3- j]-1, 2-benzodioxepin) UN3106 ≤100 OP7
2,2-Di-(tert-amylperoxy)-butane UN3105 ≤57 ≥43 OP7
1,1-Di-(tert-amylperoxy)cyclohexane UN3103 ≤82 ≥18 OP6
Dibenzoyl peroxide UN3102 >52−100 ≤48 OP2 3
Dibenzoyl peroxide UN3102 >77−94 ≥6 OP4 3
Dibenzoyl peroxide UN3104 ≤77 ≥23 OP6
Dibenzoyl peroxide UN3106 ≤62 ≥28 ≥10 OP7
Dibenzoyl peroxide [as a paste] UN3106 >52−62 OP7 21
Dibenzoyl peroxide UN3106 >35−52 ≥48 OP7
Dibenzoyl peroxide UN3107 >36−42 ≥18 ≤40 OP8
Dibenzoyl peroxide [as a paste] UN3108 ≤56.5 ≥15 OP8
Dibenzoyl peroxide [as a paste] UN3108 ≤52 OP8 21
Dibenzoyl peroxide [as a stable dispersion in water] UN3109 ≤42 OP8
Dibenzoyl peroxide Exempt ≤35 ≥65 Exempt 29
Di-(4-tert-butylcyclohexyl)peroxydicarbonate UN3114 ≤100 OP6 +30 +35
Di-(4-tert-butylcyclohexyl)peroxydicarbonate [as a stable dispersion in water] UN3119 ≤42 OP8 +30 +35
Di-(4-tert-butylcyclohexyl)peroxydicarbonate [as a paste] UN3116 ≤42 OP7 +35 +40
Di-tert-butyl peroxide UN3107 >52−100 OP8
Di-tert-butyl peroxide UN3109 ≤52 ≥48 OP8 24
Di-tert-butyl peroxyazelate UN3105 ≤52 ≥48 OP7
2,2-Di-(tert-butylperoxy)butane UN3103 ≤52 ≥48 OP6
1,6-Di-(tert-butylperoxycarbonyloxy)hexane UN3103 ≤72 ≥28 OP5
1,1-Di-(tert-butylperoxy)cyclohexane UN3101 >80−100 OP5
1,1-Di-(tert-butylperoxy)cyclohexane UN3103 >52−80 ≥20 OP5
1,1-Di-(tert-butylperoxy)-cyclohexane UN3103 ≤72 ≥28 OP5 30
1,1-Di-(tert-butylperoxy)cyclohexane UN3105 >42−52 ≥48 OP7
1,1-Di-(tert-butylperoxy)cyclohexane UN3106 ≤42 ≥13 ≥45 OP7
1,1-Di-(tert-butylperoxy)cyclohexane UN3107 ≤27 ≥25 OP8 22
1,1-Di-(tert-butylperoxy)cyclohexane UN3109 ≤42 ≥58 OP8
1,1-Di-(tert-Butylperoxy) cyclohexane UN3109 ≤37 ≥63 OP8
1,1-Di-(tert-butylperoxy)cyclohexane UN3109 ≤25 ≥25 ≥50 OP8
1,1-Di-(tert-butylperoxy)cyclohexane UN3109 ≤13 ≥13 ≥74 OP8
1,1-Di-(tert-butylperoxy)cyclohexane + tert-Butyl peroxy-2-ethylhexanoate UN3105 ≤43 + ≤16 ≥41 OP7
Di-n-butyl peroxydicarbonate UN3115 >27−52 ≥48 OP7 −15 −5
Di-n-butyl peroxydicarbonate UN3117 ≤27 ≥73 OP8 −10 0
Di-n-butyl peroxydicarbonate [as a stable dispersion in water (frozen)] UN3118 ≤42 OP8 −15 −5
Di-sec-butyl peroxydicarbonate UN3113 >52−100 OP4 −20 −10 6
Di-sec-butyl peroxydicarbonate UN3115 ≤52 ≥48 OP7 −15 −5
Di-(tert-butylperoxyisopropyl) benzene(s) UN3106 >42−100 ≤57 OP7 1, 9
Di-(tert-butylperoxyisopropyl) benzene(s) Exempt ≤42 ≥58 Exempt
Di-(tert-butylperoxy)phthalate UN3105 >42−52 ≥48 OP7
Di-(tert-butylperoxy)phthalate [as a paste] UN3106 ≤52 OP7 21
Di-(tert-butylperoxy)phthalate UN3107 ≤42 ≥58 OP8
2,2-Di-(tert-butylperoxy)propane UN3105 ≤52 ≥48 OP7
2,2-Di-(tert-butylperoxy)propane UN3106 ≤42 ≥13 ≥45 OP7
1,1-Di-(tert-butylperoxy)-3,3,5-trimethylcyclohexane UN3101 >90−100 OP5
1,1-Di-(tert-butylperoxy)-3,3,5-trimethylcyclohexane UN3103 >57−90 ≥10 OP5
1,1-Di-(tert-butylperoxy)-3,3,5-trimethylcyclohexane UN3103 ≤77 ≥23 OP5
1,1-Di-(tert-butylperoxy)-3,3,5-trimethylcyclohexane UN3103 ≤90 ≥10 OP5 30
1,1-Di-(tert-butylperoxy)-3,3,5-trimethylcyclohexane UN3110 ≤57 ≥43 OP8
1,1-Di-(tert-butylperoxy)-3,3,5-trimethylcyclohexane UN3107 ≤57 ≥43 OP8
1,1-Di-(tert-butylperoxy)-3,3,5-trimethylcyclohexane UN3107 ≤32 ≥26 ≥42 OP8
Dicetyl peroxydicarbonate UN3120 ≤100 OP8 +30 +35
Dicetyl peroxydicarbonate [as a stable dispersion in water] UN3119 ≤42 OP8 +30 +35
Di-4-chlorobenzoyl peroxide UN3102 ≤77 ≥23 OP5
Di-4-chlorobenzoyl peroxide Exempt ≤32 ≥68 Exempt 29
Di-2,4-dichlorobenzoyl peroxide [as a paste] UN3118 ≤52 OP8 +20 +25
Di-4-chlorobenzoyl peroxide [as a paste] UN3106 ≤52 OP7 21
Dicumyl peroxide UN3110 >52−100 ≤48 OP8 9
Dicumyl peroxide Exempt ≤52 ≥48 Exempt 29
Dicyclohexyl peroxydicarbonate UN3112 >91−100 OP3 +10 +15
Dicyclohexyl peroxydicarbonate UN3114 ≤91 ≥9 OP5 +10 +15
Dicyclohexyl peroxydicarbonate [as a stable dispersion in water] UN3119 ≤42 OP8 +15 +20
Didecanoyl peroxide UN3114 ≤100 OP6 +30 +35
2,2-Di-(4,4-di(tert-butylperoxy)cyclohexyl)propane UN3106 ≤42 ≥58 OP7
2,2-Di-(4,4-di(tert-butylperoxy)cyclohexyl)propane UN3107 ≤22 ≥78 OP8
Di-2,4-dichlorobenzoyl peroxide UN3102 ≤77 ≥23 OP5
Di-2,4-dichlorobenzoyl peroxide [as a paste with silicone oil] UN3106 ≤52 OP7
Di-(2-ethoxyethyl) peroxydicarbonate UN3115 ≤52 ≥48 OP7 −10 0
Di-(2-ethylhexyl) peroxydicarbonate UN3113 >77−100 OP5 −20 −10
Di-(2-ethylhexyl) peroxydicarbonate UN3115 ≤77 ≥23 OP7 −15 −5
Di-(2-ethylhexyl) peroxydicarbonate [as a stable dispersion in water] UN3119 ≤62 OP8 −15 −5
Di-(2-ethylhexyl) peroxydicarbonate [as a stable dispersion in water] UN3119 ≤52 OP8 −15 −5
Di-(2-ethylhexyl) peroxydicarbonate [as a stable dispersion in water (frozen)] UN3120 ≤52 OP8 −15 −5
2,2-Dihydroperoxypropane UN3102 ≤27 ≥73 OP5
Di-(1-hydroxycyclohexyl)peroxide UN3106 ≤100 OP7
Diisobutyryl peroxide UN3111 >32−52 ≥48 OP5 −20 −10
Diisobutyryl peroxide [as a stable dispersion in water] UN3119 ≤42 OP8 −20 −10
Diisobutyryl peroxide UN3115 ≤32 ≥68 OP7 −20 −10
Diisopropylbenzene dihydroperoxie UN3106 ≤82 ≥5 ≥5 OP7 17
Diisopropyl peroxydicarbonate UN3112 >52−100 OP2 −15 −5
Diisopropyl peroxydicarbonate UN3115 ≤52 ≥48 OP7 −20 −10
Diisopropyl peroxydicarbonate UN3115 ≤32 ≥68 OP7 −15 −5
Dilauroyl peroxide UN3106 ≤100 OP7
Dilauroyl peroxide [as a stable dispersion in water] UN3109 ≤42 OP8
Di-(3-methoxybutyl) peroxydicarbonate UN3115 ≤52 ≥48 OP7 −5 +5
Di-(2-methylbenzoyl)peroxide UN3112 ≤87 ≥13 OP5 +30 +35
Di-(4-methylbenzoyl)peroxide [as a paste with silicone oil] UN3106 ≤52 OP7
Di-(3-methylbenzoyl) peroxide + Benzoyl (3-methylbenzoyl) peroxide + Dibenzoyl peroxide UN3115 ≤20 + ≤18 + ≤4 ≥58 OP7 +35 +40
2,5-Dimethyl-2,5-di-(benzoylperoxy)hexane UN3102 >82−100 OP5
2,5-Dimethyl-2,5-di-(benzoylperoxy)hexane UN3106 ≤82 ≥18 OP7
2,5-Dimethyl-2,5-di-(benzoylperoxy)hexane UN3104 ≤82 ≥18 OP5
2,5-Dimethyl-2,5-di-(tert-butylperoxy)hexane UN3103 >90−100 OP5
2,5-Dimethyl-2,5-di-(tert-butylperoxy)hexane UN3105 >52—90 ≥10 OP7
2,5-Dimethyl-2,5-di-(tert-butylperoxy)hexane UN3108 ≤77 ≥23 OP8
2,5-Dimethyl-2,5-di-(tert-butylperoxy)hexane UN3109 ≤52 ≥48 OP8
2,5-Dimethyl-2,5-di-(tert-butylperoxy)hexane [as a paste] UN3108 ≤47 OP8
2,5-Dimethyl-2,5-di-(tert-butylperoxy)hexyne-3 UN3101 >86−100 OP5
2,5-Dimethyl-2,5-di-(tert-butylperoxy)hexyne-3 UN3103 >52−86 ≥14 OP5
2,5-Dimethyl-2,5-di-(tert-butylperoxy)hexyne-3 UN3106 ≤52 ≥48 OP7
2,5-Dimethyl-2,5-di-(2-ethylhexanoylperoxy)hexane UN3113 ≤100 OP5 +20 +25
2,5-Dimethyl-2,5-dihydroperoxyhexane UN3104 ≤82 ≥18 OP6
