FREE TRIAL UPGRADE!
Thank you for investing in EnvironmentalHazmatHuman ResourcesHuman Resources, Hazmat & Environmental related content. Click 'UPGRADE' to continue.
CANCEL
YOU'RE ALL SET!
Enjoy your limited-time access to the Compliance Network!
A confirmation welcome email has been sent to your email address from ComplianceNetwork@t.jjkellercompliancenetwork.com. Please check your spam/junk folder if you can't find it in your inbox.
YOU'RE ALL SET!
Thank you for your interest in EnvironmentalHazmatHuman ResourcesHuman Resources, Hazmat & Environmental related content.
WHOOPS!
You've reached your limit of free access, if you'd like more info, please contact us at 800-327-6868.
You'll also get exclusive access to:
Already have an account? .

PHMSA is amending the Hazardous Materials Regulations (HMR) to maintain alignment with international regulations and standards by adopting various amendments, including changes to proper shipping names, hazard classes, packing groups, special provisions, packaging authorizations, air transport quantity limitations, and vessel stowage requirements. PHMSA is also withdrawing the unpublished November 28, 2022, Notice of Enforcement Policy Regarding International Standards on the use of select updated international standards in complying with the HMR during the pendency of this rulemaking.

DATES:

Effective date: This rule is effective May 10, 2024.

Voluntary compliance date: January 1, 2023.

Delayed compliance date: April 10, 2025.

This final rule is published in the Federal Register April 10, 2024.

View final rule.

§171.7 Reference material.
(t)(1), (v)(2), and (w)(32) through (81) Revised View text
(w)(82) through (92) Added View text
(aa)(3) and (dd)(1) through (4) Revised View text
§171.12 North American shipments.
(a)(4)(iii) Revised View text
§171.23 Requirements for specific materials and packagings transported under the ICAO technical instructions, IMDG code, Transport Canada TDG regulations, or the IAEA regulations.
(a)(3) Revised View text
§171.25 Additional requirements for the use of the IMDG code.
(c)(3) and (4) Revised View text
(c)(5) Added View text
§172.101 Purpose and use of the hazardous materials table.
Section heading Revised View text
(c)(12)(ii) Revised View text
Hazardous materials table, multiple entries Revised, added, removed View text
§172.102 Special provisions.
(c)(1) special provisions 78, 156, and 387 Revised View text
(c)(1) special provisions 396 and 398 Added View text
(c)(1) special provision 421 Removed and reserved View text
(c)(2) special provision A54 Revised View text
(c)(2) special provisions A224 and A225 Added View text
(c)(4) Table 2—IP Codes, special provision IP15 Revised View text
(c)(4) Table 2—IP Codes, special provision IP22 Added View text
§173.4b De minimis exceptions.
(b)(1) Revised View text
§173.21 Forbidden materials and packages.
(f) introductory text, (f)(1), and (f)(2) Revised View text
§173.27 General requirements for transportation by aircraft.
(f)(2)(i)(D) Revised View text
§173.124 Class 4, Divisions 4.1, 4.2 and 4.3— Definitions.
(a)(4)(iv) Removed View text
§173.137 Class 8—Assignment of packing group.
Introductory text Revised View text
§173.151 Exceptions for Class 4.
(d) introductory text Revised View text
§173.167 ID8000 consumer commodities.
Entire section Revised View text
§173.185 Lithium cells and batteries.
(a)(3) introductory text and (a)(3)(x) Revised View text
(a)(5) Added View text
(b)(3)(iii)(A) and (B) Revised View text
(b)(3)(iii)(C) Added View text
(b)(4)(ii) and (iii) Revised View text
(b)(4)(iv) Added View text
(b)(5), (c)(3) through (5), and (e)(5) through (7) Revised View text
§173.224 Packaging and control and emergency temperatures for self-reactive materials.
(b)(4) Revised View text
Table following (b)(7) Revised View text
§173.225 Packaging requirements and other provisions for organic peroxides.
Table 1 to paragraph (c) Revised View text
Table following paragraph (d) Retitled View text
Table following paragraph (g) Revised View text
§173.232 Articles containing hazardous materials, n.o.s.
(h) Added View text
§173.301b Additional general requirements for shipment of UN pressure receptacles.
(c)(1), (c)(2)(ii) through (iv), (d)(1), and (f) Revised View text
§173.302b Additional requirements for shipment of non-liquefied (permanent) compressed gases in UN pressure receptacles.
(g) Added View text
§173.302c Additional requirements for the shipment of adsorbed gases in UN pressure receptacles.
(k) Revised View text
§173.311 Metal Hydride Storage Systems.
Entire section Revised View text
§175.1 Purpose, scope, and applicability.
(e) Added View text
§175.10 Exceptions for passengers, crewmembers, and air operators.
(a) introductory text, (a)(14) introductory text, (a)(15)(v)(A), (a)(15)(vi)(A), (a)(17)(ii)(C), (a)(18) introductory text, and (a)(26) introductory text Revised View text
§175.33 Shipping paper and information to the pilot-in-command.
(a)(13)(iii) Revised View text
§178.37 Specification 3AA and 3AAX seamless steel cylinders.
(j) Revised View text
§178.71 Specifications for UN pressure receptacles.
(f)(4), (g), (i), (k)(1)(i) and (ii), (m), and (n) Revised View text
§178.75 Specifications for MEGCs.
(d)(3) introductory text and paragraphs (d)(3)(i) through (iii) Revised View text
§178.609 Test requirements for packagings for infectious substances.
(d)(2) Revised View text
§178.706 Standards for rigid plastic IBCs.
(c)(3) Revised View text
§178.707 Standards for composite IBCs.
(c)(3)(iii) Revised View text
§180.207 Requirements for requalification of UN pressure receptacles.
(d)(3) and (5) Revised View text
(d)(8) Added View text

Previous Text

§171.7 Reference material.

* * * * *

(t) * * *

(1) ICAO Doc 9284. Technical Instructions for the Safe Transport of Dangerous Goods by Air (ICAO Technical Instructions), 2021-2022 Edition, copyright 2020; into §§171.8; 171.22 through 171.24; 172.101; 172.202; 172.401; 172.407; 172.512; 172.519; 172.602; 173.56; 173.320; 175.10, 175.33; 178.3.

* * * * *

(v) * * *

(2) International Maritime Dangerous Goods Code (IMDG Code), Incorporating Amendment 40-20 (English Edition), (Volumes 1 and 2), 2020 Edition, copyright 2020; into §§171.22; 171.23; 171.25; 172.101; 172.202; 172.203; 172.401; 172.407; 172.502; 172.519; 172.602; 173.21; 173.56; 176.2; 176.5; 176.11; 176.27; 176.30; 176.83; 176.84; 176.140; 176.720; 176.906; 178.3; 178.274.

(w) * * *

(32) ISO 9809-2:2000(E): Gas cylinders—Refillable seamless steel gas cylinders—Design, construction and testing—Part 2: Quenched and tempered steel cylinders with tensile strength greater than or equal to 1 100 MPa., First edition, June 2000, into §§178.71; 178.75.

(33) ISO 9809-2:2010(E): Gas cylinders—Refillable seamless steel gas cylinders—Design, construction and testing—Part 2: Quenched and tempered steel cylinders with tensile strength greater than or equal to 1100 MPa., Second edition, 2010-04-15, into §§178.71; 178.75.

(34) ISO 9809-3:2000(E): Gas cylinders—Refillable seamless steel gas cylinders—Design, construction and testing—Part 3: Normalized steel cylinders, First edition, December 2000, into §§178.71; 178.75.

(35) ISO 9809-3:2010(E): Gas cylinders—Refillable seamless steel gas cylinders—Design, construction and testing—Part 3: Normalized steel cylinders, Second edition, 2010-04-15, into §§178.71; 178.75.

(36) ISO 9809-4:2014(E), Gas cylinders—Refillable seamless steel gas cylinders—Design, construction and testing—Part 4: Stainless steel cylinders with an Rm value of less than 1 100 MPa, First edition, 2014-07-15, into §§178.71; 178.75.

(37) ISO 9978:1992(E)—Radiation protection—Sealed radioactive sources—Leakage test methods. First Edition, (February 15, 1992), into §173.469.

(38) ISO 10156:2017(E), Gas cylinders—Gases and gas mixtures—Determination of fire potential and oxidizing ability for the selection of cylinder valve outlets, Fourth edition, 2017-07; into §173.115.

(39) ISO 10297:1999(E), Gas cylinders—Refillable gas cylinder valves—Specification and type testing, First Edition, 1995-05-01; into §§173.301b; 178.71.

(40) ISO 10297:2006(E), Transportable gas cylinders—Cylinder valves—Specification and type testing, Second Edition, 2006-01-15; into §§173.301b; 178.71.

(41) ISO 10297:2014(E), Gas cylinders—Cylinder valves—Specification and type testing, Third Edition, 2014-07-15; into §§173.301b; 178.71.

(42) ISO 10297:2014/Amd 1:2017(E), Gas cylinders—Cylinder valves—Specification and type testing—Amendment 1: Pressure drums and tubes, Third Edition, 2017-03; into §§173.301b; 178.71.

(43) ISO 10461:2005(E), Gas cylinders—Seamless aluminum-alloy gas cylinders—Periodic inspection and testing, Second Edition, 2005-02-15 and Amendment 1, 2006-07-15; into §180.207.

(44) ISO 10462:2013(E), Gas cylinders—Acetylene cylinders—Periodic inspection and maintenance, Third edition, 2013-12-15; into §180.207.

(45) ISO 10692-2:2001(E), Gas cylinders—Gas cylinder valve connections for use in the micro-electronics industry—Part 2: Specification and type testing for valve to cylinder connections, First Edition, 2001-08-01; into §§173.40; 173.302c.

(46) ISO 11114-1:2012(E), Gas cylinders—Compatibility of cylinder and valve materials with gas contents—Part 1: Metallic materials, Second edition, 2012-03-15; into §§172.102; 173.301b; 178.71.

(47) ISO 11114-1:2012/Amd 1:2017(E), Gas cylinders—Compatibility of cylinder and valve materials with gas contents—Part 1: Metallic materials—Amendment 1, Second Edition, 2017-01; into §§172.102; 173.301b; 178.71.

(48) ISO 11114-2:2013(E), Gas cylinders—Compatibility of cylinder and valve materials with gas contents—Part 2: Non-metallic materials, Second edition, 2013-04; into §§173.301b; 178.71.

(49) ISO 11117:1998(E): Gas cylinders—Valve protection caps and valve guards for industrial and medical gas cylinders—Design, construction and tests, First edition, 1998-08-01; into §173.301b.

(50) ISO 11117:2008(E): Gas cylinders—Valve protection caps and valve guards—Design, construction and tests, Second edition, 2008-09-01; into §173.301b.

(51) ISO 11117:2008/Cor.1:2009(E): Gas cylinders—Valve protection caps and valve guards—Design, construction and tests, Technical Corrigendum 1, 2009-05-01; into §173.301b.

(52) ISO 11118(E), Gas cylinders—Non-refillable metallic gas cylinders—Specification and test methods, First edition, October 1999; into §178.71.

(53) ISO 11118:2015(E), Gas cylinders—Non-refillable metallic gas cylinders—Specification and test methods, Second edition, 2015-09-15; into §§173.301b; 178.71.

(54) ISO 11119-1(E), Gas cylinders—Gas cylinders of composite construction—Specification and test methods—Part 1: Hoop-wrapped composite gas cylinders, First edition, May 2002; into §178.71.

(55) ISO 11119-1:2012(E), Gas cylinders—Refillable composite gas cylinders and tubes—Design, construction and testing—Part 1: Hoop wrapped fibre reinforced composite gas cylinders and tubes up to 450 l, Second edition, 2012-08-01; into §§178.71; 178.75.

(56) ISO 11119-2(E), Gas cylinders—Gas cylinders of composite construction—Specification and test methods—Part 2: Fully wrapped fibre reinforced composite gas cylinders with load-sharing metal liners, First edition, May 2002; into §178.71.

(57) ISO 11119-2:2012(E), Gas cylinders—Refillable composite gas cylinders and tubes—Design, construction and testing—Part 2: Fully wrapped fibre reinforced composite gas cylinders and tubes up to 450 l with load-sharing metal liners, Second edition, 2012-07-15; into §§178.71; 178.75.

(58) ISO 11119-2:2012/Amd.1:2014(E), Gas cylinders—Refillable composite gas cylinders and tubes—Design, construction and testing—Part 2: Fully wrapped fibre reinforced composite gas cylinders and tubes up to 450 l with load-sharing metal liners, Amendment 1, 2014-08-15; into §§178.71; 178.75.

(59) ISO 11119-3(E), Gas cylinders of composite construction—Specification and test methods—Part 3: Fully wrapped fibre reinforced composite gas cylinders with non-load-sharing metallic or non-metallic liners, First edition, September 2002; into §178.71.

(60) ISO 11119-3:2013(E), Gas cylinders—Refillable composite gas cylinders and tubes—Design, construction and testing—Part 3: Fully wrapped fibre reinforced composite gas cylinders and tubes up to 450 l with non-load-sharing metallic or non-metallic liners, Second edition, 2013-04-15; into §§178.71; 178.75.

(61) ISO 11119-4:2016(E), Gas cylinders—Refillable composite gas cylinders—Design, construction and testing—Part 4: Fully wrapped fibre reinforced composite gas cylinders up to 150 L with load-sharing welded metallic liners, First Edition, 2016-02-15; into §§178.71; 178.75.

(62) ISO 11120(E), Gas cylinders—Refillable seamless steel tubes of water capacity between 150 l and 3000 l—Design, construction and testing, First edition, 1999-03; into §§178.71; 178.75.

(63) ISO 11120:2015(E), Gas cylinders—Refillable seamless steel tubes of water capacity between 150 l and 3000 l—Design, construction and testing, Second Edition, 2015-02-01; into §§178.71; 178.75.

(64) ISO 11513:2011(E), Gas cylinders—Refillable welded steel cylinders containing materials for sub-atmospheric gas packaging (excluding acetylene)—Design, construction, testing, use and periodic inspection, First edition, 2011-09-12; into §§173.302c; 178.71; 180.207.

(65) ISO 11621(E), Gas cylinders—Procedures for change of gas service, First edition, April 1997; into §§173.302, 173.336, 173.337.

(66) ISO 11623(E), Transportable gas cylinders—Periodic inspection and testing of composite gas cylinders, First edition, March 2002; into §180.207.

(67) ISO 11623(E):2015, Gas cylinders—Composite construction—Periodic inspection and testing, Second edition, 2015-12-01; into §180.207.

(68) ISO 13340:2001(E), Transportable gas cylinders—Cylinder valves for non-refillable cylinders—Specification and prototype testing, First edition, 2004-04-01; into §§173.301b; 178.71.

(69) ISO 13736:2008(E), Determination of flash point—Abel closed-cup method, Second Edition, 2008-09-15; into §173.120.

(70) ISO 14246:2014(E), Gas cylinders—Cylinder valves—Manufacturing tests and examination, Second Edition, 2014-06-15; into §178.71.

(71) ISO 14246:2014/Amd 1:2017(E), Gas cylinders—Cylinder valves—Manufacturing tests and examinations—Amendment 1, Second Edition, 2017-06; into §178.71.

(72) ISO 16111:2008(E), Transportable gas storage devices—Hydrogen absorbed in reversible metal hydride, First Edition, 2008-11-15; into §§173.301b; 173.311; 178.71.

(73) ISO 16148:2016(E), Gas cylinders—Refillable seamless steel gas cylinders and tubes—Acoustic emission examination (AT) and follow-up ultrasonic examination (UT) for periodic inspection and testing, Second Edition, 2016-04-15; into §180.207.

(74) ISO 17871:2015(E), Gas cylinders—Quick-release cylinder valves—Specification and type testing, First Edition, 2015-08-15; into §173.301b.