2,5-Dimethyl-2,5-di-(3,5,5-trimethylhexanoylperoxy)hexane UN3105 ≤77 ≥23 OP7
1,1-Dimethyl-3-hydroxybutylperoxyneoheptanoate UN3117 ≤52 ≥48 OP8 0 +10
Dimyristyl peroxydicarbonate UN3116 ≤100 OP7 +20 +25
Dimyristyl peroxydicarbonate [as a stable dispersion in water] UN3119 ≤42 OP8 +20 +25
Di-(2-neodecanoylperoxyisopropyl)benzene UN3115 ≤52 ≥48 OP7 −10 0
Di-(2-neodecanoyl-peroxyisopropyl) benzene, as stable dispersion in water UN3119 ≤42 OP8 −15 −5
Di-n-nonanoyl peroxide UN3116 ≤100 OP7 0 +10
Di-n-octanoyl peroxide UN3114 ≤100 OP5 +10 +15
Di-(2-phenoxyethyl)peroxydicarbonate UN3102 >85−100 OP5
Di-(2-phenoxyethyl)peroxydicarbonate UN3106 ≤85 ≥15 OP7
Dipropionyl peroxide UN3117 ≤27 ≥73 OP8 +15 +20
Di-n-propyl peroxydicarbonate UN3113 ≤100 OP3 −25 −15
Di-n-propyl peroxydicarbonate UN3113 ≤77 ≥23 OP5 −20 −10
Disuccinic acid peroxide UN3102 >72−100 OP4 18
Disuccinic acid peroxide UN3116 ≤72 ≥28 OP7 +10 +15
Di-(3,5,5-trimethylhexanoyl) peroxide UN3115 >52−82 ≥18 OP7 0 +10
Di-(3,5,5-trimethylhexanoyl)peroxide [as a stable dispersion in water] UN3119 ≤52 OP8 +10 +15
Di-(3,5,5-trimethylhexanoyl) peroxide UN3119 >38−52 ≥48 OP8 +10 +15
Di-(3,5,5-trimethylhexanoyl)peroxide UN3119 ≤38 ≥62 OP8 +20 +25
Ethyl 3,3-di-(tert-amylperoxy)butyrate UN3105 ≤67 ≥33 OP7
Ethyl 3,3-di-(tert-butylperoxy)butyrate UN3103 >77−100 OP5
Ethyl 3,3-di-(tert-butylperoxy)butyrate UN3105 ≤77 ≥23 OP7
Ethyl 3,3-di-(tert-butylperoxy)butyrate UN3106 ≤52 ≥48 OP7
1-(2-ethylhexanoylperoxy)-1,3-Dimethylbutyl peroxypivalate UN3115 ≤52 ≥45 ≥10 OP7 −20 −10
tert-Hexyl peroxyneodecanoate UN3115 ≤71 ≥29 OP7 0 +10
tert-Hexyl peroxypivalate UN3115 ≤72 ≥28 OP7 +10 +15
3-Hydroxy-1,1-dimethylbutyl peroxyneodecanoate UN3115 ≤77 ≥23 OP7 −5 +5
3-Hydroxy-1,1-dimethylbutyl peroxyneodecanoate [as a stable dispersion in water] UN3119 ≤52 OP8 −5 +5
3-Hydroxy-1,1-dimethylbutyl peroxyneodecanoate UN3117 ≤52 ≥48 OP8 −5 +5
Isopropyl sec-butyl peroxydicarbonat + Di-sec-butyl peroxydicarbonate + Di-isopropyl peroxydicarbonate UN3111 ≤52 + ≤28 + ≤22 OP5 −20 −10
Isopropyl sec-butyl peroxydicarbonate + Di-sec-butyl peroxydicarbonate + Di-isopropyl peroxydicarbonate UN3115 ≤32 + ≤15 −18 + ≤12 −15 ≥38 OP7 −20 −10
Isopropylcumyl hydroperoxide UN3109 ≤72 ≥28 OP8 13
p-Menthyl hydroperoxide UN3105 >72−100 OP7 13
p-Menthyl hydroperoxide UN3109 ≤72 ≥28 OP8
Methylcyclohexanone peroxide(s) UN3115 ≤67 ≥33 OP7 +35 +40
Methyl ethyl ketone peroxide(s) UN3101 ≤52 ≥48 OP5 5, 13
Methyl ethyl ketone peroxide(s) UN3105 ≤45 ≥55 OP7 5
Methyl ethyl ketone peroxide(s) UN3107 ≤40 ≥60 OP8 7
Methyl isobutyl ketone peroxide(s) UN3105 ≤62 ≥19 OP7 5, 23
Methyl isopropyl ketone peroxide(s) UN3109 (See remark 31) ≥70 OP8 31
Organic peroxide, liquid, sample UN3103 OP2 12
Organic peroxide, liquid, sample, temperature controlled UN3113 OP2 12
Organic peroxide, solid, sample UN3104 OP2 12
Organic peroxide, solid, sample, temperature controlled UN3114 OP2 12
3,3,5,7,7-Pentamethyl-1,2,4-Trioxepane UN3107 ≤100 OP8
Peroxyacetic acid, type D, stabilized UN3105 ≤43 OP7 13, 20
Peroxyacetic acid, type E, stabilized UN3107 ≤43 OP8 13, 20
Peroxyacetic acid, type F, stabilized UN3109 ≤43 OP8 13, 20, 28
Peroxyacetic acid or peracetic acid [with not more than 7% hydrogen peroxide] UN3107 ≤36 ≥15 OP8 13, 20, 28
Peroxyacetic acid or peracetic acid [with not more than 20% hydrogen peroxide] Exempt ≤6 ≥60 Exempt 28
Peroxyacetic acid or peracetic acid [with not more than 26% hydrogen peroxide] UN3109 ≤17 OP8 13, 20, 28
Peroxylauric acid UN3118 ≤100 OP8 +35 +40
1-Phenylethyl hydroperoxide UN3109 ≤38 ≥62 OP8
Pinanyl hydroperoxide UN3105 >56−100 OP7 13
Pinanyl hydroperoxide UN3109 ≤56 ≥44 OP8
Polyether poly-tert-butylperoxycarbonate UN3107 ≤52 ≥48 OP8
Tetrahydronaphthyl hydroperoxide UN3106 ≤100 OP7
1,1,3,3-Tetramethylbutyl hydroperoxide UN3105 ≤100 OP7
1,1,3,3-Tetramethylbutyl peroxy-2-ethylhexanoate UN3115 ≤100 OP7 +15 +20
1,1,3,3-Tetramethylbutyl peroxyneodecanoate UN3115 ≤72 ≥28 OP7 −5 +5
1,1,3,3-Tetramethylbutyl peroxyneodecanoate [as a stable dispersion in water] UN3119 ≤52 OP8 −5 +5
1,1,3,3-tetramethylbutyl peroxypivalate UN3115 ≤77 ≥23 OP7 0 +10
3,6,9-Triethyl-3,6,9-trimethyl-1,4,7-triperoxonane UN3110 ≤17 ≥18 ≥65 OP8
3,6,9-Triethyl-3,6,9-trimethyl-1,4,7-triperoxonane UN3105 ≤42 ≥58 OP7 26
Notes:
1. For domestic shipments, OP8 is authorized.
2. Available oxygen must be <4.7%.
3. For concentrations <80% OP5 is allowed. For concentrations of at least 80% but <85%, OP4 is allowed. For concentrations of at least 85%, maximum package size is OP2.
4. The diluent may be replaced by di-tert-butyl peroxide.
5. Available oxygen must be ≤9% with or without water.
6. For domestic shipments, OP5 is authorized.
7. Available oxygen must be ≤8.2% with or without water.
8. Only non-metallic packagings are authorized.
9. For domestic shipments this material may be transported under the provisions of paragraph (h)(3)(xii) of this section.
10. [Reserved]
11. [Reserved]
12. Samples may only be offered for transportation under the provisions of paragraph (b)(2) of this section.
13. “Corrosive” subsidiary risk label is required.
14. [Reserved]
15. No “Corrosive” subsidiary risk label is required for concentrations below 80%.
16. With <6% di-tert-butyl peroxide.
17. With ≤8% 1-isopropylhydroperoxy-4-isopropylhydroxybenzene.
18. Addition of water to this organic peroxide will decrease its thermal stability.
19. [Reserved]
20. Mixtures with hydrogen peroxide, water and acid(s).
21. With diluent type A, with or without water.
22. With ≥36% diluent type A by mass, and in addition ethylbenzene.
23. With ≥19% diluent type A by mass, and in addition methyl isobutyl ketone.
24. Diluent type B with boiling point >100 C.
25. No “Corrosive” subsidiary risk label is required for concentrations below 56%.
26. Available oxygen must be ≤7.6%.
27. Formulations derived from distillation of peroxyacetic acid originating from peroxyacetic acid in a concentration of not more than 41% with water, total active oxygen less than or equal to 9.5% (peroxyacetic acid plus hydrogen peroxide).
28. For the purposes of this section, the names “Peroxyacetic acid” and “Peracetic acid” are synonymous.
29. Not subject to the requirements of this subchapter for Division 5.2.
30. Diluent type B with boiling point >130°C (266°F).
31. Available oxygen ≤6.7%.