(75) ISO 17879: 2017(E), Gas cylinders—Self-closing cylinder valves—Specification and type testing, First Edition, 2017-07; into §§173.301b; 178.71.

(76) ISO 18172-1:2007(E), Gas cylinders—Refillable welded stainless steel cylinders—Part 1: Test pressure 6 MPa and below, First Edition, 2007-03-01; into §178.71.

(77) ISO 20475:2018(E), Gas cylinders—Cylinder bundles—Periodic inspection and testing, First Edition, 2018-02; into §180.207.

(78) ISO 20703:2006(E), Gas cylinders—Refillable welded aluminum-alloy cylinders—Design, construction and testing, First Edition, 2006-05-01; into §178.71.

(79) ISO 21172-1:2015(E), Gas cylinders—Welded steel pressure drums up to 3000 litres capacity for the transport of gases—Design and construction—Part 1: Capacities up to 1000 litres, First edition, 2015-04-01; into §178.71.

(80) ISO 22434:2006(E), Transportable gas cylinders—Inspection and maintenance of cylinder valves, First Edition, 2006-09-01; into §180.207.

(81) ISO/TR 11364:2012(E), Gas cylinders—Compilation of national and international valve stem/gas cylinder neck threads and their identification and marking system, First Edition, 2012-12-01; into §178.71.

* * * * *

(aa) * * *

(3) OECD Guideline for the Testing of Chemicals 431 (Test No. 431): In vitro skin corrosion: reconstructed human epidermis (RHE) test method, adopted 29 July 2016; into §173.137.

* * * * *

(dd) * * *

(1) Recommendations on the Transport of Dangerous Goods, Model Regulations (UN Recommendations), 21st revised edition, copyright 2019; into §§171.8; 171.12; 172.202; 172.401; 172.407; 172.502; 172.519; 173.22; 173.24; 173.24b; 173.40; 173.56; 173.192; 173.302b; 173.304b; 178.75; 178.274; as follows:

(i) Volume I, ST/SG/AC.10.1/21/Rev.21 (Vol. I).

(ii) Volume II, ST/SG/AC.10.1/21/Rev.21 (Vol. II).

(2) Manual of Tests and Criteria (UN Manual of Tests and Criteria), 7th revised edition, ST/SG/AC.10/11/Rev.7, copyright 2019; into §§171.24, 172.102; 173.21; 173.56 through 173.58; 173.60; 173.115; 173.124; 173.125; 173.127; 173.128; 173.137; 173.185; 173.220; 173.221; 173.224; 173.225; 173.232; part 173, appendix H; 175.10; 176.905; 178.274.

(3) Globally Harmonized System of Classification and Labelling of Chemicals (GHS), 8th revised edition, ST/SG/AC.10/30/Rev.8, copyright 2019; into §172.401.

(4) Agreement concerning the International Carriage of Dangerous Goods by Road (ADR), copyright 2020; into §171.8; §171.23 as follows: [Change Notice][Previous Text]

(i) Volume I, ECE/TRANS/300 (Vol. I).

(ii) Volume II, ECE/TRANS/300 (Vol. II).

(iii) Corrigendum, ECE/TRANS/300 (Corr. 1).

* * * * *

§171.12 North American shipments.

* * * * *

(a) * * *

(4) * * *

(iii) Authorized CRC, BTC, CTC or TC specification cylinders that correspond with a DOT specification cylinder are as follows:

TC DOT (some or all of these specifications may instead be marked with the prefix ICC) CTC (some or all of these specifications may instead be marked with the prefix BTC or CRC)
TC-3AM DOT-3A [ICC-3] CTC-3A
TC-3AAM DOT-3AA CTC-3AA
TC-3ANM DOT-3BN CTC-3BN
TC-3EM DOT-3E CTC-3E
TC-3HTM DOT-3HT CTC-3HT
TC-3ALM DOT-3AL
DOT-3B
CTC-3AL
CTC-3B
TC-3AXM DOT-3AX CTC-3AX
TC-3AAXM DOT-3AAX
DOT-3A480X
CTC-3AAX
CTC-3A480X
TC-3TM DOT-3T
TC-4AAM33 DOT-4AA480 CTC-4AA480
TC-4BM DOT-4B CTC-4B
TC-4BM17ET DOT-4B240ET CTC-4B240ET
TC-4BAM DOT-4BA CTC-4BA
TC-4BWM DOT-4BW CTC-4BW
TC-4DM DOT-4D CTC-4D
TC-4DAM DOT-4DA CTC-4DA
TC-4DSM DOT-4DS CTC-4DS
TC-4EM DOT-4E CTC-4E
TC-39M DOT-39 CTC-39
TC-4LM DOT-4L
DOT-8
DOT-8AL
CTC-4L
CTC-8
CTC-8AL

* * * * *

§171.23 Requirements for specific materials and packagings transported under the ICAO technical instructions, IMDG code, Transport Canada TDG regulations, or the IAEA regulations.

(a) * * *

(3) Pi-marked pressure receptacles. Pressure receptacles that are marked with a pi mark in accordance with the European Directive 2010/35/EU (IBR, see §171.7) on transportable pressure equipment (TPED) and that comply with the requirements of Packing Instruction P200 or P208 and 6.2 of the ADR (IBR, see §171.7) concerning pressure relief device use, test period, filling ratios, test pressure, maximum working pressure, and material compatibility for the lading contained or gas being filled, are authorized as follows:

(i) Filled pressure receptacles imported for intermediate storage, transport to point of use, discharge, and export without further filling; and

(ii) Pressure receptacles imported or domestically sourced for the purpose of filling, intermediate storage, and export.

(iii) The bill of lading or other shipping paper must identify the cylinder and include the following certification: “This cylinder (These cylinders) conform(s) to the requirements for pi-marked cylinders found in 171.23(a)(3).”

* * * * *

§171.25 Additional requirements for the use of the IMDG code.

* * * * *

(c) * * *

(3) Except as specified in this subpart, for a material poisonous (toxic) by inhalation, the T Codes specified in Column 13 of the Dangerous Goods List in the IMDG Code may be applied to the transportation of those materials in IM, IMO and DOT Specification 51 portable tanks, when these portable tanks are authorized in accordance with the requirements of this subchapter; and

(4) No person may offer an IM or UN portable tank containing liquid hazardous materials of Class 3, PG I or II, or PG III with a flash point less than 100°F (38°C); Division 5.1, PG I or II; or Division 6.1, PG I or II, for unloading while it remains on a transport vehicle with the motive power unit attached, unless it conforms to the requirements in §177.834(o) of this subchapter.

* * * * *

§172.101 Purpose and use of hazardous materials table.

* * * * *

(c) * * *

(12) * * *

(ii) Generic or n.o.s. descriptions. If an appropriate technical name is not shown in the Table, selection of a proper shipping name shall be made from the generic or n.o.s. descriptions corresponding to the specific hazard class, packing group, hazard zone, or subsidiary hazard, if any, for the material. The name that most appropriately describes the material shall be used; e.g, an alcohol not listed by its technical name in the Table shall be described as “Alcohol, n.o.s.” rather than “Flammable liquid, n.o.s.”. Some mixtures may be more appropriately described according to their application, such as “Coating solution” or “Extracts, flavoring, liquid”, rather than by an n.o.s. entry, such as “Flammable liquid, n.o.s.” It should be noted, however, that an n.o.s. description as a proper shipping name may not provide sufficient information for shipping papers and package markings. Under the provisions of subparts C and D of this part, the technical name of one or more constituents which makes the product a hazardous material may be required in association with the proper shipping name.

* * * * *

§172.102 Special provisions.

* * * * *

(c) * * *

(1) * * *

(78) This entry may not be used to describe compressed air which contains more than 23.5 percent oxygen. Compressed air containing greater than 23.5 percent oxygen must be shipped using the description ‘‘Compressed gas, oxidizing, n.o.s., UN3156.’’

* * * * *

(156) Asbestos that is immersed or fixed in a natural or artificial binder material, such as cement, plastic, asphalt, resins or mineral ore, or contained in manufactured products is not subject to the requirements of this subchapter.

* * * * *

(387) When materials are stabilized by temperature control, the provisions of §173.21(f) of this subchapter apply. When chemical stabilization is employed, the person offering the material for transport shall ensure that the level of stabilization is sufficient to prevent the material as packaged from dangerous polymerization at 50°C (122°F). If chemical stabilization becomes ineffective at lower temperatures within the anticipated duration of transport, temperature control is required and is forbidden by aircraft. In making this determination factors to be taken into consideration include, but are not limited to, the capacity and geometry of the packaging and the effect of any insulation present, the temperature of the material when offered for transport, the duration of the journey, and the ambient temperature conditions typically encountered in the journey (considering also the season of year), the effectiveness and other properties of the stabilizer employed, applicable operational controls imposed by regulation (e.g., requirements to protect from sources of heat, including other cargo carried at a temperature above ambient) and any other relevant factors. The provisions of this special provision will be effective until January 2, 2023, unless we terminate them earlier or extend them beyond that date by notice of a final rule in the Federal Register.

* * * * *

(421) This entry will no longer be effective on January 2, 2023, unless we terminate it earlier or extend it beyond that date by notice of a final rule in the Federal Register.

* * * * *

(2) * * *

A54 Irrespective of the quantity limits in Column 9B of the §172.101 table, a lithium battery, including a lithium battery packed with, or contained in, equipment that otherwise meets the applicable requirements of §173.185, may have a mass exceeding 35 kg if approved by the Associate Administrator prior to shipment.

* * * * *

(4) * * *

IP15 For UN2031 with more than 55% nitric acid, the permitted use of rigid plastic IBCs, and the inner receptacle of composite IBCs with rigid plastics, shall be two years from their date of manufacture.

* * * * *

§173.4b De minimis exceptions.

* * * * *

(b) * * *

(1) The specimens are:

(i) Wrapped in a paper towel or cheesecloth moistened with alcohol or an alcohol solution and placed in a plastic bag that is heat-sealed. Any free liquid in the bag must not exceed 30 mL; or

(ii) Placed in vials or other rigid containers with no more than 30 mL of alcohol or alcohol solution. The containers are placed in a plastic bag that is heat-sealed;

* * * * *

§173.21 Forbidden materials and packages.

* * * * *

(f) A package containing a material which is likely to decompose with a self-accelerated decomposition temperature (SADT) of 50°C (122 °F) or less, or polymerize at a temperature of 54°C (130 °F) or less with an evolution of a dangerous quantity of heat or gas when decomposing or polymerizing, unless the material is stabilized or inhibited in a manner to preclude such evolution. The SADT may be determined by any of the test methods described in Part II of the UN Manual of Tests and Criteria (IBR, see §171.7 of this subchapter).

(1) A package meeting the criteria of paragraph (f) of this section may be required to be shipped under controlled temperature conditions. The control temperature and emergency temperature for a package shall be as specified in the table in this paragraph based upon the SADT of the material. The control temperature is the temperature above which a package of the material may not be offered for transportation or transported. The emergency temperature is the temperature at which, due to imminent danger, emergency measures must be initiated.

Table 1 to Paragraph (f)(1)—Method of Determining Control and Emergency Temperature
SADT 1 Control temperatures Emergency temperature
SADT ≤20°C (68°F) 20°C (36°F) below SADT 10°C (18°F) below SADT.
20°C (68°F) <SADT ≤35°C (95°F) 15°C (27°F) below SADT 10°C (18°F) below SADT.
35°C (95°F) <SADT ≤50°C (122°F) 10°C (18°F) below SADT 5°C (9°F) below SADT.
50°C (122°F) <SADT (2) (2)
1 Self-accelerating decomposition temperature.
2 Temperature control not required.

(2) For self-reactive materials listed in §173.224(b) Table control and emergency temperatures, where required are shown in Columns 5 and 6, respectively. For organic peroxides listed in The Organic Peroxides Table in §173.225 control and emergency temperatures, where required, are shown in Columns 7a and 7b, respectively.

* * * * *

§173.27 General requirements for transportation by aircraft.

* * * * *

(f) * * *

(2) * * *

(i) * * *

(D) Divisions 4.1 (self-reactive), 4.2 (spontaneously combustible) (primary or subsidiary risk), and 4.3 (dangerous when wet) (liquids);

* * * * *

§173.124 Class 4, Divisions 4.1, 4.2 and 4.3— Definitions.

(a) * * *

(4) * * *

(iv) The provisions concerning polymerizing substances in paragraph (a)(4) will be effective until January 2, 2023.

* * * * *

§173.137 Class 8—Assignment of packing group.

The packing group of a Class 8 material is indicated in Column 5 of the §172.101 Table. When the §172.101 Table provides more than one packing group for a Class 8 material, the packing group must be determined using data obtained from tests conducted in accordance with the OECD Guidelines for the Testing of Chemicals, Test No. 435, “ In Vitro Membrane Barrier Test Method for Skin Corrosion” (IBR, see §171.7 of this subchapter) or Test No. 404, “Acute Dermal Irritation/Corrosion” (IBR, see §171.7 of this subchapter). A material that is determined not to be corrosive in accordance with OECD Guideline for the Testing of Chemicals, Test No. 430, “ In Vitro Skin Corrosion: Transcutaneous Electrical Resistance Test (TER)” (IBR, see §171.7 of this subchapter) or Test No. 431, “ In Vitro Skin Corrosion: Reconstructed Human Epidermis (RHE) Test Method” (IBR, see §171.7 of this subchapter) may be considered not to be corrosive to human skin for the purposes of this subchapter without further testing. However, a material determined to be corrosive in accordance with Test No. 430 must be further tested using Test No. 435 or Test No. 404. If the in vitro test results indicate that the substance or mixture is corrosive, but the test method does not clearly distinguish between assignment of packing groups II and III, the material may be considered to be in packing group II without further testing. The packing group assignment using data obtained from tests conducted in accordance with OECD Guideline Test No. 404 or Test No. 435 must be as follows:

* * * * *

§173.151 Exceptions for Class 4.

* * * * *

(d) Limited quantities of Division 4.3. Limited quantities of dangerous when wet solids (Division 4.3) in Packing Groups II and III are excepted from labeling requirements, unless the material is offered for transportation or transported by aircraft, and are excepted from the specification packaging requirements of this subchapter when packaged in combination packagings according to this paragraph. For transportation by aircraft, the package must also conform to applicable requirements of §173.27 of this part (e.g., authorized materials, inner packaging quantity limits and closure securement) and only hazardous material authorized aboard passenger-carrying aircraft may be transported as a limited quantity. A limited quantity package that conforms to the provisions of this section is not subject to the shipping paper requirements of subpart C of part 172 of this subchapter, unless the material meets the definition of a hazardous substance, hazardous waste, marine pollutant, or is offered for transportation and transported by aircraft or vessel. In addition, shipments of limited quantities are not subject to subpart F (Placarding) of part 172 of this subchapter. Each package must conform to the packaging requirements of subpart B of this part and may not exceed 30 kg (66 pounds) gross weight. Except for transportation by aircraft, the following combination packagings are authorized:

* * * * *

§173.167 Consumer commodities.