(d) *****

Table to Paragraph (d): Maximum Quantity per Packaging/Package

* * * * *

(g) * * *

Table to Paragraph (g) —Organic Peroxide Portable Tank Table
UN No. Hazardous material Minimum test pressure (bar) Minimum shell thickness (mm-reference steel) See . . . Bottom opening requirements See . . . Pressure-relief requirements See . . . Filling limits Control temperature Emergency temperature
3109 ORGANIC PEROXIDE, TYPE F, LIQUID
tert-Butyl hydroperoxide, not more than 72% with water.
*Provided that steps have been taken to achieve the safety equivalence of 65% tert-Butyl hydroperoxide and 35% water.
4 §178.274(d)(2) §178.275(d)(3) §178.275(g)(1) Not more than 90% at 59°F (15°C)
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
Note: 1. “Corrosive” subsidiary risk placard is required.

* * * * *

§173.301b Additional general requirements for shipment of UN pressure receptacles.

* * * * *

(c) * * *

(1) When the use of a valve is prescribed, the valve must conform to the requirements in ISO 10297:2014(E) and ISO 10297:2014/Amd 1:2017 (IBR, see §171.7 of this subchapter). Quick release cylinder valves for specification and type testing must conform to the requirements in ISO 17871:2015(E) (IBR, see §171.7 of this subchapter). Until December 31, 2022, the manufacture of a valve conforming to the requirements in ISO 10297:2014(E) is authorized. Until December 31, 2020, the manufacture of a valve conforming to the requirements in ISO 10297:2006(E) (IBR, see §171.7 of this subchapter) was authorized. Until December 31, 2008, the manufacture of a valve conforming to the requirements in ISO 10297:1999(E) (IBR, see §171.7 of this subchapter) was authorized.

(2) * * *

(ii) By equipping the UN pressure receptacle with a valve cap conforming to the requirements in ISO 11117:2008(E) and Technical Corrigendum 1 (IBR, see §171.7 of this subchapter). Until December 31, 2014, the manufacture of a valve cap conforming to the requirements in ISO 11117:1998(E) (IBR, see §171.7 of this subchapter) was authorized. The cap must have vent-holes of sufficient cross-sectional area to evacuate the gas if leakage occurs at the valve;

(iii) By protecting the valves by shrouds or guards conforming to the requirements in ISO 11117:2008(E) and Technical Corrigendum 1 (IBR; see §171.7 of this subchapter). Until December 31, 2014, the manufacture of a shroud or guard conforming to the requirements in ISO 11117:1998(E) (IBR, see §171.7 of this subchapter) was authorized. For metal hydride storage systems, by protecting the valves in accordance with the requirements in ISO 16111:2008(E) (IBR; see §171.7 of this subchapter).

(iv) By using valves designed and constructed with sufficient inherent strength to withstand damage in accordance with Annex B of ISO 10297:2014(E)/Amd. 1: 2017;

* * * * *

(d) Non-refillable UN pressure receptacles. (1) When the use of a valve is prescribed, the valve must conform to the requirements in ISO 11118:2015(E), (IBR, see §171.7 of this subchapter). Manufacture of valves to ISO 13340:2001(E) is authorized until December 31, 2020;

* * * * *

(f) Hydrogen bearing gases. A steel UN pressure receptacle bearing an ‘‘H’’ mark must be used for hydrogen bearing gases or other embrittling gases that have the potential of causing hydrogen embrittlement.

* * * * *

§173.302c Additional requirements for the shipment of adsorbed gases in UN pressure receptacles.

* * * * *

(k) The filling procedure must be in accordance with Annex A of ISO 11513 (IBR, see §171.7 of this subchapter).

* * * * *

§173.311 Metal hydride storage systems.

The following packing instruction is applicable to transportable UN Metal hydride storage systems (UN3468) with pressure receptacles not exceeding 150 liters (40 gallons) in water capacity and having a maximum developed pressure not exceeding 25 MPa. Metal hydride storage systems must be designed, constructed, initially inspected and tested in accordance with ISO 16111 (IBR, see §171.7 of this subchapter) as authorized under §178.71(m) of this subchapter. Steel pressure receptacles or composite pressure receptacles with steel liners must be marked in accordance with §173.301b(f) of this part which specifies that a steel UN pressure receptacle bearing an “H” mark must be used for hydrogen bearing gases or other gases that may cause hydrogen embrittlement. Requalification intervals must be no more than every five years as specified in §180.207 of this subchapter in accordance with the requalification procedures prescribed in ISO 16111.

§175.10 Exceptions for passengers, crewmembers, and air operators.

(a) This subchapter does not apply to the following hazardous materials when carried by aircraft passengers or crewmembers provided the requirements of §§171.15 and 171.16 (see paragraph (c) of this section) and the requirements of this section are met:

* * * * *

(14) Battery powered heat-producing devices (e.g., battery-operated equipment such as diving lamps and soldering equipment) as checked or carry-on baggage and with the approval of the operator of the aircraft. The heating element, the battery, or other component (e.g., fuse) must be isolated to prevent unintentional activation during transport. Any battery that is removed must be carried in accordance with the provisions for spare batteries in paragraph (a)(18) of this section.

* * * * *

(15) * * *

(v) * * *

(A) Securely attached to the wheelchair or mobility aid;

* * * * *

(vi) * * *

(A) Securely attached to the wheelchair or mobility aid; or

* * * * *

(17) * * *

(ii) * * *

(C) The battery must be securely attached to the mobility aid; and

* * * * *

(18) Except as provided in §173.21 of this subchapter, portable electronic devices (e.g., watches, calculating machines, cameras, cellular phones, laptop and notebook computers, camcorders, medical devices, etc.) containing dry cells or dry batteries (including lithium cells or batteries) and spare dry cells or batteries for these devices, when carried by passengers or crew members for personal use. Portable electronic devices powered by lithium batteries may be carried in either checked or carry-on baggage. When carried in checked baggage, portable electronic devices powered by lithium batteries must be completely switched off (not in sleep or hibernation mode) and protected to prevent unintentional activation or damage. Spare lithium batteries must be carried in carry-on baggage only. Each installed or spare lithium battery must be of a type proven to meet the requirements of each test in the UN Manual of Tests and Criteria, Part III, Sub-section 38.3, and each spare lithium battery must be individually protected so as to prevent short circuits (e.g., by placement in original retail packaging, by otherwise insulating terminals by taping over exposed terminals, or placing each battery in a separate plastic bag or protective pouch). In addition, each installed or spare lithium battery:

* * * * *

(26) Baggage equipped with lithium battery(ies) must be carried as carry-on baggage unless the battery(ies) is removed from the baggage. Removed battery(ies) must be carried in accordance with the provision for spare batteries prescribed in paragraph (a)(18) of this section. The provisions of this paragraph do not apply to baggage equipped with lithium batteries not exceeding:

* * * * *

§175.33 Shipping paper and information to the pilot-in-command.

(a) * * *

(13) * * *

(iii) For UN3480, UN3481, UN3090, and UN3091 prepared in accordance with §173.185(c), except those prepared in accordance with §173.185(c)(4)(vi), are not required to appear on the information to the pilot-in-command.