(a) Effective January 1, 2013, a “consumer commodity” (see §171.8 of this subchapter) when offered for transportation by aircraft may only include articles or substances of Class 2 (non-toxic aerosols only), Class 3 (Packing Group II and III only), Division 6.1 (Packing Group III only), UN3077, UN3082, UN3175, UN3334, and UN3335, provided such materials do not have a subsidiary risk and are authorized aboard a passenger-carrying aircraft. Consumer commodities are excepted from the specification outer packaging requirements of this subchapter. Packages prepared under the requirements of this section are excepted from labeling and shipping papers when transported by highway or rail. Except as indicated in §173.24(i), each completed package must conform to §§173.24 and 173.24a of this subchapter. Additionally, except for the pressure differential requirements in §173.27(c), the requirements of §173.27 do not apply to packages prepared in accordance with this section. Packages prepared under the requirements of this section may be offered for transportation and transported by all modes. As applicable, the following apply:

(1) Inner and outer packaging quantity limits. (i) Non-toxic aerosols, as defined in §171.8 of this subchapter and constructed in accordance with §173.306 of this part, in non-refillable, non-metal containers not exceeding 120 mL (4 fluid ounces) each, or in non-refillable metal containers not exceeding 820 mL (28 ounces) each, except that flammable aerosols may not exceed 500 mL (16.9 ounces) each;

(ii) Liquids, in inner packagings not exceeding 500 mL (16.9 ounces) each. Liquids must not completely fill an inner packaging at 55°C;

(iii) Solids, in inner packagings not exceeding 500 g (1.0 pounds) each; or

(iv) Any combination thereof not to exceed 30 kg (66 pounds) gross weight as prepared for shipment.

(2) Closures. Friction-type closures must be secured by positive means. The body and closure of any packaging must be constructed so as to be able to adequately resist the effects of temperature and vibration occurring in conditions normally incident to air transportation. The closure device must be so designed that it is unlikely that it can be incorrectly or incompletely closed.

(3) Absorbent material. Inner packagings must be tightly packaged in strong outer packagings. Absorbent and cushioning material must not react dangerously with the contents of inner packagings. Glass or earthenware inner packagings containing liquids of Class 3 or Division 6.1, sufficient absorbent material must be provided to absorb the entire contents of the largest inner packaging contained in the outer packaging. Absorbent material is not required if the glass or earthenware inner packagings are sufficiently protected as packaged for transport that it is unlikely a failure would occur and, if a failure did occur, that it would be unlikely that the contents would leak from the outer packaging.

(4) Drop test capability. Breakable inner packagings (e.g., glass, earthenware, or brittle plastic) must be packaged to prevent failure under conditions normally incident to transport. Packages of consumer commodities as prepared for transport must be capable of withstanding a 1.2 m drop on solid concrete in the position most likely to cause damage. In order to pass the test, the outer packaging must not exhibit any damage liable to affect safety during transport and there must be no leakage from the inner packaging(s).

(5) Stack test capability. Packages of consumer commodities must be capable of withstanding, without failure or leakage of any inner packaging and without any significant reduction in effectiveness, a force applied to the top surface for a duration of 24 hours equivalent to the total weight of identical packages if stacked to a height of 3.0 m (including the test sample).

(b) When offered for transportation by aircraft:

(1) Packages prepared under the requirements of this section are to be marked as a limited quantity in accordance with §172.315(b)(1) and labeled as a Class 9 article or substance, as appropriate, in accordance with subpart E of part 172 of this subchapter; and

(2) Pressure differential capability: Except for UN3082, inner packagings intended to contain liquids must be capable of meeting the pressure differential requirements (75 kPa) prescribed in §173.27(c) of this part. The capability of a packaging to withstand an internal pressure without leakage that produces the specified pressure differential should be determined by successfully testing design samples or prototypes.

§173.185 Lithium cells and batteries.

* * * * *

(a) * * *

(3) Beginning January 1, 2022 each manufacturer and subsequent distributor of lithium cells or batteries manufactured on or after January 1, 2008, must make available a test summary. The test summary must include the following elements:

* * * * *

* * * * *

(ix) Reference to the revised edition of the UN Manual of Tests and Criteria used and to amendments thereto, if any; and

* * * * *

(b) * * *

(3) * * *

(iii) * * *

(A) Be placed in inner packagings that completely enclose the cell or battery, then placed in an outer packaging. The completed package for the cells or batteries must meet the Packing Group II performance requirements as specified in paragraph (b)(3)(ii) of this section; or

(B) Be placed in inner packagings that completely enclose the cell or battery, then placed with equipment in a package that meets the Packing Group II performance requirements as specified in paragraph (b)(3)(ii) of this section.

* * * * *

(4) * * *

(ii) Equipment must be secured to prevent damage caused by shifting within the outer packaging and be packed so as to prevent accidental operation during transport; and

(iii) Any spare lithium cells or batteries packed with the equipment must be packaged in accordance with paragraph (b)(3) of this section.

* * * * *

(5) Lithium batteries that weigh 12 kg (26.5 pounds) or more and have a strong, impact-resistant outer casing may be packed in strong outer packagings; in protective enclosures (for example, in fully enclosed or wooden slatted crates); or on pallets or other handling devices, instead of packages meeting the UN performance packaging requirements in paragraphs (b)(3)(ii) and (iii) of this section. Batteries must be secured to prevent inadvertent shifting, and the terminals may not support the weight of other superimposed elements. Batteries packaged in accordance with this paragraph may be transported by cargo aircraft if approved by the Associate Administrator.

* * * * *

(c) * * *

(3) Lithium battery mark. Each package must display the lithium battery mark except when a package contains only button cell batteries contained in equipment (including circuit boards), or when a consignment contains two packages or fewer where each package contains not more than four lithium cells or two lithium batteries contained in equipment. [Change Notice][Previous Text]

(i) The mark must indicate the UN number: “UN3090” for lithium metal cells or batteries; or “UN3480” for lithium ion cells or batteries. Where the lithium cells or batteries are contained in, or packed with, equipment, the UN number “UN3091” or “UN3481,” as appropriate, must be indicated. Where a package contains lithium cells or batteries assigned to different UN numbers, all applicable UN numbers must be indicated on one or more marks. The package must be of such size that there is adequate space to affix the mark on one side without the mark being folded.



(A) The mark must be in the form of a rectangle or a square with hatched edging. The mark must be not less than 100 mm (3.9 inches) wide by 100 mm (3.9 inches) high and the minimum width of the hatching must be 5 mm (0.2 inches), except marks of 100 mm (3.9 inches) wide by 70 mm (2.8 inches) high may be used on a package containing lithium batteries when the package is too small for the larger mark;

(B) The symbols and letters must be black on white or suitable contrasting background and the hatching must be red;

(C) The “*” must be replaced by the appropriate UN number(s) and the “**” must be replaced by a telephone number for additional information; and

(D) Where dimensions are not specified, all features shall be in approximate proportion to those shown.

(ii) [Reserved]

(iii) When packages are placed in an overpack, the lithium battery mark shall either be clearly visible through the overpack or be reproduced on the outside of the overpack and the overpack shall be marked with the word “OVERPACK”. The lettering of the “OVERPACK” mark shall be at least 12 mm (0.47 inches) high.

(4) Air transportation. (i) For transportation by aircraft, lithium cells and batteries may not exceed the limits in the following Table 1 to paragraph (c)(4)(i). The limits on the maximum number of batteries and maximum net quantity of batteries in the following table may not be combined in the same package. The limits in the following table do not apply to lithium cells and batteries packed with, or contained in, equipment.

Table 1 to Paragraph (c)(4)(i)
Contents Lithium metal cells and/or batteries with a lithium content not more than 0.3 g Lithium metal cells with a lithium content more than 0.3 g but not more than 1 g Lithium metal batteries with a lithium content more than 0.3 g but not more than 2 g Lithium ion cells and/or batteries with a watt-hour rating not more than 2.7 Wh Lithium ion cells with a watt-hour rating more than 2.7 Wh but not more than 20 Wh Lithium ion batteries with a watt-hour rating more than 2.7 Wh but not more than 100 Wh
Maximum number of cells/batteries per package No Limit 8 cells 2 batteries No Limit 8 cells 2 batteries.
Maximum net quantity (mass) per package 2.5 kg n/a n/a 2.5 kg n/a n/a.

(ii) Not more than one package prepared in accordance with paragraph (c)(4)(i) of this section may be placed into an overpack.

(iii) A shipper is not permitted to offer for transport more than one package prepared in accordance with the provisions of paragraph (c)(4)(i) of this section in any single consignment.

(iv) Each shipment with packages required to display the paragraph (c)(3)(i) lithium battery mark must include an indication on the air waybill of compliance with this paragraph (c)(4) (or the applicable ICAO Technical Instructions Packing Instruction), when an air waybill is used.

(v) Packages and overpacks of lithium batteries prepared in accordance with paragraph (c)(4)(i) of this section must be offered to the operator separately from cargo which is not subject to the requirements of this subchapter and must not be loaded into a unit load device before being offered to the operator.

(vi) For lithium batteries packed with, or contained in, equipment, the number of batteries in each package is limited to the minimum number required to power the piece of equipment, plus two spare sets, and the total net quantity (mass) of the lithium cells or batteries in the completed package must not exceed 5 kg. A “set” of cells or batteries is the number of individual cells or batteries that are required to power each piece of equipment.

(vii) Each person who prepares a package for transport containing lithium cells or batteries, including cells or batteries packed with, or contained in, equipment in accordance with the conditions and limitations of this paragraph (c)(4), must receive instruction on these conditions and limitations, corresponding to their functions.

(viii) Lithium cells and batteries must not be packed in the same outer packaging with other hazardous materials. Packages prepared in accordance with paragraph (c)(4)(i) of this section must not be placed into an overpack with packages containing hazardous materials and articles of Class 1 (explosives) other than Division 1.4S, Division 2.1 (flammable gases), Class 3 (flammable liquids), Division 4.1 (flammable solids), or Division 5.1 (oxidizers).

(5) For transportation by aircraft, a package that exceeds the number or quantity (mass) limits in the table shown in paragraph (c)(4)(i) of this section, the overpack limit described in paragraph (c)(4)(ii) of this section, or the consignment limit described in paragraph (c)(4)(iii) of this section is subject to all applicable requirements of this subchapter, except that a package containing no more than 2.5 kg lithium metal cells or batteries or 10 kg lithium ion cells or batteries is not subject to the UN performance packaging requirements in paragraph (b)(3)(ii) of this section when the package displays both the lithium battery mark in paragraph (c)(3)(i) and the Class 9 Lithium Battery label specified in §172.447 of this subchapter. This paragraph does not apply to batteries or cells packed with or contained in equipment.

* * * * *

(e) * * *

(5) Lithium batteries, including lithium batteries contained in equipment, that weigh 12 kg (26.5 pounds) or more and have a strong, impact-resistant outer casing may be packed in strong outer packagings, in protective enclosures (for example, in fully enclosed or wooden slatted crates), or on pallets or other handling devices, instead of packages meeting the UN performance packaging requirements in paragraphs (b)(3)(ii) and (iii) of this section. The battery must be secured to prevent inadvertent shifting, and the terminals may not support the weight of other superimposed elements;

(6) Irrespective of the limit specified in column (9B) of the §172.101 Hazardous Materials Table, the battery or battery assembly prepared for transport in accordance with this paragraph may have a mass exceeding 35 kg gross weight when transported by cargo aircraft;

(7) Batteries or battery assemblies packaged in accordance with this paragraph are not permitted for transportation by passenger-carrying aircraft, and may be transported by cargo aircraft only if approved by the Associate Administrator prior to transportation; and

* * * * *

§173.224 Packaging and control and emergency temperatures for self-reactive materials.

* * * * *

(b) * * *

(4) Packing method. Column 4 specifies the highest packing method which is authorized for the self-reactive material. A packing method corresponding to a smaller package size may be used, but a packing method corresponding to a larger package size may not be used. The Table of Packing Methods in §173.225(d) defines the packing methods. Bulk packagings for Type F self-reactive substances are authorized by §173.225(f) for IBCs and §173.225(h) for bulk packagings other than IBCs. The formulations listed in §173.225(f) for IBCs and in §173.225(g) for portable tanks may also be transported packed in accordance with packing method OP8, with the same control and emergency temperatures, if applicable. Additional bulk packagings are authorized if approved by the Associate Administrator.

* * * * *

Self-Reactive Materials Table
Self-reactive substance


(1)
Identification No.


(2)
Concentra-
tion—(%)


(3)
Packing method


(4)
Control
tempera-
ture— (°C)


(5)
Emer-
gency
tempera-
ture—


(6)
Notes


(7)
Notes:
1. The emergency and control temperatures must be determined in accordance with §173.21(f).
2. With a compatible diluent having a boiling point of not less than 150 °C.
3. Samples may only be offered for transportation under the provisions of paragraph (c)(3) of this section.
4. This entry applies to mixtures of esters of 2-diazo-1-naphthol-4-sulphonic acid and 2-diazo-1-naphthol-5-sulphonic acid.
5. This entry applies to the technical mixture in n-butanol within the specified concentration limits of the (Z) isomer.
Acetone-pyrogallol copolymer 2-diazo-1-naphthol-5-sulphonate 3228 100 OP8
Azodicarbonamide formulation type B, temperature controlled 3232 <100 OP5 1
Azodicarbonamide formulation type C 3224 <100 OP6
Azodicarbonamide formulation type C, temperature controlled 3234 <100 OP6 1
Azodicarbonamide formulation type D 3226 <100 OP7
Azodicarbonamide formulation type D, temperature controlled 3236 <100 OP7 1
2,2′-Azodi(2,4-dimethyl-4-methoxyvaleronitrile) 3236 100 OP7 −5 +5
2,2′-Azodi(2,4-dimethylvaleronitrile) 3236 100 OP7 +10 +15
2,2′-Azodi(ethyl 2-methylpropionate) 3235 100 OP7 +20 +25
1,1-Azodi(hexahydrobenzonitrile) 3226 100 OP7
2,2-Azodi(isobutyronitrile) 3234 100 OP6 +40 +45
2,2′-Azodi(isobutyronitrile) as a water based paste 3224 ≤50 OP6
2,2-Azodi(2-methylbutyronitrile) 3236 100 OP7 +35 +40
Benzene-1,3-disulphonylhydrazide, as a paste 3226 52 OP7
Benzene sulphohydrazide 3226 100 OP7
4-(Benzyl(ethyl)amino)-3-ethoxybenzenediazonium zinc chloride 3226 100 OP7
4-(Benzyl(methyl)amino)-3-ethoxybenzenediazonium zinc chloride 3236 100 OP7 +40 +45
3-Chloro-4-diethylaminobenzenediazonium zinc chloride 3226 100 OP7
2-Diazo-1-Naphthol sulphonic acid ester mixture 3226 <100 OP7 4
2-Diazo-1-Naphthol-4-sulphonyl chloride 3222 100 OP5
2-Diazo-1-Naphthol-5-sulphonyl chloride 3222 100 OP5
2,5-Dibutoxy-4-(4-morpholinyl)-Benzenediazonium, tetrachlorozincate (2:1) 3228 100 OP8
2,5-Diethoxy-4-morpholinobenzenediazonium zinc chloride 3236 67−100 OP7 +35 +40
2,5-Diethoxy-4-morpholinobenzenediazonium zinc chloride 3236 66 OP7 +40 +45
2,5-Diethoxy-4-morpholinobenzenediazonium tetrafluoroborate 3236 100 OP7 +30 +35
2,5-Diethoxy-4-(phenylsulphonyl)benzenediazonium zinc chloride 3236 67 OP7 +40 +45
2,5-Diethoxy-4-(4-morpholinyl)-benzenediazonium sulphate 3226 100 OP7
Diethylene glycol bis(allyl carbonate) + Diisopropylperoxydicarbonate 3237 ≥88 + ≤12 OP8 −10 0
2,5-Dimethoxy-4-(4-methylphenylsulphony)benzenediazonium zinc chloride 3236 79 OP7 +40 +45
4-Dimethylamino-6-(2-dimethylaminoethoxy)toluene-2-diazonium zinc chloride 3236 100 OP7 +40 +45
4-(Dimethylamino)-benzenediazonium trichlorozincate (-1) 3228 100 OP8
N,N′-Dinitroso-N, N′-dimethyl-terephthalamide, as a paste 3224 72 OP6
N,N′-Dinitrosopentamethylenetetramine 3224 82 OP6 2
Diphenyloxide-4,4′-disulphohydrazide 3226 100 OP7
Diphenyloxide-4,4′-disulphonylhydrazide 3226 100 OP7
4-Dipropylaminobenzenediazonium zinc chloride 3226 100 OP7
2-(N,N-Ethoxycarbonylphenylamino)-3-methoxy-4-(N-methyl-N- cyclohexylamino)benzenediazonium zinc chloride 3236 63−92 OP7 +40 +45
2-(N,N-Ethoxycarbonylphenylamino)-3-methoxy-4-(N-methyl-N- cyclohexylamino)benzenediazonium zinc chloride 3236 62 OP7 +35 +40
N-Formyl-2-(nitromethylene)-1,3-perhydrothiazine 3236 100 OP7 +45 +50
2-(2-Hydroxyethoxy)-1-(pyrrolidin-1-yl)benzene-4-diazonium zinc chloride 3236 100 OP7 +45 +50
3-(2-Hydroxyethoxy)-4-(pyrrolidin-1-yl)benzenediazonium zinc chloride 3236 100 OP7 +40 +45
2-(N,N-Methylaminoethylcarbonyl)-4-(3,4-dimethyl-phenylsulphonyl)benzene diazonium zinc chloride 3236 96 OP7 +45 +50
4-Methylbenzenesulphonylhydrazide 3226 100 OP7
3-Methyl-4-(pyrrolidin-1-yl)benzenediazonium tetrafluoroborate 3234 95 OP6 +45 +50
4-Nitrosophenol 3236 100 OP7 +35 +40
Phosphorothioic acid, O-[(cyanophenyl methylene) azanyl] O,O-diethyl ester 3227 82−91 (Z isomer) OP8 5
Self-reactive liquid, sample 3223 OP2 3
Self-reactive liquid, sample, temperature control 3233 OP2 3
Self-reactive solid, sample 3224 OP2 3
Self-reactive solid, sample, temperature control 3234 OP2 3
Sodium 2-diazo-1-naphthol-4-sulphonate 3226 100 OP7
Sodium 2-diazo-1-naphthol-5-sulphonate 3226 100 OP7
Tetramine palladium (II) nitrate 3234 100 OP6 +30 +35

§173.225 Packaging requirements and other provisions for organic peroxides.