* * * * *

§178.37 Specification 3AA and 3AAX seamless steel cylinders.

* * * * *

(j) Flattening test. A flattening test must be performed on one cylinder taken at random out of each lot of 200 or less, by placing the cylinder between wedge shaped knife edges having a 60° included angle, rounded to ½-inch radius. The longitudinal axis of the cylinder must be at a 90-degree angle to knife edges during the test. For lots of 30 or less, flattening tests are authorized to be made on a ring at least 8 inches long cut from each cylinder and subjected to the same heat treatment as the finished cylinder. Cylinders may be subjected to a bend test in lieu of the flattening test. Two bend test specimens must be taken in accordance with ISO 9809–1 or ASTM E 290 (IBR, see §171.7 of this subchapter), and must be subjected to the bend test specified therein.

* * * * *

§178.71 Specifications for UN pressure receptacles.

* * * * *

(f) * * *

(4) ISO 21172-1:2015(E) Gas cylinders—Welded steel pressure drums up to 3,000 litres capacity for the transport of gases—Design and construction—Part 1: Capacities up to 1,000 litres (IBR, see §171.7 of this subchapter). Irrespective of section 6.3.3.4 of this standard, welded steel gas pressure drums with dished ends convex to pressure may be used for the transport of corrosive substances provided all applicable additional requirements are met.

(g) Design and construction requirements for UN refillable seamless steel cylinders. In addition to the general requirements of this section, UN refillable seamless steel cylinders must conform to the following ISO standards, as applicable:

(1) ISO 9809-1:2010 Gas cylinders—Refillable seamless steel gas cylinders—Design, construction and testing—Part 1: Quenched and tempered steel cylinders with tensile strength less than 1100 MPa. (IBR, see §171.7 of this subchapter). Until December 31, 2018, the manufacture of a cylinder conforming to the requirements in ISO 9809-1:1999 (IBR, see §171.7 of this subchapter) is authorized.

(2) ISO 9809-2: Gas cylinders—Refillable seamless steel gas cylinders—Design, construction and testing—Part 2: Quenched and tempered steel cylinders with tensile strength greater than or equal to 1100 MPa. (IBR, see §171.7 of this subchapter). Until December 31, 2018, the manufacture of a cylinder conforming to the requirements in ISO 9809-2:2000 (IBR, see §171.7 of this subchapter) is authorized.

(3) ISO 9809-3: Gas cylinders—Refillable seamless steel gas cylinders—Design, construction and testing—Part 3: Normalized steel cylinders. (IBR, see §171.7 of this subchapter). Until December 31, 2018, the manufacture of a cylinder conforming to the requirements in ISO 9809-3:2000 (IBR, see §171.7 of this subchapter) is authorized.

(4) ISO 9809-4:2014(E) (IBR, see §171.7 of this subchapter).

* * * * *

(i) Design and construction requirements for UN non-refillable metal cylinders. In addition to the general requirements of this section, UN non-refillable metal cylinders must conform to ISO 11118:2015(E) Gas cylinders—Non-refillable metallic gas cylinders—Specification and test methods (IBR, see §171.7 of this subchapter). Until December 31, 2020, cylinders conforming to ISO 11118:1999(E) Gas cylinders—Non-refillable metallic gas cylinders—Specification and test methods (IBR, see §171.7 of this subchapter) are authorized.

* * * * *

(k) * * *

(1) * * *

(i) ISO 9809-1:2010 Gas cylinders—Refillable seamless steel gas cylinders—Design, construction and testing—Part 1: Quenched and tempered steel cylinders with tensile strength less than 1100 MPa. Until December 31, 2018, the manufacture of a cylinder conforming to the requirements in ISO 9809-1:1999 (IBR, see §171.7 of this subchapter) is authorized.

(ii) ISO 9809-3: Gas cylinders—Refillable seamless steel gas cylinders—Design, construction and testing—Part 3: Normalized steel cylinders. Until December 31, 2018, the manufacture of a cylinder conforming to the requirements in ISO 9809-3:2000 (IBR, see §171.7 of this subchapter) is authorized.

* * * * *

(m) Design and construction requirements for UN metal hydride storage systems. In addition to the general requirements of this section, metal hydride storage systems must conform to the following ISO standards, as applicable: ISO 16111: Transportable gas storage devices—Hydrogen absorbed in reversible metal hydride (IBR, see §171.7 of this subchapter).

(n) Design and construction requirements for UN cylinders for the transportation of adsorbed gases. In addition to the general requirements of this section, UN cylinders for the transportation of adsorbed gases must conform to the following ISO standards, as applicable: ISO 11513:2011, Gas cylinders—Refillable welded steel cylinders containing materials for sub-atmospheric gas packaging (excluding acetylene)—Design, construction, testing, use and periodic inspection, or ISO 9809-1:2010: Gas cylinders—Refillable seamless steel gas cylinders—Design, construction and testing—Part 1: Quenched and tempered steel cylinders with tensile strength less than 1100 MPa. (IBR, see §171.7 of this subchapter.)

* * * * *

§178.75 Specifications for MEGCs.

* * * * *

(d) * * *

(3) Each pressure receptacle of a MEGC must be of the same design type, seamless steel, or composite, and constructed and tested according to one of the following ISO standards, as appropriate:

(i) ISO 9809-1: Gas cylinders—Refillable seamless steel gas cylinders—Design, construction and testing—Part 1: Quenched and tempered steel cylinders with tensile strength less than 1100 MPa. (IBR, see §171.7 of this subchapter). Until December 31, 2018, the manufacture of a cylinder conforming to the requirements in ISO 9809-1:1999 (IBR, see §171.7 of this subchapter) is authorized;

(ii) ISO 9809-2: Gas cylinders—Refillable seamless steel gas cylinders—Design, construction and testing—Part 2: Quenched and tempered steel cylinders with tensile strength greater than or equal to 1100 MPa. (IBR, see §171.7 of this subchapter). Until December 31, 2018, the manufacture of a cylinder conforming to the requirements in ISO 9809-2:2000 (IBR, see §171.7 of this subchapter) is authorized;

(iii) ISO 9809-3: Gas cylinders—Refillable seamless steel gas cylinders—Design, construction and testing—Part 3: Normalized steel cylinders. (IBR, see §171.7 of this subchapter). Until December 31, 2018, the manufacture of a cylinder conforming to the requirements in ISO 9809-3:2000 (IBR, see §171.7 of this subchapter) is authorized; or

* * * * *

§178.609 Test requirements for packagings for infectious substances.

* * * * *

(d) * * *

(2) Where the samples are in the shape of a drum, three samples must be dropped, one in each of the following orientations:

(i) Diagonally on the top chime, with the center of gravity directly above the point of impact;

(ii) Diagonally on the base chime; and

(iii) Flat on the side.

* * * * *

§178.706 Standards for rigid plastic IBCs.

* * * * *

(c) * * *

(3) No used material other than production residues or regrind from the same manufacturing process may be used in the manufacture of rigid plastic IBCs.

* * * * *

§178.707 Standards for composite IBCs.

* * * * *

(c) * * *

(3) * * *

(iii) No used material other than production residues or regrind from the same manufacturing process may be used in the manufacture of inner receptacles.

* * * * *

§180.207 Requirements for requalification of UN pressure receptacles.

* * * * *

(d) * * *

(3) Dissolved acetylene UN cylinders: Each dissolved acetylene cylinder must be requalified in accordance with ISO 10462:2013(E) (IBR, see §171.7 of this subchapter). A cylinder previously requalified in accordance with the second edition of ISO 10462(E) up until December 31, 2018, may continue to be used until the next required requalification. The porous mass and the shell must be requalified no sooner than 3 years, 6 months, from the date of manufacture. Thereafter, subsequent requalifications of the porous mass and shell must be performed at least once every ten years.

* * * * *

(5) UN cylinders for adsorbed gases: Each UN cylinder for adsorbed gases must be inspected and tested in accordance with §173.302c and ISO 11513:2011 (IBR, see §171.7 of this subchapter).

* * * * *

Specialized Industries

Go beyond the regulations! Visit the Institute for in-depth guidance on a wide range of compliance subjects in safety and health, transportation, environment, and human resources.

J. J. Keller® COMPLIANCE NETWORK is a premier online safety and compliance community, offering members exclusive access to timely regulatory content in workplace safety (OSHA), transportation (DOT), environment (EPA), and human resources (DOL).

Interact With Our Compliance Experts

Puzzled by a regulatory question or issue? Let our renowned experts provide the answers and get your business on track to full compliance!

Upcoming Events

Reference the Compliance Network Safety Calendar to keep track of upcoming safety and compliance events. Browse by industry or search by keyword to see relevant dates and observances, including national safety months, compliance deadlines, and more.

SAFETY & COMPLIANCE NEWS

Keep up with the latest regulatory developments from OSHA, DOT, EPA, DOL, and more.

REGSENSE® REGULATORY REFERENCE

Explore a comprehensive database of word-for-word regulations on a wide range of compliance topics, with simplified explanations and best practices advice from our experts.

THE J. J. KELLER INSTITUTE

The Institute is your destination for in-depth content on 120+ compliance subjects. Discover articles, videos, and interactive exercises that will strengthen your understanding of regulatory concepts relevant to your business.

ADD HAZMAT, ENVIRONMENTAL, & HR RESOURCES

Unlock exclusive content offering expert insights into hazmat, environmental, and human resources compliance with a COMPLIANCE NETWORK EDGE membership.

DIRECT ACCESS TO COMPLIANCE EXPERTS

Struggling with a compliance challenge? Get the solution from our in-house team of experts! You can submit a question to our experts by email, set up a phone or video call, or request a detailed research report.

EVENTS

Register to attend live online events hosted by our experts. These webcasts and virtual conferences feature engaging discussions on important compliance topics in a casual, knowledge-sharing environment.

Most Recent Highlights In Environmental

EHS Monthly Round Up - December 2025

EHS Monthly Round Up - December 2025

In this December 2025 roundup video, we'll review the most impactful environmental health and safety news.

Hi everyone! Welcome to the monthly news roundup video, where we’ll review the most impactful environmental health and safety news. Let’s take a look at what happened over the last month.

In fiscal year 2025, the top three violations for non-construction small employers, those with under 100 employees, were hazard communication, respiratory protection, and powered industrial trucks. Three industries dominated these violations: fabricated metal product manufacturing, repair and maintenance, and non-metallic mineral product manufacturing.

OSHA issued several new letters of interpretation on a variety of workplace topics, including permit required confined spaces, recordkeeping, and powered industrial trucks. Letters of interpretation help ensure the consistent application of federal workplace safety and health standards, and provide regulatory clarification to employers, workers, and safety professionals.

California’s STOP Act took effect January 1. The law targets the state’s fabricated stone industry. It prohibits dry cutting of stone countertops, mandates employee training, and classifies silicosis and silica-related lung cancer from artificial stone as a serious injury or illness.

As of January 1, Washington state requires tower crane permits for all construction work involving tower crane operation, assembly, disassembly, and reconfiguration. Before issuing permits, Washington Department of Labor and Industries will conduct safety conferences to ensure all parties understand the safety requirements and related responsibilities.

Turning to environmental news, EPA issued compliance deadline extensions for certain emissions standards. The delays affect the New Source Performance Standards for crude oil and natural gas facilities and the emissions guidelines for such facilities. Compliance timelines have been pushed into mid- to late-2026 and early 2027.

And finally, although EPA has been deregulating or loosening some environmental requirements, there are still some standards being tightened. These include renewable fuel standards, stormwater management, and PFAS disclosure. Changes to these requirements will reshape compliance obligations for U.S. companies in 2026, and reflect a trend toward increased transparency and environmental accountability.

Thanks for tuning in to the monthly news roundup. We’ll see you next month!

EHS Monthly Round Up - January 2025

EHS Monthly Round Up - January 2025

In this January 2025 monthly roundup video, we'll review the most impactful environmental health and safety news.

Hi everyone! Welcome to the monthly news roundup video, where we’ll review the most impactful environmental health and safety news. There’s a lot going on, so let’s get started!

As happens at the start of most incoming presidential administrations, a freeze has been placed on all regulatory activity at the federal level, giving the new administration time to review agencies’ plans. The Office of Management and Budget, which must approve most rulemaking activities, has sent numerous pending rules back to the agencies for review. In addition, OSHA withdrew its infectious diseases proposed rule and its COVID-19 in healthcare rule prior to the inauguration.

OSHA’s penalties increased on January 15. The maximum penalty amounts for serious and other-than-serious violations increased to $16,550. For willful or repeated violations, the maximum penalty increased to $165,514 per violation.

OSHA updated its directive on injury and illness recordkeeping policies and procedures. While it’s intended for OSHA compliance officers, employers can use the information to help with recordkeeping compliance.

Fewer workers died on the job in 2023, as fatal work injuries decreased 3.7 percent from 2022. Transportation incidents remained the most frequent type of fatal event, accounting for over 36 percent of all occupational fatalities.

California’s Occupational Safety and Health Standards Board voted to adopt a permanent silica standard. If approved, it would extend and strengthen the state’s emergency temporary standard, which was put in place in December 2023.

The National Institute for Occupational Safety and Health updated its List of Hazardous Drugs in Healthcare Settings. This is a resource for employers and employees in identifying drugs that are hazardous to the health and safety of those who handle them.

Turning to environmental news, EPA released the biannual update of the nonconfidential TSCA inventory. The inventory helps facilities determine their regulatory requirements for the chemicals they use or plan to use.

And finally, EPA added new Management Method Codes to describe how hazardous waste will be managed after temporary storage and transfer. As of January 1st, hazardous waste handlers must use the codes on the Biennial Report Waste Generation and Management forms.

Thanks for tuning in to the monthly news roundup. We’ll see you next month!

EPA extends wastewater compliance deadlines for coal-fired steam power plants
2026-01-05T06:00:00Z

EPA extends wastewater compliance deadlines for coal-fired steam power plants

The Environmental Protection Agency (EPA) published a final rule on December 31, 2025, that changes certain requirements for wastewater discharges from coal-fired steam electric power plants. It applies to regulations established by the preceding rule finalized in 2024.

The 2025 final rule:

  • Extends the submission deadline for the notice of planned participation (NOPP) required for the subcategory of electric generating units (EGUs) seeking to permanently stop coal combustion by December 31, 2034;
  • Extends compliance deadlines for zero-discharge limitations that apply to dischargers of flue gas desulfurization (FGD) wastewater, bottom ash (BA) transport water, and combustion residual leachate (CRL);
  • Establishes tiered standards for indirect discharges of FGD wastewater, BA transport water, and CRL; and
  • Adds provisions that allow facilities to transfer into and out of the subcategory of regulated EGUs that will permanently cease coal combustion by 2034 until December 31, 2034.

Who’s affected?

The final rule impacts EGUs subject to the effluent limitations guidelines and standards for the steam electric power generating point source category (40 CFR Part 423).

What are the new deadlines?

The 2025 final rule delays the NOPP compliance date. It also extends the deadlines for zero-discharge limitations on FGD wastewater, BA transport water, and CRL. The delays apply to the best available economically achievable (BAT) limitations for direct dischargers and the pretreatment standards for existing sources (PSES) for indirect dischargers.

Requirement(s)Previous deadlineNew deadline
  • NOPP for permanent cessation of coal combustion by 2034
December 31, 2025December 31, 2031
(Direct dischargers)
  • FGD wastewater BAT
  • BA transport water BAT
  • CRL BAT
No later than December 31, 2029No later than December 31, 2034
(Indirect dischargers)
  • FGD wastewater PSES
  • BA transport water PSES
  • CRL PSES
May 9, 2027January 1, 2029, or site-specific date for BAT

What are the other changes?

EPA’s 2025 final rule sets tiered standards for indirect dischargers of FGD wastewater, BA transport water, and CRL:

  • The first tier requires indirect dischargers to meet pre-2024 final rule standards by January 1, 2029.
  • The second tier:
    • Allows indirect dischargers to continue indirectly discharging up to December 31, 2024, if they certify that they’ll convert to become direct dischargers; or
    • Requires indirect dischargers to meet the zero-discharge requirements by January 1, 2029, if they choose not to become direct dischargers.

The final rule also adds provisions that enable facilities to transfer into and out of the subcategory of regulated EGUs that will permanently cease coal combustion by 2034 until December 31, 2034. It allows EGUs to switch between complying with the zero-discharge limitations and the requirements that apply to the subcategory.

Key to remember: EPA has delayed certain compliance requirements for coal-fired steam electric power plants that discharge three types of wastewaters.

2026-01-02T06:00:00Z

New York establishes Mandatory Greenhouse Gas Reporting Program

Effective date: December 10, 2025

This applies to: Certain GHG emission sources

Description of change: Entities subject to 6 NYCRR Part 253 must submit annual reports of greenhouse (GHG) emissions during the previous calendar year by June 1. Reporting facilities must keep records used for the reports, and larger sources have to obtain third-party verification of their reported emissions. The first report will cover 2026 GHG emissions data and will be due on June 1, 2027.

The regulation applies to emission sources that are in a listed category and operate in New York. The rule establishes three reporting threshold categories:

  • Suppliers of fuels, electricity, or fertilizer;
  • Facilities that emit more than 10,000 metric tons of carbon dioxide equivalent of GHGs annually; and
  • Sources with a specific operational activity.

Related state info: Clean air operating permit state comparison

2026-01-02T06:00:00Z

Washington restricts PFAS products

Effective date: December 21, 2025

This applies to: Manufacturers, sellers, and distributors of certain consumer products with intentionally added PFAS

Description of change: The Washington State Department of Ecology amended regulations to restrict the manufacture, sale, and distribution of consumer products with intentionally added per- and polyfluoroalkyl substances (PFAS) in these categories:

  • Apparel and accessories,
  • Automotive washes, and
  • Cleaning products.

The department also added requirements for manufacturers to report intentional use of PFAS for nine other consumer product categories, including:

  • Apparel intended for extreme and extended use,
  • Footwear,
  • Gear for recreation and travel,
  • Automotive waxes,
  • Cookware and kitchen supplies,
  • Firefighting personal protective equipment,
  • Floor waxes and polishes,
  • Hard surface sealers, and
  • Ski waxes.