* * * * *

(c) * * *

Table 1 to Paragraph (c)—Organic Peroxide Table
Technical name ID No. Concentration (mass %) Diluent (mass %) Water (mass %) Packing method Temperature (°C) Notes
A B I Control Emergency
(1) (2) (3) (4a) (4b) (4c) (5) (6) (7a) (7b) (8)
Acetyl acetone peroxide UN3105 ≤42 ≥48 ≥8 OP7 2
Acetyl acetone peroxide [as a paste] UN3106 ≤32 OP7 21
Acetyl cyclohexanesulfonyl peroxide UN3112 ≤82 ≥12 OP4 −10 0
Acetyl cyclohexanesulfonyl peroxide UN3115 ≤32 ≥68 OP7 −10 0
tert-Amyl hydroperoxide UN3107 ≤88 ≥6 ≥6 OP8
tert-Amyl peroxyacetate UN3105 ≤62 ≥38 OP7
tert-Amyl peroxybenzoate UN3103 ≤100 OP5
tert-Amyl peroxy-2-ethylhexanoate UN3115 ≤100 OP7 +20 +25
tert-Amyl peroxy-2-ethylhexyl carbonate UN3105 ≤100 OP7
tert-Amyl peroxy isopropyl carbonate UN3103 ≤77 ≥23 OP5
tert-Amyl peroxyneodecanoate UN3115 ≤77 ≥23 OP7 0 +10
tert-Amyl peroxyneodecanoate UN3119 ≤47 ≥53 OP8 0 +10
tert-Amyl peroxypivalate UN3113 ≤77 ≥23 OP5 +10 +15
tert-Amyl peroxypivalate UN3119 ≤32 ≥68 OP8 +10 +15
tert-Amyl peroxy-3,5,5-trimethylhexanoate UN3105 ≤100 OP7
tert-Butyl cumyl peroxide UN3109 >42−100 OP8 9
tert-Butyl cumyl peroxide UN3108 ≤52 ≥48 OP8 9
n-Butyl-4,4-di-(tert-butylperoxy)valerate UN3103 >52−100 OP5
n-Butyl-4,4-di-(tert-butylperoxy)valerate UN3108 ≤52 ≥48 OP8
tert-Butyl hydroperoxide UN3103 >79−90 ≥10 OP5 13
tert-Butyl hydroperoxide UN3105 ≤80 ≥20 OP7 4, 13
tert-Butyl hydroperoxide UN3107 ≤79 >14 OP8 13, 16
tert-Butyl hydroperoxide UN3109 ≤72 ≥28 OP8 13
tert-Butyl hydroperoxide [and] Di-tert-butylperoxide UN3103 <82 + >9 ≥7 OP5 13
tert-Butyl monoperoxymaleate UN3102 >52−100 OP5
tert-Butyl monoperoxymaleate UN3103 ≤52 ≥48 OP6
tert-Butyl monoperoxymaleate UN3108 ≤52 ≥48 OP8
tert-Butyl monoperoxymaleate [as a paste] UN3108 ≤52 OP8
tert-Butyl peroxyacetate UN3101 >52−77 ≥23 OP5
tert-Butyl peroxyacetate UN3103 >32−52 ≥48 OP6
tert-Butyl peroxyacetate UN3109 ≤32 ≥68 OP8
tert-Butyl peroxybenzoate UN3103 >77−100 OP5
tert-Butyl peroxybenzoate UN3105 >52−77 ≥23 OP7 1
tert-Butyl peroxybenzoate UN3106 ≤52 ≥48 OP7
tert-Butyl peroxybenzoate UN3109 ≤32 ≥68 OP8
tert-Butyl peroxybutyl fumarate UN3105 ≤52 ≥48 OP7
tert-Butyl peroxycrotonate UN3105 ≤77 ≥23 OP7
tert-Butyl peroxydiethylacetate UN3113 ≤100 OP5 +20 +25
tert-Butyl peroxy-2-ethylhexanoate UN3113 >52−100 OP6 +20 +25
tert-Butyl peroxy-2-ethylhexanoate UN3117 >32−52 ≥48 OP8 +30 +35
tert-Butyl peroxy-2-ethylhexanoate UN3118 ≤52 ≥48 OP8 +20 +25
tert-Butyl peroxy-2-ethylhexanoate UN3119 ≤32 ≥68 OP8 +40 +45
tert-Butyl peroxy-2-ethylhexanoate [and] 2,2-di-(tert-Butylperoxy)butane UN3106 ≤12 + ≤14 ≥14 ≥60 OP7
tert-Butyl peroxy-2-ethylhexanoate [and] 2,2-di-(tert-Butylperoxy)butane UN3115 ≤31 + ≤36 ≥33 OP7 +35 +40
tert-Butyl peroxy-2-ethylhexylcarbonate UN3105 ≤100 OP7
tert-Butyl peroxyisobutyrate UN3111 >52−77 ≥23 OP5 +15 +20
tert-Butyl peroxyisobutyrate UN3115 ≤52 ≥48 OP7 +15 +20
tert-Butylperoxy isopropylcarbonate UN3103 ≤77 ≥23 OP5
1-(2-tert-Butylperoxy isopropyl)-3-isopropenylbenzene UN3105 ≤77 ≥23 OP7
1-(2-tert-Butylperoxy isopropyl)-3-isopropenylbenzene UN3108 ≤42 ≥58 OP8
tert-Butyl peroxy-2-methylbenzoate UN3103 ≤100 OP5
tert-Butyl peroxyneodecanoate UN3115 >77−100 OP7 −5 +5
tert-Butyl peroxyneodecanoate UN3115 ≤77 ≥23 OP7 0 +10
tert-Butyl peroxyneodecanoate [as a stable dispersion in water] UN3119 ≤52 OP8 0 +10
tert-Butyl peroxyneodecanoate [as a stable dispersion in water (frozen)] UN3118 ≤42 OP8 0 +10
tert-Butyl peroxyneodecanoate UN3119 ≤32 ≥68 OP8 0 +10
tert-Butyl peroxyneoheptanoate UN3115 ≤77 ≥23 OP7 0 +10
tert-Butyl peroxyneoheptanoate [as a stable dispersion in water] UN3117 ≤42 OP8 0 +10
tert-Butyl peroxypivalate UN3113 >67−77 ≥23 OP5 0 +10
tert-Butyl peroxypivalate UN3115 >27−67 ≥33 OP7 0 +10
tert-Butyl peroxypivalate UN3119 ≤27 ≥73 OP8 +30 +35
tert-Butylperoxy stearylcarbonate UN3106 ≤100 OP7
tert-Butyl peroxy-3,5,5-trimethylhexanoate UN3105 >37−100 OP7
tert-Butyl peroxy-3,5,5-trimethlyhexanoate UN3106 ≤42 ≥58 OP7
tert-Butyl peroxy-3,5,5-trimethylhexanoate UN3109 ≤37 ≥63 OP8
3-Chloroperoxybenzoic acid UN3102 >57−86 ≥14 OP1
3-Chloroperoxybenzoic acid UN3106 ≤57 ≥3 ≥40 OP7
3-Chloroperoxybenzoic acid UN3106 ≤77 ≥6 ≥17 OP7
Cumyl hydroperoxide UN3107 >90−98 ≤10 OP8 13
Cumyl hydroperoxide UN3109 ≤90 ≥10 OP8 13, 15
Cumyl peroxyneodecanoate UN3115 ≤87 ≥13 OP7 −10 0
Cumyl peroxyneodecanoate UN3115 ≤77 ≥23 OP7 −10 0
Cumyl peroxyneodecanoate [as a stable dispersion in water] UN3119 ≤52 OP8 −10 0
Cumyl peroxyneoheptanoate UN3115 ≤77 ≥23 OP7 −10 0
Cumyl peroxypivalate UN3115 ≤77 ≥23 OP7 −5 +5
Cyclohexanone peroxide(s) UN3104 ≤91 ≥9 OP6 13
Cyclohexanone peroxide(s) UN3105 ≤72 ≥28 OP7 5
Cyclohexanone peroxide(s) [as a paste] UN3106 ≤72 OP7 5, 21
Cyclohexanone peroxide(s) Exempt ≤32 >68 Exempt 29
Diacetone alcohol peroxides UN3115 ≤57 ≥26 ≥8 OP7 +40 +45 5
Diacetyl peroxide UN3115 ≤27 ≥73 OP7 +20 +25 8,13
Di-tert-amyl peroxide UN3107 ≤100 OP8
([3R- (3R, 5aS, 6S, 8aS, 9R, 10R, 12S, 12aR**)]-Decahydro-10-methoxy-3, 6, 9-trimethyl-3, 12-epoxy-12H-pyrano [4, 3- j]-1, 2-benzodioxepin) UN3106 ≤100 OP7
2,2-Di-(tert-amylperoxy)-butane UN3105 ≤57 ≥43 OP7
1,1-Di-(tert-amylperoxy)cyclohexane UN3103 ≤82 ≥18 OP6
Dibenzoyl peroxide UN3102 >52−100 ≤48 OP2 3
Dibenzoyl peroxide UN3102 >77−94 ≥6 OP4 3
Dibenzoyl peroxide UN3104 ≤77 ≥23 OP6
Dibenzoyl peroxide UN3106 ≤62 ≥28 ≥10 OP7
Dibenzoyl peroxide [as a paste] UN3106 >52−62 OP7 21
Dibenzoyl peroxide UN3106 >35−52 ≥48 OP7
Dibenzoyl peroxide UN3107 >36−42 ≥18 ≤40 OP8
Dibenzoyl peroxide [as a paste] UN3108 ≤56.5 ≥15 OP8
Dibenzoyl peroxide [as a paste] UN3108 ≤52 OP8 21
Dibenzoyl peroxide [as a stable dispersion in water] UN3109 ≤42 OP8
Dibenzoyl peroxide Exempt ≤35 ≥65 Exempt 29
Di-(4-tert-butylcyclohexyl)peroxydicarbonate UN3114 ≤100 OP6 +30 +35
Di-(4-tert-butylcyclohexyl)peroxydicarbonate [as a stable dispersion in water] UN3119 ≤42 OP8 +30 +35
Di-(4-tert-butylcyclohexyl)peroxydicarbonate [as a paste] UN3116 ≤42 OP7 +35 +40
Di-tert-butyl peroxide UN3107 >52−100 OP8
Di-tert-butyl peroxide UN3109 ≤52 ≥48 OP8 24
Di-tert-butyl peroxyazelate UN3105 ≤52 ≥48 OP7
2,2-Di-(tert-butylperoxy)butane UN3103 ≤52 ≥48 OP6
1,6-Di-(tert-butylperoxycarbonyloxy)hexane UN3103 ≤72 ≥28 OP5
1,1-Di-(tert-butylperoxy)cyclohexane UN3101 >80−100 OP5
1,1-Di-(tert-butylperoxy)cyclohexane UN3103 >52−80 ≥20 OP5
1,1-Di-(tert-butylperoxy)-cyclohexane UN3103 ≤72 ≥28 OP5 30
1,1-Di-(tert-butylperoxy)cyclohexane UN3105 >42−52 ≥48 OP7
1,1-Di-(tert-butylperoxy)cyclohexane UN3106 ≤42 ≥13 ≥45 OP7
1,1-Di-(tert-butylperoxy)cyclohexane UN3107 ≤27 ≥25 OP8 22
1,1-Di-(tert-butylperoxy)cyclohexane UN3109 ≤42 ≥58 OP8
1,1-Di-(tert-Butylperoxy) cyclohexane UN3109 ≤37 ≥63 OP8
1,1-Di-(tert-butylperoxy)cyclohexane UN3109 ≤25 ≥25 ≥50 OP8
1,1-Di-(tert-butylperoxy)cyclohexane UN3109 ≤13 ≥13 ≥74 OP8
1,1-Di-(tert-butylperoxy)cyclohexane + tert-Butyl peroxy-2-ethylhexanoate UN3105 ≤43 + ≤16 ≥41 OP7
Di-n-butyl peroxydicarbonate UN3115 >27−52 ≥48 OP7 −15 −5
Di-n-butyl peroxydicarbonate UN3117 ≤27 ≥73 OP8 −10 0
Di-n-butyl peroxydicarbonate [as a stable dispersion in water (frozen)] UN3118 ≤42 OP8 −15 −5
Di-sec-butyl peroxydicarbonate UN3113 >52−100 OP4 −20 −10 6
Di-sec-butyl peroxydicarbonate UN3115 ≤52 ≥48 OP7 −15 −5
Di-(tert-butylperoxyisopropyl) benzene(s) UN3106 >42−100 ≤57 OP7 1, 9
Di-(tert-butylperoxyisopropyl) benzene(s) Exempt ≤42 ≥58 Exempt
Di-(tert-butylperoxy)phthalate UN3105 >42−52 ≥48 OP7
Di-(tert-butylperoxy)phthalate [as a paste] UN3106 ≤52 OP7 21
Di-(tert-butylperoxy)phthalate UN3107 ≤42 ≥58 OP8
2,2-Di-(tert-butylperoxy)propane UN3105 ≤52 ≥48 OP7
2,2-Di-(tert-butylperoxy)propane UN3106 ≤42 ≥13 ≥45 OP7
1,1-Di-(tert-butylperoxy)-3,3,5-trimethylcyclohexane UN3101 >90−100 OP5
1,1-Di-(tert-butylperoxy)-3,3,5-trimethylcyclohexane UN3103 >57−90 ≥10 OP5
1,1-Di-(tert-butylperoxy)-3,3,5-trimethylcyclohexane UN3103 ≤77 ≥23 OP5
1,1-Di-(tert-butylperoxy)-3,3,5-trimethylcyclohexane UN3103 ≤90 ≥10 OP5 30
1,1-Di-(tert-butylperoxy)-3,3,5-trimethylcyclohexane UN3110 ≤57 ≥43 OP8
1,1-Di-(tert-butylperoxy)-3,3,5-trimethylcyclohexane UN3107 ≤57 ≥43 OP8
1,1-Di-(tert-butylperoxy)-3,3,5-trimethylcyclohexane UN3107 ≤32 ≥26 ≥42 OP8
Dicetyl peroxydicarbonate UN3120 ≤100 OP8 +30 +35
Dicetyl peroxydicarbonate [as a stable dispersion in water] UN3119 ≤42 OP8 +30 +35
Di-4-chlorobenzoyl peroxide UN3102 ≤77 ≥23 OP5
Di-4-chlorobenzoyl peroxide Exempt ≤32 ≥68 Exempt 29
Di-2,4-dichlorobenzoyl peroxide [as a paste] UN3118 ≤52 OP8 +20 +25
Di-4-chlorobenzoyl peroxide [as a paste] UN3106 ≤52 OP7 21
Dicumyl peroxide UN3110 >52−100 ≤48 OP8 9
Dicumyl peroxide Exempt ≤52 ≥48 Exempt 29
Dicyclohexyl peroxydicarbonate UN3112 >91−100 OP3 +10 +15
Dicyclohexyl peroxydicarbonate UN3114 ≤91 ≥9 OP5 +10 +15
Dicyclohexyl peroxydicarbonate [as a stable dispersion in water] UN3119 ≤42 OP8 +15 +20
Didecanoyl peroxide UN3114 ≤100 OP6 +30 +35
2,2-Di-(4,4-di(tert-butylperoxy)cyclohexyl)propane UN3106 ≤42 ≥58 OP7
2,2-Di-(4,4-di(tert-butylperoxy)cyclohexyl)propane UN3107 ≤22 ≥78 OP8
Di-2,4-dichlorobenzoyl peroxide UN3102 ≤77 ≥23 OP5
Di-2,4-dichlorobenzoyl peroxide [as a paste with silicone oil] UN3106 ≤52 OP7
Di-(2-ethoxyethyl) peroxydicarbonate UN3115 ≤52 ≥48 OP7 −10 0
Di-(2-ethylhexyl) peroxydicarbonate UN3113 >77−100 OP5 −20 −10
Di-(2-ethylhexyl) peroxydicarbonate UN3115 ≤77 ≥23 OP7 −15 −5