New restrictions take effect on January 1, 2027, and initial reports are due by January 31, 2027 (and by January 31 annually thereafter).

Related state info: Hazardous waste generators — Washington

See More

Most Recent Highlights In Transportation

2026-01-02T06:00:00Z

New Jersey amends rules for contaminated site remediation, redevelopment

Effective date: November 17, 2025

This applies to: Facilities subject to site remediation and redevelopment regulations

Description of change: The New Jersey Department of Environmental Protection made amendments to:

  • The Industrial Site Recovery Act,
  • The Administrative Requirements for the Remediation of Contaminated Sites,
  • The Technical Requirements for Site Remediation, and
  • The Heating Oil Tank System Remediation Rules.

In addition to adding the Site Remediation Reform Act’s requirements to the regulations, the department adopted amendments to simplify the remedial action permit process and implementation of the licensed site remediation professional program.

2026-01-02T06:00:00Z

New Hampshire adds fines for contaminated site management obligations

Effective date: November 4, 2025

This applies to: Parties responsible for investigating and remediating regulated sites impacted by releases of regulated contaminants

Description of change: The New Hampshire Department of Environmental Services readopted contaminated site management rules with changes. The amended rule:

  • Adds requirements for the responsible party’s obligation for managing contaminated groundwater and soil during construction and dewatering activities,
  • Adds requirements for the responsible party’s obligations for assessing and remediating discharges causing vapor intrusion to indoor air,
  • Adds requirements for the responsible party’s obligation for managing extracted contaminated groundwater for dewatering purposes, and
  • Adds fines to implement when a responsible party doesn’t meet obligations.
2026-01-02T06:00:00Z

Florida adds grease waste hauler requirements

Effective date: December 7, 2025

This applies to: Haulers of grease waste from food establishments

Description of change: The Florida Department of Environmental Protection established removal and disposal regulations for haulers of grease waste from originator food establishments. Haulers must dispose of grease waste at certified facilities and document removals and disposals using a service manifest.

2026-01-02T06:00:00Z

California codifies industrial ethyl alcohol exemption

Effective date: November 17, 2025

This applies to: Generators, transporters, and recycling facilities

Description of change: The California Department of Toxic Substances Control adopted a permanent rule that exempts spent, unused, and off-specification industrial ethyl alcohol from a majority of the hazardous waste regulations when it’s recycled at a facility permitted by the Alcohol and Tobacco Tax and Trade Bureau.

The exemption isn’t new; it was adopted multiple times via temporary emergency rulemaking. This rulemaking action permanently establishes the exemption in the California Code of Regulations.

Related state info: Hazardous waste generators — California

2026-01-02T06:00:00Z

District of Columbia adds nonwoven disposable product regulations

Effective date: November 14, 2025

This applies to: Manufacturers of nonwoven disposable products sold in D.C.

Description of change: The Washington, D.C. Department of Energy and Environment (DOEE) added regulations (21 DCMR Chapter 24) for nonwoven disposable products labeling to implement the Nonwoven Disposable Products Act of 2016.

The chapter sets the standards for determining whether a nonwoven disposable product may be labeled as flushable, including testing and labeling requirements for flushable and nonflushable products. It applies to all nonwoven products that may potentially be used in a bathroom and flushed (e.g., baby wipes, disinfecting wipes, makeup removal wipes, general purpose cleaning wipes, etc.).

Compliance requirements start in May 2027.

Related state info: Industrial water permitting — District of Columbia

See More

Most Recent Highlights In Safety & Health

2026-01-02T06:00:00Z

Maryland establishes fuel provider reporting program

Effective date: December 22, 2025

This applies to: Heating fuel providers delivering heating fuel in Maryland

Description of change: The Maryland Department of the Environment established the Maryland Heating Fuel Provider Reporting Program. It requires heating fuel providers to submit an annual report by April 1 that covers the monthly amount of fuel delivered in the state, organized by fuel type, sector, and county.

Heating fuel providers should begin gathering data in January 2026. The initial report for calendar year 2026 will be due by April 1, 2027. The department plans to publish the annual reporting template in Spring 2026.

Related state info: Clean air operating permit state comparison

2026-01-02T06:00:00Z

California updates UST regulations

Effective date: January 1, 2026

This applies to: UST owners and operators

Description of change: The California State Water Resources Control Board updated the underground storage tank (UST) construction, monitoring, and testing requirements. Significant changes include:

  • Replacing the classification of new and existing USTs with a three-category classification system based on the installation date;
  • Requiring testing notifications to be sent to Unified Program Agencies (UPAs);
  • Requiring USTs installed on or after January 1, 2027, to be anchored;
  • Requiring UPA approval before repairing UST systems;
  • Reducing the timeline to submit enhanced leak detection test results to 30 days; and
  • Changing closure requirements.

Related state info: Underground storage tanks (USTs) — California

2026-01-02T06:00:00Z

Minnesota establishes PFAS reporting, fees rule

Effective date: December 8, 2025

This applies to: Manufacturers of products with intentionally added PFAS

Description of change: The Minnesota Pollution Control Agency added rules that require manufacturers that sell, offer for sale, or distribute products in the state that contain intentionally added per- and polyfluoroalkyl substances (PFAS) to:

  • Submit annual reports, and
  • Pay a fee.

The initial report is due by July 1, 2026. Thereafter, annual reports will be due by February 1. Reports will be submitted electronically through the PFAS Reporting and Information System for Manufacturers (PRISM).

2026-01-02T06:00:00Z

Iowa adds fees for Title V, asbestos air programs

Effective date: January 14, 2026

This applies to: Entities required to obtain a Title V operating permit and owners or operators of sites subject to asbestos notifications

Description of change: The Iowa Environmental Protection Commission added a new annual base fee for Title V operating permit holders, due by July 1.

Additionally, the commission added a fee for revising asbestos notifications. It applies to sites required by the National Emission Standards for Hazardous Air Pollutants to submit asbestos demolition or renovation notifications.

Related state info: Clean air operating permits state comparison

Aboveground storage tanks: SPCC integrity test FAQs
2025-12-30T06:00:00Z

Aboveground storage tanks: SPCC integrity test FAQs

Integrity matters, especially when it’s the one factor standing between your aboveground storage container and the accidental release of thousands of gallons of oil. Consistently checking the structural soundness of aboveground storage tanks (ASTs) is vital to preventing spills and the potential related consequences.

Facilities covered by the Environmental Protection Agency’s (EPA’s) Spill Prevention, Control, and Countermeasure (SPCC) rule must inspect and test ASTs for integrity regularly. By comparing the test results, facilities can monitor changes in the condition of ASTs and determine whether it’s safe to keep using them.

Consider these FAQs about inspections and tests to help ensure your facility’s aboveground tanks are structurally sound.

What do industry standards have to do with integrity testing?

The answer in one word is everything. EPA’s SPCC rule requires facilities to regularly inspect and test ASTs in accordance with industry standards (40 CFR 112.8(c)(6)). The standards are technical guidelines that serve as the minimum practices accepted for inspections and tests.

The regulations require facilities to develop and implement an SPCC Plan to prevent, prepare for, and respond to oil spills. In the plan, facilities establish how they’ll conduct integrity inspections and tests for ASTs (referred to as bulk storage containers in the regulations). If your SPCC Plan states that the facility will use a specific industry standard for integrity inspections and tests, it must comply with all relevant parts of that standard.

In EPA’s Spill Prevention, Control and Countermeasure Plan (SPCC) Program Bulk Storage Container Inspection Fact Sheet, the agency references two industry standards frequently used for integrity inspections and tests:

  • American Petroleum Institute (API) Standard 653, Tank Inspection, Repair, Alteration, and Reconstruction; and
  • Steel Tank Institute (STI) SP001, Standard for the Inspection of Aboveground Storage Tanks.

When should facilities conduct integrity tests?

EPA requires facilities to inspect or test ASTs for integrity:

  • On a regular schedule, and
  • Whenever you make material repairs.

Your facility must use industry standards to determine the types and frequency of inspections and tests needed. These considerations have to be based on the AST’s size, configuration, and design.

Who can conduct integrity tests?

Generally, industry standards mandate that certified individuals conduct integrity inspections and tests. The standards should describe the qualifications an individual must have to be considered certified. This may involve certifying individuals in your facility or hiring certified personnel.

What are the types of integrity inspections and testing?

The proper type of integrity inspection or test (which must be nondestructive) depends on the specific container and its configuration. Industry standards identify the type of inspection or test needed and may require using a combination of methods. Examples include:

  • Acoustic emissions testing,
  • Helium leak testing,
  • Hydrostatic testing,
  • Inert gas leak testing,
  • Liquid penetrant examinations,
  • Magnetic flux leakage scanning,
  • Magnetic particle examinations,
  • Radiographic testing,
  • Ultrasonic testing,
  • Ultrasonic thickness measurements,
  • Vacuum box testing,
  • Visual inspections, and
  • Weld inspections.