Di-(2-ethylhexyl) peroxydicarbonate [as a stable dispersion in water] UN3119 ≤62 OP8 −15 −5
Di-(2-ethylhexyl) peroxydicarbonate [as a stable dispersion in water] UN3119 ≤52 OP8 −15 −5
Di-(2-ethylhexyl) peroxydicarbonate [as a stable dispersion in water (frozen)] UN3120 ≤52 OP8 −15 −5
2,2-Dihydroperoxypropane UN3102 ≤27 ≥73 OP5
Di-(1-hydroxycyclohexyl)peroxide UN3106 ≤100 OP7
Diisobutyryl peroxide UN3111 >32−52 ≥48 OP5 −20 −10
Diisobutyryl peroxide [as a stable dispersion in water] UN3119 ≤42 OP8 −20 −10
Diisobutyryl peroxide UN3115 ≤32 ≥68 OP7 −20 −10
Diisopropylbenzene dihydroperoxie UN3106 ≤82 ≥5 ≥5 OP7 17
Diisopropyl peroxydicarbonate UN3112 >52−100 OP2 −15 −5
Diisopropyl peroxydicarbonate UN3115 ≤52 ≥48 OP7 −20 −10
Diisopropyl peroxydicarbonate UN3115 ≤32 ≥68 OP7 −15 −5
Dilauroyl peroxide UN3106 ≤100 OP7
Dilauroyl peroxide [as a stable dispersion in water] UN3109 ≤42 OP8
Di-(3-methoxybutyl) peroxydicarbonate UN3115 ≤52 ≥48 OP7 −5 +5
Di-(2-methylbenzoyl)peroxide UN3112 ≤87 ≥13 OP5 +30 +35
Di-(4-methylbenzoyl)peroxide [as a paste with silicone oil] UN3106 ≤52 OP7
Di-(3-methylbenzoyl) peroxide + Benzoyl (3-methylbenzoyl) peroxide + Dibenzoyl peroxide UN3115 ≤20 + ≤18 + ≤4 ≥58 OP7 +35 +40
2,5-Dimethyl-2,5-di-(benzoylperoxy)hexane UN3102 >82−100 OP5
2,5-Dimethyl-2,5-di-(benzoylperoxy)hexane UN3106 ≤82 ≥18 OP7
2,5-Dimethyl-2,5-di-(benzoylperoxy)hexane UN3104 ≤82 ≥18 OP5
2,5-Dimethyl-2,5-di-(tert-butylperoxy)hexane UN3103 >90−100 OP5
2,5-Dimethyl-2,5-di-(tert-butylperoxy)hexane UN3105 >52—90 ≥10 OP7
2,5-Dimethyl-2,5-di-(tert-butylperoxy)hexane UN3108 ≤77 ≥23 OP8
2,5-Dimethyl-2,5-di-(tert-butylperoxy)hexane UN3109 ≤52 ≥48 OP8
2,5-Dimethyl-2,5-di-(tert-butylperoxy)hexane [as a paste] UN3108 ≤47 OP8
2,5-Dimethyl-2,5-di-(tert-butylperoxy)hexyne-3 UN3101 >86−100 OP5
2,5-Dimethyl-2,5-di-(tert-butylperoxy)hexyne-3 UN3103 >52−86 ≥14 OP5
2,5-Dimethyl-2,5-di-(tert-butylperoxy)hexyne-3 UN3106 ≤52 ≥48 OP7
2,5-Dimethyl-2,5-di-(2-ethylhexanoylperoxy)hexane UN3113 ≤100 OP5 +20 +25
2,5-Dimethyl-2,5-dihydroperoxyhexane UN3104 ≤82 ≥18 OP6
2,5-Dimethyl-2,5-di-(3,5,5-trimethylhexanoylperoxy)hexane UN3105 ≤77 ≥23 OP7
1,1-Dimethyl-3-hydroxybutylperoxyneoheptanoate UN3117 ≤52 ≥48 OP8 0 +10
Dimyristyl peroxydicarbonate UN3116 ≤100 OP7 +20 +25
Dimyristyl peroxydicarbonate [as a stable dispersion in water] UN3119 ≤42 OP8 +20 +25
Di-(2-neodecanoylperoxyisopropyl)benzene UN3115 ≤52 ≥48 OP7 −10 0
Di-(2-neodecanoyl-peroxyisopropyl) benzene, as stable dispersion in water UN3119 ≤42 OP8 −15 −5
Di-n-nonanoyl peroxide UN3116 ≤100 OP7 0 +10
Di-n-octanoyl peroxide UN3114 ≤100 OP5 +10 +15
Di-(2-phenoxyethyl)peroxydicarbonate UN3102 >85−100 OP5
Di-(2-phenoxyethyl)peroxydicarbonate UN3106 ≤85 ≥15 OP7
Dipropionyl peroxide UN3117 ≤27 ≥73 OP8 +15 +20
Di-n-propyl peroxydicarbonate UN3113 ≤100 OP3 −25 −15
Di-n-propyl peroxydicarbonate UN3113 ≤77 ≥23 OP5 −20 −10
Disuccinic acid peroxide UN3102 >72−100 OP4 18
Disuccinic acid peroxide UN3116 ≤72 ≥28 OP7 +10 +15
Di-(3,5,5-trimethylhexanoyl) peroxide UN3115 >52−82 ≥18 OP7 0 +10
Di-(3,5,5-trimethylhexanoyl)peroxide [as a stable dispersion in water] UN3119 ≤52 OP8 +10 +15
Di-(3,5,5-trimethylhexanoyl) peroxide UN3119 >38−52 ≥48 OP8 +10 +15
Di-(3,5,5-trimethylhexanoyl)peroxide UN3119 ≤38 ≥62 OP8 +20 +25
Ethyl 3,3-di-(tert-amylperoxy)butyrate UN3105 ≤67 ≥33 OP7
Ethyl 3,3-di-(tert-butylperoxy)butyrate UN3103 >77−100 OP5
Ethyl 3,3-di-(tert-butylperoxy)butyrate UN3105 ≤77 ≥23 OP7
Ethyl 3,3-di-(tert-butylperoxy)butyrate UN3106 ≤52 ≥48 OP7
1-(2-ethylhexanoylperoxy)-1,3-Dimethylbutyl peroxypivalate UN3115 ≤52 ≥45 ≥10 OP7 −20 −10
tert-Hexyl peroxyneodecanoate UN3115 ≤71 ≥29 OP7 0 +10
tert-Hexyl peroxypivalate UN3115 ≤72 ≥28 OP7 +10 +15
3-Hydroxy-1,1-dimethylbutyl peroxyneodecanoate UN3115 ≤77 ≥23 OP7 −5 +5
3-Hydroxy-1,1-dimethylbutyl peroxyneodecanoate [as a stable dispersion in water] UN3119 ≤52 OP8 −5 +5
3-Hydroxy-1,1-dimethylbutyl peroxyneodecanoate UN3117 ≤52 ≥48 OP8 −5 +5
Isopropyl sec-butyl peroxydicarbonat + Di-sec-butyl peroxydicarbonate + Di-isopropyl peroxydicarbonate UN3111 ≤52 + ≤28 + ≤22 OP5 −20 −10
Isopropyl sec-butyl peroxydicarbonate + Di-sec-butyl peroxydicarbonate + Di-isopropyl peroxydicarbonate UN3115 ≤32 + ≤15 −18 + ≤12 −15 ≥38 OP7 −20 −10
Isopropylcumyl hydroperoxide UN3109 ≤72 ≥28 OP8 13
p-Menthyl hydroperoxide UN3105 >72−100 OP7 13
p-Menthyl hydroperoxide UN3109 ≤72 ≥28 OP8
Methylcyclohexanone peroxide(s) UN3115 ≤67 ≥33 OP7 +35 +40
Methyl ethyl ketone peroxide(s) UN3101 ≤52 ≥48 OP5 5, 13
Methyl ethyl ketone peroxide(s) UN3105 ≤45 ≥55 OP7 5
Methyl ethyl ketone peroxide(s) UN3107 ≤40 ≥60 OP8 7
Methyl isobutyl ketone peroxide(s) UN3105 ≤62 ≥19 OP7 5, 23
Methyl isopropyl ketone peroxide(s) UN3109 (See remark 31) ≥70 OP8 31
Organic peroxide, liquid, sample UN3103 OP2 12
Organic peroxide, liquid, sample, temperature controlled UN3113 OP2 12
Organic peroxide, solid, sample UN3104 OP2 12
Organic peroxide, solid, sample, temperature controlled UN3114 OP2 12
3,3,5,7,7-Pentamethyl-1,2,4-Trioxepane UN3107 ≤100 OP8
Peroxyacetic acid, type D, stabilized UN3105 ≤43 OP7 13, 20
Peroxyacetic acid, type E, stabilized UN3107 ≤43 OP8 13, 20
Peroxyacetic acid, type F, stabilized UN3109 ≤43 OP8 13, 20, 28
Peroxyacetic acid or peracetic acid [with not more than 7% hydrogen peroxide] UN3107 ≤36 ≥15 OP8 13, 20, 28
Peroxyacetic acid or peracetic acid [with not more than 20% hydrogen peroxide] Exempt ≤6 ≥60 Exempt 28
Peroxyacetic acid or peracetic acid [with not more than 26% hydrogen peroxide] UN3109 ≤17 OP8 13, 20, 28
Peroxylauric acid UN3118 ≤100 OP8 +35 +40
1-Phenylethyl hydroperoxide UN3109 ≤38 ≥62 OP8
Pinanyl hydroperoxide UN3105 >56−100 OP7 13
Pinanyl hydroperoxide UN3109 ≤56 ≥44 OP8
Polyether poly-tert-butylperoxycarbonate UN3107 ≤52 ≥48 OP8
Tetrahydronaphthyl hydroperoxide UN3106 ≤100 OP7
1,1,3,3-Tetramethylbutyl hydroperoxide UN3105 ≤100 OP7
1,1,3,3-Tetramethylbutyl peroxy-2-ethylhexanoate UN3115 ≤100 OP7 +15 +20
1,1,3,3-Tetramethylbutyl peroxyneodecanoate UN3115 ≤72 ≥28 OP7 −5 +5
1,1,3,3-Tetramethylbutyl peroxyneodecanoate [as a stable dispersion in water] UN3119 ≤52 OP8 −5 +5
1,1,3,3-tetramethylbutyl peroxypivalate UN3115 ≤77 ≥23 OP7 0 +10
3,6,9-Triethyl-3,6,9-trimethyl-1,4,7-triperoxonane UN3110 ≤17 ≥18 ≥65 OP8
3,6,9-Triethyl-3,6,9-trimethyl-1,4,7-triperoxonane UN3105 ≤42 ≥58 OP7 26
Notes:
1. For domestic shipments, OP8 is authorized.
2. Available oxygen must be <4.7%.
3. For concentrations <80% OP5 is allowed. For concentrations of at least 80% but <85%, OP4 is allowed. For concentrations of at least 85%, maximum package size is OP2.
4. The diluent may be replaced by di-tert-butyl peroxide.
5. Available oxygen must be ≤9% with or without water.
6. For domestic shipments, OP5 is authorized.
7. Available oxygen must be ≤8.2% with or without water.
8. Only non-metallic packagings are authorized.
9. For domestic shipments this material may be transported under the provisions of paragraph (h)(3)(xii) of this section.
10. [Reserved]
11. [Reserved]
12. Samples may only be offered for transportation under the provisions of paragraph (b)(2) of this section.
13. “Corrosive” subsidiary risk label is required.
14. [Reserved]
15. No “Corrosive” subsidiary risk label is required for concentrations below 80%.
16. With <6% di-tert-butyl peroxide.
17. With ≤8% 1-isopropylhydroperoxy-4-isopropylhydroxybenzene.
18. Addition of water to this organic peroxide will decrease its thermal stability.
19. [Reserved]
20. Mixtures with hydrogen peroxide, water and acid(s).
21. With diluent type A, with or without water.
22. With ≥36% diluent type A by mass, and in addition ethylbenzene.
23. With ≥19% diluent type A by mass, and in addition methyl isobutyl ketone.
24. Diluent type B with boiling point >100 C.
25. No “Corrosive” subsidiary risk label is required for concentrations below 56%.
26. Available oxygen must be ≤7.6%.
27. Formulations derived from distillation of peroxyacetic acid originating from peroxyacetic acid in a concentration of not more than 41% with water, total active oxygen less than or equal to 9.5% (peroxyacetic acid plus hydrogen peroxide).
28. For the purposes of this section, the names “Peroxyacetic acid” and “Peracetic acid” are synonymous.
29. Not subject to the requirements of this subchapter for Division 5.2.
30. Diluent type B with boiling point >130°C (266°F).
31. Available oxygen ≤6.7%.

(d) *****

Table to Paragraph (d): Maximum Quantity per Packaging/Package

* * * * *

(g) * * *

Table to Paragraph (g) —Organic Peroxide Portable Tank Table
UN No. Hazardous material Minimum test pressure (bar) Minimum shell thickness (mm-reference steel) See . . . Bottom opening requirements See . . . Pressure-relief requirements See . . . Filling limits Control temperature Emergency temperature
3109 ORGANIC PEROXIDE, TYPE F, LIQUID
tert-Butyl hydroperoxide, not more than 72% with water.
*Provided that steps have been taken to achieve the safety equivalence of 65% tert-Butyl hydroperoxide and 35% water.
4 §178.274(d)(2) §178.275(d)(3) §178.275(g)(1) Not more than 90% at 59°F (15°C)
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
Note: 1. “Corrosive” subsidiary risk placard is required.