Industry standards may require your facility to establish baseline conditions for ASTs that haven’t undergone integrity testing or where such information isn’t available (e.g., when a business purchases a facility with ASTs). The baseline evaluation determines the container’s metal thickness, corrosion rates, and likely remaining service. Facilities then compare the results of subsequent integrity inspections and tests with the baseline data.

What are the recordkeeping requirements?

The SPCC rule requires facilities to maintain integrity inspection and test records (namely, comparison records) for at least 3 years. These records must be signed by the supervisor or inspector and kept with the SPCC Plan. Consider maintaining these records for the life of the AST, especially since many industry standards recommend it.

What’s a hybrid inspection program?

Sometimes, an alternative inspection program may be more appropriate than using an industry standard. If your facility and a certified Professional Engineer (PE) determine this to be the case, you can implement an environmentally equivalent inspection program. The SPCC rule also allows some facilities to replace certain parts of an industry standard with environmentally equivalent approaches.

However, these hybrid (site-specific) programs have additional regulatory requirements. A facility with a hybrid inspection program must include in the SPCC Plan:

  • A certification by the PE of the alternative program,
  • An explanation of why the facility isn’t using industry standards,
  • A comprehensive description of the alternative program, and
  • A description of how the alternative provides the same environmental protection as the relevant industry standard.

What about state requirements?

State and local AST regulations must be at least as stringent as EPA’s requirements. However, some may require additional or stricter compliance obligations. Verify AST rules with the state environmental agency.

Key to remember: Industry standards determine how a facility conducts integrity inspections and tests on aboveground storage tanks.

See More

Most Recent Highlights In Human Resources

Lamps, batteries, and fines: Fixing the 5 biggest universal waste mistakes
2025-12-19T06:00:00Z

Lamps, batteries, and fines: Fixing the 5 biggest universal waste mistakes

Let’s be honest, managing compliance is tough. But when it comes to Universal Waste (UW), items like fluorescent bulbs, used batteries, aerosol cans, and old thermostats can expose employers to fines without them even realizing it. Why? Because Universal Waste is the ultimate regulatory paradox. These items are still classified as hazardous waste, but the EPA created a streamlined rule set (40 CFR Part 273) to make recycling easier. The problem is that many employers assume "streamlined" means "ignorable." Fixing these problems is incredibly straightforward. By tackling the most common UW mistakes, you don’t just avoid penalties; you build a predictable, efficient, and cost-effective waste program.

Top 5 universal waste violations and how to avoid them

  1. The container crime: Leaving it open - Leaving a Universal Waste container open is a common and costly mistake. When boxes or drums holding items like lamps and batteries are left unsealed or without a proper lid, the risk of contamination skyrockets. If a fluorescent tube breaks, mercury vapor escapes; if a battery leaks, corrosive material spills. An open container is considered a failure to prevent a release, which is a core hazardous waste violation. The fix is simple: close the container immediately. Train designated handlers to ensure containers remain sealed except when adding or removing waste, and use containers specifically designed for UW, such as fiber drums for lamps with secure, sealable lids. If it’s open, it’s a violation waiting to happen.
  2. The ticking clock: Missing the accumulation date - Missing the accumulation date is a violation that can cost you. Every Universal Waste container must clearly show the date when the first item was placed inside, and both Small and Large Quantity Handlers have only one year (365 days) to store UW before it must be shipped off-site. Without a visible start date, inspectors will assume you have exceeded that limit. The solution is simple: mark it and track it. Use a permanent marker to write the “Start Date” directly on the container, and do not wait until day 364 to act. A digital spreadsheet or calendar reminder can help you stay ahead, and scheduling vendor pickups between the 9- and 11-month mark creates a critical 30-day buffer against delays or conflicts.
  3. The DIY treatment disaster - Attempting to treat Universal Waste on-site is a recipe for violations. Crushing bulbs, mixing incompatible waste streams, or dismantling items to save space may seem efficient, but it is strictly prohibited under UW rules. These regulations are designed to simplify storage and not treatment. Breaking a fluorescent bulb outside of a permitted device not only risks mercury exposure but also constitutes hazardous waste mismanagement. The fix is simple is to train personnel that their role is to store and package waste correctly, not to alter or treat it. Keep fragile items in secure areas where they will not be crushed by forklifts or stacked boxes. Managing UW means preventing breakage, not creating it.
  4. The identity crisis: Improper labeling - Improper labeling is a common Universal Waste mistake that can lead to serious compliance issues. Containers marked vaguely such as “Recycling” or simply “Hazardous Waste” fail to meet regulatory requirements and create confusion for inspectors and emergency responders who need instant clarity. The term “Hazardous Waste” applies only to RCRA hazardous waste, not UW, and mixing these labels signals that your team has not properly identified the waste stream. Be specific and clear. Every UW container must include the words “Universal Waste” followed by the exact type of material, such as:
    • “Universal Waste – Spent Lamps”
    • “Universal Waste – Used Batteries”
    • “Universal Waste – Mercury-Containing Equipment”
  5. The knowledge gap: Training deficiencies - Training deficiencies are one of the most overlooked Universal Waste compliance gaps. Employees responsible for handling or managing UW must receive documented, recurring training on identification, accumulation limits, and handling protocols. Even the best-written program will fail if the staff placing items into containers do not understand the rules — especially dating and labeling requirements. Without proper training, an audit failure is almost guaranteed. The fix is straightforward — provide documented, annual training. Make sure every relevant staff member understands your facility’s specific UW streams key compliance practices. Maintain clear records of who was trained, when, and on what topics This paper trail is your strongest defense during an inspection.

Keys to remember: Universal waste compliance hinges on keeping containers closed, labeled, dated, and ensuring employees managing these materials are trained and documenting their actions. When your program is consistent, simple, and intentional, you eliminate preventable violations and turn UW management into a predictable, low-risk process.

Ripple effect: How data centers influence compliance strategies
2025-12-17T06:00:00Z

Ripple effect: How data centers influence compliance strategies

The rapid growth of data centers creates new challenges for other regulated facilities. Expansion driven by artificial intelligence (AI) and cloud computing increases their impact on environmental compliance. Key areas include air permitting, attainment status, and regional power supply.

Data centers and air permitting

Data centers depend on backup power to stay online during outages. Most use natural gas or diesel generators. These units release pollutants such as nitrogen oxides and particulate matter. When many generators operate together, their potential emissions can push regions close to or beyond National Ambient Air Quality Standards (NAAQS). This shift can threaten local attainment status and make it harder for nearby facilities to get new permits.

What EPA is doing

On December 11, 2025, the Environmental Protection Agency's (EPA’s) Office of Air and Radiation launched the “Clean Air Act Resources for Data Centers” webpage. It provides regulatory guidance, permitting tools, and technical letters. The goal is to make air permitting for data centers faster and more transparent while protecting air quality.

Why this matters for other regulated facilities

  • Attainment status at risk

Large data centers add cumulative emissions from multiple generators. Even permitted emissions from nearby plants can combine and push an area into nonattainment. That change triggers stricter air permitting rules for everyone.

  • Power demand competition

Data centers use large amounts of electricity. They often need on-site generators or new grid connections. This can strain local power supplies. In some cases, grid operators give data centers priority during peak demand, leaving other facilities with less reliable power.

  • Stricter air quality modeling requirements

Some states now require detailed modeling for backup generators. For example, Illinois reviewed 34 generators for one data center before granting a permit. If modeling shows high emissions, regulators may limit operating hours or require extra controls.

Broader regulatory shifts

EPA recently updated its interpretation of New Source Review (NSR) rules. In September 2025, the agency said construction can start before full air permits are issued, as long as emission-related work waits for approval. This speeds up projects but makes it harder for neighboring facilities to predict cumulative emissions early.

What non-data center facilities should do

  • Stay informed

Watch for new data center projects in your area. Their emissions could affect your permits.

  • Engage early

Join public comment periods for data center permits. Push for full modeling of combined impacts.

  • Plan for power

Work with grid operators. Understand how demand-response programs and EPA’s “50-hour rule” for emergency generators affect your reliability.

  • Choose sites wisely

Consider locating new projects in areas with robust infrastructure and cleaner attainment status. Data centers might compete for the same grid upgrades or site approvals.

Key to remember: Data centers are more than tech hubs. They influence air permitting and power allocation. Their growth can affect your ability to expand, or even operate, under current compliance rules.

Acid Rain Program compliance: SO2 vs. NOx
2025-12-11T06:00:00Z

Acid Rain Program compliance: SO2 vs. NOx

Did you know that the federal government regulates the power sector’s impact on rain? The Acid Rain Program limits the amount of sulfur dioxide (SO2) and nitrogen oxides (NOx) — the main causes of acid rain — that fossil fuel-fired electric generating units (EGUs) may emit. However, the SO2 and NOx reduction programs operate differently, and the ways that facilities can meet the SO2 and NOx limits are distinct.

It's essential to know the compliance options because facilities that don’t meet the SO2 and NOx standards must pay penalties for their excess emissions. And in November 2025, the Environmental Protection Agency (EPA) set higher penalties for the next two compliance years.

So, what are the differences?

Who’s affected?

The first thing to confirm is whether your facility is subject to the Acid Rain Program (40 CFR 72.6). The program regulates fossil fuel-fired power plants. It applies to:

  • EGUs that serve generators with an output capacity of more than 25 megawatts, and
  • All new EGUs.