* * * * *

§173.301b Additional general requirements for shipment of UN pressure receptacles.

* * * * *

(c) * * *

(1) When the use of a valve is prescribed, the valve must conform to the requirements in ISO 10297:2014(E) and ISO 10297:2014/Amd 1:2017 (IBR, see §171.7 of this subchapter). Quick release cylinder valves for specification and type testing must conform to the requirements in ISO 17871:2015(E) (IBR, see §171.7 of this subchapter). Until December 31, 2022, the manufacture of a valve conforming to the requirements in ISO 10297:2014(E) is authorized. Until December 31, 2020, the manufacture of a valve conforming to the requirements in ISO 10297:2006(E) (IBR, see §171.7 of this subchapter) was authorized. Until December 31, 2008, the manufacture of a valve conforming to the requirements in ISO 10297:1999(E) (IBR, see §171.7 of this subchapter) was authorized.

(2) * * *

(ii) By equipping the UN pressure receptacle with a valve cap conforming to the requirements in ISO 11117:2008(E) and Technical Corrigendum 1 (IBR, see §171.7 of this subchapter). Until December 31, 2014, the manufacture of a valve cap conforming to the requirements in ISO 11117:1998(E) (IBR, see §171.7 of this subchapter) was authorized. The cap must have vent-holes of sufficient cross-sectional area to evacuate the gas if leakage occurs at the valve;

(iii) By protecting the valves by shrouds or guards conforming to the requirements in ISO 11117:2008(E) and Technical Corrigendum 1 (IBR; see §171.7 of this subchapter). Until December 31, 2014, the manufacture of a shroud or guard conforming to the requirements in ISO 11117:1998(E) (IBR, see §171.7 of this subchapter) was authorized. For metal hydride storage systems, by protecting the valves in accordance with the requirements in ISO 16111:2008(E) (IBR; see §171.7 of this subchapter).

(iv) By using valves designed and constructed with sufficient inherent strength to withstand damage in accordance with Annex B of ISO 10297:2014(E)/Amd. 1: 2017;

* * * * *

(d) Non-refillable UN pressure receptacles. (1) When the use of a valve is prescribed, the valve must conform to the requirements in ISO 11118:2015(E), (IBR, see §171.7 of this subchapter). Manufacture of valves to ISO 13340:2001(E) is authorized until December 31, 2020;

* * * * *

(f) Hydrogen bearing gases. A steel UN pressure receptacle bearing an ‘‘H’’ mark must be used for hydrogen bearing gases or other embrittling gases that have the potential of causing hydrogen embrittlement.

* * * * *

§173.302c Additional requirements for the shipment of adsorbed gases in UN pressure receptacles.

* * * * *

(k) The filling procedure must be in accordance with Annex A of ISO 11513 (IBR, see §171.7 of this subchapter).

* * * * *

§173.311 Metal hydride storage systems.

The following packing instruction is applicable to transportable UN Metal hydride storage systems (UN3468) with pressure receptacles not exceeding 150 liters (40 gallons) in water capacity and having a maximum developed pressure not exceeding 25 MPa. Metal hydride storage systems must be designed, constructed, initially inspected and tested in accordance with ISO 16111 (IBR, see §171.7 of this subchapter) as authorized under §178.71(m) of this subchapter. Steel pressure receptacles or composite pressure receptacles with steel liners must be marked in accordance with §173.301b(f) of this part which specifies that a steel UN pressure receptacle bearing an “H” mark must be used for hydrogen bearing gases or other gases that may cause hydrogen embrittlement. Requalification intervals must be no more than every five years as specified in §180.207 of this subchapter in accordance with the requalification procedures prescribed in ISO 16111.

§175.10 Exceptions for passengers, crewmembers, and air operators.

(a) This subchapter does not apply to the following hazardous materials when carried by aircraft passengers or crewmembers provided the requirements of §§171.15 and 171.16 (see paragraph (c) of this section) and the requirements of this section are met:

* * * * *

(14) Battery powered heat-producing devices (e.g., battery-operated equipment such as diving lamps and soldering equipment) as checked or carry-on baggage and with the approval of the operator of the aircraft. The heating element, the battery, or other component (e.g., fuse) must be isolated to prevent unintentional activation during transport. Any battery that is removed must be carried in accordance with the provisions for spare batteries in paragraph (a)(18) of this section.

* * * * *

(15) * * *

(v) * * *

(A) Securely attached to the wheelchair or mobility aid;

* * * * *

(vi) * * *

(A) Securely attached to the wheelchair or mobility aid; or

* * * * *

(17) * * *

(ii) * * *

(C) The battery must be securely attached to the mobility aid; and

* * * * *

(18) Except as provided in §173.21 of this subchapter, portable electronic devices (e.g., watches, calculating machines, cameras, cellular phones, laptop and notebook computers, camcorders, medical devices, etc.) containing dry cells or dry batteries (including lithium cells or batteries) and spare dry cells or batteries for these devices, when carried by passengers or crew members for personal use. Portable electronic devices powered by lithium batteries may be carried in either checked or carry-on baggage. When carried in checked baggage, portable electronic devices powered by lithium batteries must be completely switched off (not in sleep or hibernation mode) and protected to prevent unintentional activation or damage. Spare lithium batteries must be carried in carry-on baggage only. Each installed or spare lithium battery must be of a type proven to meet the requirements of each test in the UN Manual of Tests and Criteria, Part III, Sub-section 38.3, and each spare lithium battery must be individually protected so as to prevent short circuits (e.g., by placement in original retail packaging, by otherwise insulating terminals by taping over exposed terminals, or placing each battery in a separate plastic bag or protective pouch). In addition, each installed or spare lithium battery:

* * * * *

(26) Baggage equipped with lithium battery(ies) must be carried as carry-on baggage unless the battery(ies) is removed from the baggage. Removed battery(ies) must be carried in accordance with the provision for spare batteries prescribed in paragraph (a)(18) of this section. The provisions of this paragraph do not apply to baggage equipped with lithium batteries not exceeding:

* * * * *

§175.33 Shipping paper and information to the pilot-in-command.

(a) * * *

(13) * * *

(iii) For UN3480, UN3481, UN3090, and UN3091 prepared in accordance with §173.185(c), except those prepared in accordance with §173.185(c)(4)(vi), are not required to appear on the information to the pilot-in-command.

* * * * *

§178.37 Specification 3AA and 3AAX seamless steel cylinders.

* * * * *

(j) Flattening test. A flattening test must be performed on one cylinder taken at random out of each lot of 200 or less, by placing the cylinder between wedge shaped knife edges having a 60° included angle, rounded to ½-inch radius. The longitudinal axis of the cylinder must be at a 90-degree angle to knife edges during the test. For lots of 30 or less, flattening tests are authorized to be made on a ring at least 8 inches long cut from each cylinder and subjected to the same heat treatment as the finished cylinder. Cylinders may be subjected to a bend test in lieu of the flattening test. Two bend test specimens must be taken in accordance with ISO 9809–1 or ASTM E 290 (IBR, see §171.7 of this subchapter), and must be subjected to the bend test specified therein.

* * * * *

§178.71 Specifications for UN pressure receptacles.

* * * * *

(f) * * *

(4) ISO 21172-1:2015(E) Gas cylinders—Welded steel pressure drums up to 3,000 litres capacity for the transport of gases—Design and construction—Part 1: Capacities up to 1,000 litres (IBR, see §171.7 of this subchapter). Irrespective of section 6.3.3.4 of this standard, welded steel gas pressure drums with dished ends convex to pressure may be used for the transport of corrosive substances provided all applicable additional requirements are met.

(g) Design and construction requirements for UN refillable seamless steel cylinders. In addition to the general requirements of this section, UN refillable seamless steel cylinders must conform to the following ISO standards, as applicable:

(1) ISO 9809-1:2010 Gas cylinders—Refillable seamless steel gas cylinders—Design, construction and testing—Part 1: Quenched and tempered steel cylinders with tensile strength less than 1100 MPa. (IBR, see §171.7 of this subchapter). Until December 31, 2018, the manufacture of a cylinder conforming to the requirements in ISO 9809-1:1999 (IBR, see §171.7 of this subchapter) is authorized.

(2) ISO 9809-2: Gas cylinders—Refillable seamless steel gas cylinders—Design, construction and testing—Part 2: Quenched and tempered steel cylinders with tensile strength greater than or equal to 1100 MPa. (IBR, see §171.7 of this subchapter). Until December 31, 2018, the manufacture of a cylinder conforming to the requirements in ISO 9809-2:2000 (IBR, see §171.7 of this subchapter) is authorized.

(3) ISO 9809-3: Gas cylinders—Refillable seamless steel gas cylinders—Design, construction and testing—Part 3: Normalized steel cylinders. (IBR, see §171.7 of this subchapter). Until December 31, 2018, the manufacture of a cylinder conforming to the requirements in ISO 9809-3:2000 (IBR, see §171.7 of this subchapter) is authorized.

(4) ISO 9809-4:2014(E) (IBR, see §171.7 of this subchapter).

* * * * *

(i) Design and construction requirements for UN non-refillable metal cylinders. In addition to the general requirements of this section, UN non-refillable metal cylinders must conform to ISO 11118:2015(E) Gas cylinders—Non-refillable metallic gas cylinders—Specification and test methods (IBR, see §171.7 of this subchapter). Until December 31, 2020, cylinders conforming to ISO 11118:1999(E) Gas cylinders—Non-refillable metallic gas cylinders—Specification and test methods (IBR, see §171.7 of this subchapter) are authorized.

* * * * *

(k) * * *

(1) * * *

(i) ISO 9809-1:2010 Gas cylinders—Refillable seamless steel gas cylinders—Design, construction and testing—Part 1: Quenched and tempered steel cylinders with tensile strength less than 1100 MPa. Until December 31, 2018, the manufacture of a cylinder conforming to the requirements in ISO 9809-1:1999 (IBR, see §171.7 of this subchapter) is authorized.

(ii) ISO 9809-3: Gas cylinders—Refillable seamless steel gas cylinders—Design, construction and testing—Part 3: Normalized steel cylinders. Until December 31, 2018, the manufacture of a cylinder conforming to the requirements in ISO 9809-3:2000 (IBR, see §171.7 of this subchapter) is authorized.

* * * * *

(m) Design and construction requirements for UN metal hydride storage systems. In addition to the general requirements of this section, metal hydride storage systems must conform to the following ISO standards, as applicable: ISO 16111: Transportable gas storage devices—Hydrogen absorbed in reversible metal hydride (IBR, see §171.7 of this subchapter).

(n) Design and construction requirements for UN cylinders for the transportation of adsorbed gases. In addition to the general requirements of this section, UN cylinders for the transportation of adsorbed gases must conform to the following ISO standards, as applicable: ISO 11513:2011, Gas cylinders—Refillable welded steel cylinders containing materials for sub-atmospheric gas packaging (excluding acetylene)—Design, construction, testing, use and periodic inspection, or ISO 9809-1:2010: Gas cylinders—Refillable seamless steel gas cylinders—Design, construction and testing—Part 1: Quenched and tempered steel cylinders with tensile strength less than 1100 MPa. (IBR, see §171.7 of this subchapter.)

* * * * *

§178.75 Specifications for MEGCs.

* * * * *

(d) * * *

(3) Each pressure receptacle of a MEGC must be of the same design type, seamless steel, or composite, and constructed and tested according to one of the following ISO standards, as appropriate:

(i) ISO 9809-1: Gas cylinders—Refillable seamless steel gas cylinders—Design, construction and testing—Part 1: Quenched and tempered steel cylinders with tensile strength less than 1100 MPa. (IBR, see §171.7 of this subchapter). Until December 31, 2018, the manufacture of a cylinder conforming to the requirements in ISO 9809-1:1999 (IBR, see §171.7 of this subchapter) is authorized;

(ii) ISO 9809-2: Gas cylinders—Refillable seamless steel gas cylinders—Design, construction and testing—Part 2: Quenched and tempered steel cylinders with tensile strength greater than or equal to 1100 MPa. (IBR, see §171.7 of this subchapter). Until December 31, 2018, the manufacture of a cylinder conforming to the requirements in ISO 9809-2:2000 (IBR, see §171.7 of this subchapter) is authorized;

(iii) ISO 9809-3: Gas cylinders—Refillable seamless steel gas cylinders—Design, construction and testing—Part 3: Normalized steel cylinders. (IBR, see §171.7 of this subchapter). Until December 31, 2018, the manufacture of a cylinder conforming to the requirements in ISO 9809-3:2000 (IBR, see §171.7 of this subchapter) is authorized; or

* * * * *

§178.609 Test requirements for packagings for infectious substances.

* * * * *

(d) * * *

(2) Where the samples are in the shape of a drum, three samples must be dropped, one in each of the following orientations:

(i) Diagonally on the top chime, with the center of gravity directly above the point of impact;

(ii) Diagonally on the base chime; and

(iii) Flat on the side.

* * * * *

§178.706 Standards for rigid plastic IBCs.

* * * * *

(c) * * *

(3) No used material other than production residues or regrind from the same manufacturing process may be used in the manufacture of rigid plastic IBCs.

* * * * *

§178.707 Standards for composite IBCs.

* * * * *

(c) * * *

(3) * * *

(iii) No used material other than production residues or regrind from the same manufacturing process may be used in the manufacture of inner receptacles.

* * * * *

§180.207 Requirements for requalification of UN pressure receptacles.

* * * * *

(d) * * *

(3) Dissolved acetylene UN cylinders: Each dissolved acetylene cylinder must be requalified in accordance with ISO 10462:2013(E) (IBR, see §171.7 of this subchapter). A cylinder previously requalified in accordance with the second edition of ISO 10462(E) up until December 31, 2018, may continue to be used until the next required requalification. The porous mass and the shell must be requalified no sooner than 3 years, 6 months, from the date of manufacture. Thereafter, subsequent requalifications of the porous mass and shell must be performed at least once every ten years.

* * * * *

(5) UN cylinders for adsorbed gases: Each UN cylinder for adsorbed gases must be inspected and tested in accordance with §173.302c and ISO 11513:2011 (IBR, see §171.7 of this subchapter).

* * * * *

Specialized Industries

Go beyond the regulations! Visit the Institute for in-depth guidance on a wide range of compliance subjects in safety and health, transportation, environment, and human resources.

J. J. Keller® COMPLIANCE NETWORK is a premier online safety and compliance community, offering members exclusive access to timely regulatory content in workplace safety (OSHA), transportation (DOT), environment (EPA), and human resources (DOL).

Interact With Our Compliance Experts

Puzzled by a regulatory question or issue? Let our renowned experts provide the answers and get your business on track to full compliance!

Upcoming Events

Reference the Compliance Network Safety Calendar to keep track of upcoming safety and compliance events. Browse by industry or search by keyword to see relevant dates and observances, including national safety months, compliance deadlines, and more.

SAFETY & COMPLIANCE NEWS

Keep up with the latest regulatory developments from OSHA, DOT, EPA, DOL, and more.

REGSENSE® REGULATORY REFERENCE

Explore a comprehensive database of word-for-word regulations on a wide range of compliance topics, with simplified explanations and best practices advice from our experts.

THE J. J. KELLER INSTITUTE

The Institute is your destination for in-depth content on 120+ compliance subjects. Discover articles, videos, and interactive exercises that will strengthen your understanding of regulatory concepts relevant to your business.

ADD HAZMAT, ENVIRONMENTAL, & HR RESOURCES

Unlock exclusive content offering expert insights into hazmat, environmental, and human resources compliance with a COMPLIANCE NETWORK EDGE membership.

DIRECT ACCESS TO COMPLIANCE EXPERTS

Struggling with a compliance challenge? Get the solution from our in-house team of experts! You can submit a question to our experts by email, set up a phone or video call, or request a detailed research report.

EVENTS

Register to attend live online events hosted by our experts. These webcasts and virtual conferences feature engaging discussions on important compliance topics in a casual, knowledge-sharing environment.

Most Recent Highlights In Environmental

HazCom, Hazmat, and HazWaste: Unpacking applicability and training requirements
2025-10-17T05:00:00Z

HazCom, Hazmat, and HazWaste: Unpacking applicability and training requirements

No matter what you call them, hazardous chemicals are regulated by OSHA, DOT, and EPA depending upon what you’re doing with those chemicals. Three of the most confusing sets of regulations related to chemicals include:

  • Hazard Communication (HazCom), 29 CFR 1910.1200 — OSHA requires that chemical hazards be communicated downstream from the manufacturer, importer, or distributor to employers and employees. This communication takes the form of safety data sheets (SDSs), labels, and information/training.
  • Hazardous Materials (Hazmat), 49 CFR 171 to 180 — DOT regulates hazmat. Hazmat regulations are aimed to ensure that hazmat is packaged and handled safely during transport.
  • Hazardous Waste (HazWaste), 40 CFR 260 to 299 — EPA explains that HazWaste is solid waste that is listed as hazardous OR that exhibits a characteristic of HazWaste (ignitability, corrosivity, reactivity, or toxicity). HazWaste is waste with properties that make it dangerous or capable of having a harmful effect on human health and the environment.

OSHA HazCom

HazCom applies to “any chemical which is known to be present in the workplace in such a manner that employees may be exposed under normal conditions of use or in a foreseeable emergency.” The OSHA regulation has requirements for hazardous chemical manufacturers, importers, distributors, and employers.

HazCom-covered employers must ensure containers of non-exempt hazardous chemicals are labeled, SDSs are readily accessible to employees in their work areas, and effective information/training is provided for exposed employees. They must also prepare and implement a written HazCom program (which includes a chemical inventory), unless they only have exempted operations under 1910.1200(b)(3) and/or (b)(4).

Covered employees have a right to understand the chemical hazards in their workplace. Training is key to ensuring employees have that understanding. Employees must be trained prior to initial assignment with hazardous chemicals and whenever a new chemical hazard is introduced. Employers must cover the elements in 1910.1200(h).

DOT Hazmat

The hazmat regulations apply to those involved in three primary types of activities: pre-transportation functions, transportation functions, and hazmat packaging. Pre-transportation functions include activities performed by the hazmat shipper and deal largely with paperwork. Transportation functions, on the other hand, include activities performed by those directly involved in transporting hazmat, including drivers.

“Hazmat employees” must be trained per 49 CFR 172.704 within 90 days of employment or job function assignment, and refresher training is mandated at least once every three years. Employees are considered hazmat employees if they directly affect hazmat transportation safety. See 49 CFR 171.8 for a detailed definition of hazmat employee.

The DOT says, “Training conducted by OSHA, EPA, and other Federal or international agencies may be used to satisfy the training requirements in 172.704(a) to the extent that such training addresses the components specified in paragraph (a) of this section (general awareness/familiarization; function-specific; safety; security awareness; in-depth security training, if a security plan is required; and driver training for each hazmat employee who will operate a motor vehicle).”

EPA HazWaste

Every business deals with waste and must know how to properly dispose of it. Most states are authorized to run their own HazWaste programs, so a facility needs to be aware of state (and often local) HazWaste regulations. When waste is generated, the facility must identify the waste and determine if it is HazWaste by definition.

EPA’s HazWaste generator regulations at 40 CFR 262 apply differently depending upon the “generator category” (large quantity (LQG), small quantity (SQG), and very small quantity (VSQG)), which is determined by how much HazWaste a facility generates each month. Therefore, under Part 262, employee training requirements too are based on the generator category.

SQGs must train employees according to 40 CFR 262.16. SQGs have basic training requirements. They must ensure employees are thoroughly familiar with proper waste handling and emergency procedures relevant to their responsibilities during normal facility operations and emergencies. LQG personnel training requirements are found at 40 CFR 262.17. Being large, these generators are required to meet much more extensive training requirements. It’s a best practice for VSQGs to train employees to safely handle HazWaste, but it’s not specifically called out in EPA’s HazWaste generator regulations. However, other training regulations, such as those for OSHA and DOT may come into play.

Key to remember: No matter what you call them, hazardous chemicals are regulated by OSHA, DOT, and EPA depending what you’re doing with those chemicals. Employers must understand what regulations apply to their situation and train employees accordingly.

No inspectors, no excuses: Why compliance still matters in a government shutdown
2025-10-14T05:00:00Z

No inspectors, no excuses: Why compliance still matters in a government shutdown

There have been 21 federal shutdowns since 1976, with an average duration of 8 days. The longest shutdown (in 2018–2019) lasted 35 days. Shutdowns aren't uncommon. When federal agencies shut down, inspections stall, enforcement actions pause, and regulatory oversight slows. For many companies, this might seem like a temporary reprieve from environmental scrutiny. But for professionals committed to environmental excellence, it’s an opportunity, not a loophole. The absence of enforcement doesn’t mean the absence of responsibility.

Why compliance still matters, even without enforcement

Environmental compliance isn’t just about avoiding fines. It’s about protecting worker health, community trust, and long-term operational stability. During a government shutdown, the temptation to defer environmental investments or relax internal standards can grow. But doing so risks more than future penalties; it undermines the credibility of your environmental program and can lead to reputational damage.

It’s also important to note that state programs are still typically operational and active during federal shutdowns, so inspections and compliance activities for state-authorized programs continue.

Making the business case for continued investment

To convince management and stakeholders, frame environmental excellence as a strategic asset:

  • Risk management: Environmental lapses can still be discovered post-shutdown, and penalties may be retroactive.
  • Operational efficiency: Many environmental controls improve process reliability, reduce waste, and lower energy costs.
  • Brand and stakeholder trust: Investors, customers, and communities increasingly expect companies to go beyond compliance.
  • Permit renewals and expansions: Agencies may scrutinize historical performance when reviewing future applications.

Use real-world examples or internal metrics to show how environmental investments have paid off — even when enforcement wasn’t the driver.

Strategies for promoting excellence during a shutdown

Environmental professionals can lead by example and keep the momentum going:

  • Maintain internal audits and inspections: Show that oversight continues, even if external reviews pause.
  • Communicate proactively: Share updates with leadership about ongoing compliance efforts and environmental performance.
  • Highlight cost savings: Quantify how environmental initiatives reduce resource use, waste disposal costs, or downtime.
  • Engage employees: Reinforce the company’s environmental values through training, recognition, and involvement.

Turning downtime into opportunity

A shutdown can be a chance to strengthen internal systems:

  • Review and update environmental management plans.
  • Conduct training or tabletop exercises.
  • Evaluate historical data to identify trends and areas of improvement.
  • Prepare for future inspections with mock audits or gap analyses.

These efforts demonstrate commitment and prepare your team for when oversight resumes.

Key to remember: Environmental excellence isn’t just about avoiding fines. It’s about building a resilient, responsible, and respected operation. Even when enforcement pauses, your commitment shouldn’t.

EHS Monthly Round Up - September 2025

EHS Monthly Round Up - September 2025

In this September 2025 roundup video, we'll review the most impactful environmental health and safety news.

Hi everyone! Welcome to the monthly news roundup video, where we’ll review the most impactful environmental health and safety news. Let’s take a look at what’s happened over the past month.

OSHA released its Spring 2025 regulatory agenda on September 4. Many rulemakings have been pushed into the fourth quarter of 2025 and the first half of 2026, while a few have been removed from the agenda altogether. These include Infectious Diseases, Blood Lead Level for Medical Removal, and the Musculoskeletal Disorders Column on the OSHA 300 log.

Three rules moved into the long-term actions category – Workplace Violence in Health Care and Social Assistance, Cranes and Derricks in Construction, and Process Safety Management and Prevention of Major Chemical Accidents. The proposed rule stage saw an influx of new entries, most of which were published in the July 1 Federal Register.

The Standards Improvement Project, slated for proposal in May 2026, intends to “remove, modernize, or narrow duplicative, unnecessary, or overly burdensome regulatory provisions.”

OSHA renewed its alliance with the National Waste and Recycling Association and the Solid Waste Association of North America. The partnership will focus on safety issues such as transportation hazards; slips, trips, and falls; needlestick and musculoskeletal injuries; and health issues associated with lithium battery hazards in waste/recycling collection and processing.

For the 15th year in a row, fall protection for construction topped OSHA’s list of top 10 violations. In fiscal year 2024, there were 5,914 recorded fall protection violations, down from 7,271 in fiscal year 2023. The standards that round out the top 10 remain unchanged, with a shift in some of the rankings.

Turning to environmental news, EPA proposes to eliminate the Greenhouse Gas Reporting Program requirements for all source categories except the petroleum and natural gas systems category. The agency also proposes to suspend compliance obligations for covered facilities until 2034. A public hearing was held October 1 and stakeholders have until November 3 to comment on the proposal.

Hazardous waste handlers may continue to use 5-paper copy manifest forms. EPA announced it will accept these forms from entities regulated by the Resource Conservation and Recovery Act, or RCRA, until further notice. The agency will give a 90-day notice before it plans to stop accepting the 5-copy forms.

And finally, EPA published its Spring 2025 regulatory agenda on September 4. The agenda outlines the agency’s upcoming regulatory actions and their status in the rulemaking process. Major updates on the docket include those for greenhouse gases, risk management rules, and the Renewable Fuel Standards for 2026 and 2027.

Thanks for tuning in to the monthly news roundup. We’ll see you next month!

What are the 3 types of National Pretreatment Program standards?
2025-10-06T05:00:00Z

What are the 3 types of National Pretreatment Program standards?

Industrial and commercial facilities produce significant amounts of pollutant-containing wastewater. Sending these waste streams to public wastewater and sewage treatment facilities as-is can cause major problems since these facilities usually aren’t designed to handle toxic or unexpected industrial pollutants. That’s why facilities have to pretreat wastewater before sending it to the treatment facility.

Industrial and commercial sources that discharge pollutant-containing wastewater to a publicly owned treatment works (POTW) facility are called industrial users (IUs). You may also see them referred to as “nonpoint sources” and “indirect dischargers.” These facilities are subject to the National Pretreatment Program, which is part of the National Pollutant Discharge Elimination System (NPDES) Permit Program.

The Environmental Protection Agency’s (EPA’s) National Pretreatment Program mandates IUs to comply with all applicable federal, state, and local standards to discharge wastewater to a POTW. The federal program has three types of pretreatment requirements:

  • National prohibited discharge standards,
  • National categorical pretreatment standards, and
  • Local discharge limits.

Understanding the differences between the types of pretreatment program standards is essential, especially since your facility may have to comply with all three.

What are the types of pretreatment standards?

IUs must obtain permits or comply with other control mechanisms to discharge wastewater to a POTW. Let’s look at the three kinds of pretreatment standards that may apply.

Prohibited discharge standards are national standards consisting of general and specific prohibitions that forbid facilities from discharging certain pollutants.

  • The general prohibitions ban IUs from discharging any pollutants to a POTW that can cause pass through or interference (defined at 40 CFR 403.3).
  • The specific prohibitions ban IUs from discharging eight kinds of pollutants (defined at 403.5(b)), such as those that pose a fire or explosion hazard to the POTW.

Categorical pretreatment standards are national limits that apply to wastewater discharged by facilities in specific industrial categories.

EPA sets effluent limitations guidelines and standards (ELGs) for the covered industrial categories to prevent discharges from IUs that can pass through or interfere with the works or otherwise disrupt POTW operations. ELGs give numerical, technology-based limits for the quantity, concentration, or properties of a pollutant that IUs can discharge to a POTW.

Local limits are established by POTWs and are specific to each site, so requirements vary across different POTW pretreatment programs. Local limits prevent pollutant discharges from IUs that can pass through or interfere with the works, contaminate sludge, and/or endanger worker health and safety.

POTWs set effluent discharge limits, which can be numerical or narrative (for example, no discharging toxics in toxic amounts). Standards may also include best management practices, such as taking actions to control plant site runoff.

Who enforces the pretreatment standards?

Generally, POTWs implement the NPDES National Pretreatment Program at the local level. EPA requires large POTWs and smaller POTWs with significant industrial discharges to develop local pretreatment programs. Through EPA-approved local programs, POTWs enforce the national standards and requirements in addition to any stricter local regulations that apply.

Where EPA hasn’t approved a POTW’s local pretreatment program, it's administered by the state (if approved to do so) or EPA regional office.

Where does my facility start?

If your facility is subject to the NPDES National Pretreatment Program, first identify the kind of IU your facility is: an IU, a significant IU, or a categorical IU. The category determines the requirements that may apply.

Keep in mind that all IUs must comply with the applicable federal pretreatment program requirements:

  • Regardless of whether the POTW has an approved pretreatment program, and
  • Regardless of whether the IUs have been issued a permit or control mechanism.

Significant IUs (defined at 403.3(v)) and categorical IUs (i.e., facilities subject to one of the categorical standards in Parts 405–471) have additional federal requirements. Generally, these facilities must also meet local limits.

Key to remember: Industrial and commercial facilities must comply with the National Pretreatment Program before discharging pollutant-containing wastewater to a publicly owned treatment works facility.

How the government shutdown affects employers
2025-10-01T05:00:00Z

How the government shutdown affects employers

On October 1, the federal government shut down. As a result, private employers and employees, as well as federal contractors and government employees, will likely face delays in services and programs until a resolution is reached.

Below is a recap of how the shutdown impacts several key federal agencies and what to expect.

Federal Motor Carrier Safety Administration (FMCSA)

It’s generally business as usual for the FMCSA. Roadside inspections are considered an essential safety function. Both federal and state enforcement partners perform these inspections, and most weigh stations are run by state Department of Transportation (DOT) agencies, which aren’t directly affected by a federal shutdown.

Drivers should assume inspections will continue as normal. Violations will still result in citations, out-of-service orders, and compliance reviews.

While the day-to-day enforcement likely won’t change, some aspects of the FMCSA and DOT operations may slow down, such as:

  • Rulemaking and new initiatives: Any changes to federal regulations will pause.
  • Audits and investigations: Compliance reviews and safety audits may take longer, although the enforcement of violations will continue.
  • Administrative support: Processing non-urgent matters, permits, or correspondence may be slower.

New registrations and filings, such as new USDOT numbers, new authority, and Unified Carrier Registration filings, will likely experience delays until the shutdown is resolved.

Pipeline and Hazardous Materials Safety Administration (PHMSA)

The picture is more complex at PHMSA. The DOT plan says about one-third of the agency's 580 employees are expected to be furloughed. Inspections of hazardous materials shippers, carriers, and other entities will continue, as will enforcement of the hazardous materials safety regulations. However, a variety of administrative functions are expected to be impacted, including non-emergency approvals and permits, rulemaking activities, research, grants, outreach, and the hazmat registration and fee-collection program.

Occupational Safety and Health Administration (OSHA)

OSHA will continue only its essential functions, including:

  • Inspections for imminent danger situations, workplace fatalities, and catastrophes;
  • Review and referral of whistleblower complaints tied to imminent threats;
  • Follow-up inspections of serious violations without abatement; and
  • Enforcement actions needed to meet statutory deadlines on high-risk cases.

All other agency activities such as rulemaking, programmed inspections, compliance assistance, website updates, and outreach programs are suspended. Only employees designated as essential may continue working, and the Occupational Safety and Health Review Commission halts all operations for the duration of the shutdown.