Note that the NOx program applies to a specific subset of coal-fired boilers.

SO2 reduction program

EPA operates the SO2 reduction program through an allowance trading system (Part 73). The agency sets a cap on the total SO2 emissions for the year and then allocates SO2 allowances to regulated units. One allowance represents 1 ton of SO2 emissions.

For each compliance year, a facility must show that it has enough allowances to cover its emissions of SO2. It’s similar to EPA’s hydrofluorocarbon allowance program.

There are multiple compliance options. Facilities may:

  • Sell extra allowances if they have more allowances than needed,
  • Save extra allowances if they have more allowances than needed (and use them in the future), or
  • Buy extra allowances if they can’t keep emissions below their allocated level.

Facilities can purchase allowances from or sell allowances to individuals, companies, groups, or brokers. Additionally, facilities may bid on allowances at EPA’s annual Acid Rain Program SO2 Allowance Auction.

NOx reduction program

EPA sets annual emission limits for the NOx reduction program (Part 76), which applies to these types of boilers:

  • Dry bottom wall-fired boilers,
  • Tangentially fired boilers,
  • Cell burner boilers,
  • Cyclone boilers,
  • Vertically fired boilers, and
  • Wet bottom boilers.

Like the SO2 program, the NOx program offers multiple compliance options. Facilities can:

  • Meet the standard annual emission limitations,
  • Average the emissions rates of two or more boilers, or
  • Apply for an alternative emission limit (AEL) if they can’t meet the standard emission limit.

Additional requirements apply to facilities that use options other than complying with the limits:

  • Facilities that want to average emissions rates must submit an averaging plan that’s approved by the permitting authorities (76.11).
  • Facilities that apply for an AEL are required to use the NOx emission control technology used as the basis for the emission limit and must demonstrate that the unit can’t comply using the technology (76.10).

It pays (or, at least, costs less) to comply!

Excess emissions penalties can add up quickly. That’s why it’s vital to ensure your facility understands how to comply with the SO2 and NOx reduction programs properly.

The adjustment rates that EPA set for compliance years 2025 and 2026 (2.5265 and 2.6001, respectively) are used to calculate the total penalties a facility must pay if it exceeds SO2 or NOx limits during these compliance years.

Here are the formulas:

  • Penalty for excess SO2 emissions = $2,000/ton x annual adjustment factor x tons of excess SO2 emissions
  • Penalty for excess NOx emissions = $2,000/ton x annual adjustment factor x tons of excess NOx emissions

Let’s run through a couple of examples of what noncompliance could cost.

FactorsPenalty Per TonTotal Penalties
  • Tons of excess SO2 emissions: 10
  • Compliance year: 2025
  • Annual adjustment factor: 2.5265
$2,000 x 2.5265 = $5,053$5,053 x 10 = $50,530
  • Tons of excess NOx emissions: 5
  • Compliance year: 2026
  • Annual adjustment factor: 2.6001
$2,000 x 2.6001 = $5,200.20$5,200.20 x 5 = $26,001

As shown in the example above, excess emissions can cost facilities a lot in penalties. Just 1 ton of excess emissions will result in more than $5,000! Knowing your compliance options for the Acid Rain Program’s SO2 and NOx reduction programs can help your facility avoid steep fines.

Key to remember: The Acid Rain Program limits SO2 and NOx emissions from fossil fuel-fired power plants, but the compliance options for each type of emission differ. Understanding the distinct options can help facilities avoid penalties for excess emissions.

EPA’s 2026 regulatory shift: How environmental managers can stay ahead
2025-12-05T06:00:00Z

EPA’s 2026 regulatory shift: How environmental managers can stay ahead

The clock is ticking for environmental teams. By 2026, several new EPA regulations will reshape compliance obligations for U.S. companies. Organizations that act now will avoid costly penalties and operational disruptions.

What’s changing and why it matters

Although EPA has been deregulating or loosening some requirements, there are still some standards being tightened across multiple fronts in the coming year:

  • Renewable fuel standards (RFS): The EPA proposed higher volume requirements for 2026, including 24.02 billion renewable identification numbers (RINs), up nearly 8% from 2025. This increase pushes stricter expectations on fuel producers and organizations purchasing renewable fuels.
  • Stormwater multi-sector general permit (MSGP): A new MSGP set to take effect by February 2026 will require quarterly PFAS indicator monitoring, expanded benchmark sampling, and resiliency measures in stormwater control designs.
  • PFAS Reporting under the Toxic Substances Control Act (TSCA): TSCA Section 8(a)(7) mandates PFAS manufacturing and import data collection beginning in April 2026, through October 2026, with extended deadlines for certain small manufacturers.

Failure to prepare could lead to fines, reputational damage, supply chain disruptions, and permit delays. Companies that weave compliance planning into their 2026 strategy will be positioned not just to meet legal deadlines but to sustain operations smoothly.

Key areas of impact

  • Renewable fuel standards (RFS) and air emissions The proposed increase in 2026 Renewable Identification Numbers (RIN) volumes, from 24.02 billion to 24.46 billion for 2027, signals tightening air and fuels policy that affects fuel use and emissions accounting.
  • Stormwater management The upcoming 2026 MSGP requires expanded quarterly PFAS monitoring, new benchmark triggers, corrective action plans, and integration of climate resilience in design standards.
  • PFAS disclosure (TSCA Section 8(a)(7)) Manufacturers and importers of PFAS must submit electronic reporting of usage, volumes, disposal, and exposure data between April and October 2026, with extensions available for smaller operations.

Steps to take now

  • Audit compliance programs: Cross-check operations against RIN inventory, stormwater permits, and TSCA reporting duties.
  • Upgrade monitoring and recordkeeping: Implement robust electronic systems to track PFAS, stormwater quality, fuel volumes, and emissions.
  • Staff training: Educate teams on PFAS obligations, new stormwater protocols, and RFS structures.
  • Engage regulators early: Comment on proposed rules, consult during permit drafting, and flag issues during the notice-and-comment period.

Looking ahead

The EPA’s 2026 updates reflect a trend toward increased transparency and environmental accountability. Companies that treat compliance as strategic will not only avoid enforcement but also gain resilience and stakeholder trust.

Key to remember: Start planning now. Early action on EPA rule changes will save time, money, and headaches when enforcement begins.

EPA confirms oil, gas emissions compliance extensions
2025-12-05T06:00:00Z

EPA confirms oil, gas emissions compliance extensions

The Environmental Protection Agency (EPA) issued a rule on December 3, 2025, that finalizes compliance deadline extensions for certain emissions standards applicable to crude oil and natural gas facilities. The final rule also further delays compliance timelines for two requirements.

EPA’s delays affect:

  • The New Source Performance Standards for crude oil and natural gas facilities (40 CFR 60 Subpart OOOOb), and
  • The emissions guidelines (EGs) for crude oil and natural gas facilities (60 Subpart OOOOc).

EPA’s December 2025 final rule is a direct response to the interim final rule (IFR) it issued in July 2025.

The July 2025 IFR extended the compliance deadline for net heating value (NHV) monitoring of flares and enclosed combustion devices (ECDs) to November 28, 2025. The IFR moved the rest of the compliance deadlines to January 22, 2027, for:

  • ECD performance tests;
  • Cover and closed vent system requirements for no identifiable emissions (NIEs), including:
    • Design and operation standards,
    • Test methods and procedures, and
    • Inspections.
  • Equipment leak repair requirements;
  • Phase two of zero-emission standards for process controllers;
  • Storage vessel requirements, including:
    • Using potential emissions limits that qualify as legally and practicably enforceable,
    • Triggering throughput-based modifications, and
    • Using a 30-day period of production to calculate potential emissions.
  • Flare and ECD pilot flame rules, including:
    • Ensuring the devices operate with a continuous pilot flame, and
    • Installing and operating a system to send an alarm to the nearest control room when a pilot flame is unlit.
  • Implementation of the Super Emitter Program, and
  • Submission of state plans for implementing the updated EGs.

What’s the same?

EPA’s December 2025 final rule maintains the same compliance deadlines for all requirements delayed to January 22, 2027.

What’s different?

The agency’s December 2025 final rule sets a new compliance date of June 1, 2026, for the NHV monitoring requirements. This includes an alternative performance test (sampling demonstration) option for flares and ECDs.

Additionally, the rule moves the compliance date for annual reporting, establishing that no annual report is due before November 30, 2026. It gives owners and operators until November 30, 2026, to submit any reports that were originally due before this date. Note that the final rule specifies that annual reports due after November 30, 2026, must be submitted within 90 days of the end of each annual compliance period.

Key to remember: EPA’s final rule confirms deadline extensions for certain emissions standards that apply to crude oil and natural gas facilities. It also further delays a couple of the requirements.

See More
New Network Poll
How often do you train supervisors/managers on the FMLA and other employee leave rights?

How often do you train supervisors/managers on the FMLA and other employee leave rights?

No active poll
Please come back soon!
See More
See More
See More
See More
Saved to my EVENT CALENDAR!
View your saved links by clicking the arrow next to your profile picture located in the header. Then, click “My Activity” to view the Event Calendar on your Activity page.