Environmental Protection Agency (EPA)

EPA has implemented its contingency plan, resulting in a significant reduction in operations. Approximately 90 percent of EPA staff have been furloughed, leaving around 1,700 personnel to continue essential functions, including emergency response operations, law enforcement, criminal investigations, maintenance of critical laboratory assets, and Superfund site work only if halting it poses an imminent threat to human life.

Most routine EPA functions have been suspended (like issuing permits and regulations). The agency has also paused work on climate-related regulations and restructuring efforts unless deemed essential or funded through exempted sources (e.g., Infrastructure Investment and Jobs Act or specific fee-based programs).

Equal Employment Opportunity Commission (EEOC)

The EEOC, which investigates discrimination claims, is closed during the shutdown. The agency won’t be responding to inquiries during this time, but a limited number of services will still be available. If employees want to file a discrimination charge, they should be aware that time limits for filing a charge won’t be extended due to the shutdown.

Additional information on filing new charges, the status of pending charges, or other existing business with the EEOC, etc., will likely be delayed. During the shutdown, information on the EEOC website won’t be updated. In addition, transactions submitted via the website won’t be processed, and EEOC staff won’t be able to respond to requests or questions submitted to the EEOC, including those submitted by email or through its website, until the shutdown is over. 

Members of the public who call the EEOC during the government shutdown will be able to access the pre-recorded information available on the EEOC's Interactive Voice Response System, but EEOC staff will not be available to assist them. Email inquiries sent to the agency will be monitored for urgent matters but generally not addressed during the shutdown.

National Labor Relations Board (NLRB)

NLRB offices are closed during the shutdown, and hearings are postponed. Because documents may not be filed on the NLRB website during the shutdown, due dates for filing documents will be extended.

As the 6-month statute of limitations for filing unfair labor practice charges remains in effect, the agency recommends mailing or faxing a copy of the charge to the regional office during the shutdown.

Department of Labor (DOL)

The DOL is also shut down, except for activities such as those needed to protect life and property. All regulatory work has ceased, including the final rules on independent contractors and joint employers.

The Wage and Hour Division (WHD), which enforces laws such as the Fair Labor Standards Act and the Family and Medical Leave Act, dropped from 1,270 employees to 7. Employees won’t be able to file claims under such laws.

The agency will monitor and respond to child labor investigations and will pursue and address legal cases or investigations in jeopardy of being lost due to a statute of limitations or as otherwise ordered by the court. It will also continue to process certain benefits payments and support federal and state unemployment programs.

The Employee Benefits Security Administration (EBSA) generally stopped its research activities, audits, compliance assistance, and IT support.

The Veterans’ Employment and Training Service (VETS) stopped conducting investigations of the Uniformed Services Employment and Reemployment Rights Act.

U.S. Citizenship and Immigration Services (USCIS)

Employers must continue to use the Form I-9 during the shutdown to verify that an employee is eligible to work in the United States. The form must be completed within 3 business days after the employee’s first day of employment.

The form may be downloaded from the USCIS website. The agency expects to retain the majority of its employees during the shutdown.

Employers who use the online E-Verify system to confirm an employee’s eligibility to work in the United States may experience a system shutdown, however. In the event of an E-Verify shutdown, employers won’t be able to create E-Verify cases, run reports, or resolve tentative non-confirmations.

E-Verify employers should continue to complete a Form I-9 for each new employee. After the shutdown ends and the E-Verify system is operational, employers should create E-Verify cases for employees who were hired when the website was not available.

In the event of an E-Verify system shutdown, it’s likely that the USCIS will extend deadlines for creating E-Verify cases and resolving tentative non-confirmations. The agency is expected to provide further guidance.

Federal contractors and government employees

Federal contractors and government employees from shut-down agencies are either furloughed — prohibited from work and unpaid — or required to work without pay if their roles are deemed essential to public safety.

Payments to companies with a federal contract may be delayed, and they may receive a stop-work order. Contracts will not be issued or extended during the shutdown.

The Office of Federal Contract Compliance Programs website is not being updated during the shutdown.

See More

Most Recent Highlights In Transportation

Pre-preconstruction permits: Can building begin without one?
2025-09-25T05:00:00Z

Pre-preconstruction permits: Can building begin without one?

Just like blueprints, hard hats, and scaffolding, permits are synonymous with construction. Most businesses have to get permits before breaking ground on a project. However, recent federal guidance on preconstruction permits for air emissions indicates that some construction activities may be able to start without a permit.

The Environmental Protection Agency (EPA) requires businesses to obtain a preconstruction permit for a new facility or major modifications to an existing facility before starting construction. It ensures that new or modified facilities will be able to comply with air emissions requirements. In September 2025, the agency published guidance (in the form of a response letter), determining that a company may start construction activities on parts of a new facility unrelated to air emissions before obtaining a permit.

Let’s take a look at the preconstruction permit regulations, the facts of the case in the guidance, and EPA’s plans to clarify which construction activities can begin before obtaining a preconstruction permit.

What are the preconstruction permit requirements?

Under the New Source Review (NSR) regulations (40 CFR Part 51 Subpart I and Part 52 Subpart A), businesses that build a new facility or make major modifications to an existing one have to obtain a preconstruction permit to “begin actual construction.” EPA defines “begin actual construction” as “physical on-site construction activities on an emissions unit which are of a permanent nature.” It covers activities including (but not limited to) installing building supports and foundations, laying underground pipework, and constructing permanent storage structures.

There are three types of preconstruction permits: Prevention of Significant Deterioration (PSD) permits, nonattainment NSR permits, and minor source permits. The permits define:

  • What construction is allowed,
  • Emissions limits, and
  • How the source must be operated (if applicable).

It’s important to note that most preconstruction permits are issued at the state or local levels. The requirements must be at least as stringent as EPA’s.

What’s the case?

A county air quality district in Arizona asked EPA to assess whether it may allow a company to start the first phase of construction on a semiconductor manufacturing facility before obtaining an NSR permit if no emissions units are involved.

EPA answered the request with TSMC Arizona Begin Actual Construction — EPA Response Letter (September 2, 2025) and published the letter as new guidance.

Facts of the case

The company builds its facilities in three phases and doesn’t install the semiconductor manufacturing equipment until all phases are complete.

The first phase of construction consists of building the core and shell of the facility, which includes the foundation, a steel superstructure, and external walls. The building will eventually house emissions units (semiconductor manufacturing equipment). However, the company stated that the first phase of construction doesn’t involve any air pollution control devices, emissions units, or foundations for emissions units.

The county air quality district agreed that if a structure contains no emissions unit, it’s not subject to NSR permitting because it doesn’t emit or have the potential to emit pollutants.

EPA response to the case

In the September 2025 response letter, EPA recognized that the definition of “begin actual construction” prohibits on-site construction of an emissions unit without a permit, but it doesn’t prohibit on-site construction of the parts of a facility that don’t qualify as an emissions unit.

The agency determined that the county air quality district may allow the company to start the first phase of construction (even if it’s of a permanent nature) before it obtains an NSR permit as long as it doesn’t involve construction on an emissions unit.

What are EPA’s regulatory plans?

The agency will conduct rulemaking to clarify what construction activities need an NSR permit and what construction activities can proceed without one. It plans to amend the NSR regulations in 2026 by:

  • Revising the definition of “begin actual construction," and
  • Establishing how permitting authorities may distinguish parts of a facility that are and aren’t emissions units or parts of emissions units.

Until then, EPA will address preconstruction permitting issues on a case-by-case basis.

How should facilities respond?

If you’re planning to build a new facility or make a major modification to one, consider these tips to help you comply with the NSR regulations:

  • Check whether the state and local requirements are the same as or stricter than federal rules. The state environmental department’s website is a good place to start.
  • Contact the permit-issuing agency (likely the state or local air pollution control agency) for direct help with your specific project.
  • Watch EPA news announcements for updates on rulemaking. You can also track the Federal Register, where the agency publishes proposed and final rules.

Key to remember: EPA plans to conduct rulemaking to help distinguish which construction activities need a preconstruction permit for air emissions and which activities don’t.

CSB says inferno reveals gaping holes in OSHA/EPA regulations
2025-09-23T05:00:00Z

CSB says inferno reveals gaping holes in OSHA/EPA regulations

A stunning 17-minute video from the Chemical Safety and Hazard Investigation Board (CSB) animates the turn of events at a Texas terminal facility over six years ago. A broken pump led to a massive fire and significant environmental damage. Despite the process weaknesses at the facility, the video underscores a breach in OSHA and EPA regulations that CSB warns may lead to other incidents in the U.S.

The catastrophic incident

Picture an 80,000-barrel aboveground storage tank. On March 17, 2019, the circulation pump on the tank failed, allowing the release of a flammable butane-enriched naphtha blend. The release was undetected, as vapor accumulated in the area for 30 minutes. The vapor then ignited, resulting in a large-scale fire that spread to 14 other tanks. Fire crews were unable to extinguish it for three days. Black smoke cascaded into the community that was sheltering in place.

Then the petrochemicals, firefighting foams, and contaminated water broke past the secondary containment wall. An estimated 500,000 barrels of the materials then entered an adjacent bayou and reached a shipping channel contaminating a seven-mile stretch.

What did investigators find?

The CSB investigation found technical failures. The video identifies three important but missing things:

  • Procedures to maintain the mechanical integrity of the pump,
  • Flammable gas detection systems, and
  • Remotely operated tank valves.

Outdated tank farm design was also a factor. Tanks were spaced close together and did not have subdivided containment systems.

Despite the process issues, regulatory shortfalls played a prominent role in the board’s findings. CSB Chairperson Steve Owens remarks, “A serious gap in federal regulations also contributed to the severity of this event.”

OSHA regulatory gap

The CSB video, "Terminal Faiure," points out that 29 CFR 1910.119, the OSHA Process Safety Management (PSM) standard, does not cover all flammable liquids. Those stored in atmospheric tanks and kept below their normal boiling point without chilling or refrigeration are not subject to the standard. This is referred to in industry as the “flammable liquid atmospheric storage tank exemption.” See 1910.119(a)(1)(ii)(B).

The terminal facility company took the position that the storage of the butane-enriched naphtha product in the tank was excluded from PSM coverage. It based this stance on the exemption. According to CSB, had the OSHA PSM standard applied to the tank and its equipment, the terminal facility would have been required to implement a formal PSM system.

That system would have given the company a better chance to identify and control hazards for the tank and its equipment. Had the terminal facility put a comprehensive PSM system in place that effectively identified and controlled the tank/equipment hazards, the company could have prevented this incident, argues CSB.

EPA regulatory gap

Unlike the PSM standard, the Risk Management Program (RMP) standard at 40 CFR 68 does not include an exemption for atmospheric storage of flammable liquids. However, CSB highlights that 68.115(b)(2)(i) has a significant loophole. It reads, “[I]f the concentration of the substance is one percent or greater by weight of the mixture, then, for purposes of determining whether a threshold quantity is present at the stationary source, the entire weight of the mixture shall be treated as the regulated substance unless the owner or operator can demonstrate that the mixture itself does not have a National Fire Protection Association [NFPA] flammability hazard rating of 4.”

The terminal facility determined that the butane-enriched naphtha product contained in the tank was not subject to RMP because it was an NFPA-3a rated material. While the CSB is not validating the terminal’s NFPA “3” finding, the board speculates that had the EPA RMP standard applied to the tank and its pump, this incident likely would not have occurred.

CSB recommends closing the regulatory loopholes

In the recently released video, CSB recommends that:

  • OSHA eliminate the atmospheric storage tank exemption from the PSM standard — The board insists that the atmospheric storage tank exemption in the OSHA standard continues to allow for catastrophic incidents to occur. Without PSM coverage, necessary safeguards are not being implemented for equipment that should otherwise be covered, CSB says.
  • EPA modify 68.115(b)(2)(i) to expand coverage of its RMP standard to include all flammable liquids, including mixtures, with a flammability rating of NFPA-3 or higher — NFPA-3 flammability rated materials have resulted in significant explosions and fires similar to those contemplated to occur from NFPA-4 rated materials, observes CSB.

Owens emphasizes, “We believe that our recommendations, particularly to OSHA and EPA, to expand regulatory oversight of these kinds of chemicals and facilities will help ensure that a similar incident does not occur in the future.”

Key to remember

A new CSB video recounts the events involved in a massive storage tank fire. At the same time, the video warns of blind spots in OSHA PSM and EPA RMP regulations that may lead to other incidents in the U.S.

The new rules of waste: How 2025 legislation is reshaping corporate environmental compliance
2025-09-22T05:00:00Z

The new rules of waste: How 2025 legislation is reshaping corporate environmental compliance

In 2025, sweeping changes to waste laws across the U.S. are forcing companies to rethink packaging, disposal, and reporting practices. From statewide bans on single-use plastics to expanded Extended Producer Responsibility (EPR) programs and chemical recycling reclassification, these updates carry significant compliance implications for corporate environmental health and safety (EHS) teams.

Single-use plastics: New bans and restrictions

Several states have enacted new bans on polystyrene foam containers, plastic straws, and produce bags:

  • California SB 54, as of January 1, 2025, bans expanded polystyrene (EPS) food containers unless they meet a 25 percent recycling rate. Precheckout bags must be compostable or made of recycled paper (SB 1046).
  • Delaware SB 51 bans foam containers and plastic stirrers unless requested by the customer.
  • Oregon SB 543 bans EPS containers and food packaging with intentionally added PFAS.
  • Virginia bans food vendors from using EPS as of July 1, 2025.

Compliance tip: Audit your packaging inventory and supplier certifications. Ensure alternatives meet compostability or recyclability standards.

Extended Producer Responsibility (EPR): Expanding nationwide

EPR laws now apply in several states. These laws require companies to help pay for recycling and report packaging data:

  • Maryland SB 901 allows multiple Producer Responsibility Organizations (PROs) and mandates cost-sharing for recycling.
  • Washington SB 5284 targets consumer packaging with compliance deadlines starting in 2028.
  • Colorado bans unregistered producers from selling covered products as of July 1, 2025.
  • California's SB 54 revised draft rules released in May 2025 include new compliance dates and exemptions.

Compliance tip: Register with your state’s PRO, submit packaging data, and prepare for fee schedules. Track deadlines and exemptions closely.

Chemical recycling: Regulatory reclassification and impacts

States like Texas and Pennsylvania now classify chemical recycling as manufacturing, not waste management. This shift encourages investment but also changes permitting and emissions reporting obligations.

Compliance tip: If your facility uses or contracts chemical recycling, review air and water permits. Ensure alignment with manufacturing regulations.

Per and polyfluoroalkyl substances (PFAS): Phaseouts and hazardous waste updates

More states are banning PFAS in packaging, cookware, and more:

  • Minnesota, Oregon, Rhode Island, and New Mexico have banned or phased out PFAS in consumer products.
  • Illinois SB 727 aligns PFAS limits in drinking water with the Environmental Protection Agency standards.

Compliance tip: Update product Safety Data Sheets and conduct PFAS audits. Prepare for new reporting under TSCA Section 8(a)(7), including data on manufacture, use, and disposal.

Circular economy and composting: Recent mandates

States are setting zero-waste goals and requiring composting:

  • Hawaii HB 750 launches a statewide recycling needs assessment.
  • Maine LD 1065 requires large food waste generators to compost by 2030.

Compliance tip: Evaluate organics diversion programs and infrastructure. Consider partnerships with composting facilities.

EHS teams: What to do now

  • Map your regulatory exposure: Identify which state laws apply to your operations.
  • Engage with PROs: Register, report, and participate in rulemaking.
  • Train staff: Ensure procurement, operations, and legal teams understand new requirements.
  • Audit packaging and waste streams: Replace banned materials and optimize recycling.
  • Monitor emerging legislation: Stay ahead of new bills and compliance deadlines.

Key to remember: Staying compliant in 2025 means more than avoiding fines. EHS teams must lead efforts to meet new waste laws and support sustainability goals.

EPA proposes to remove GHG reporting requirements for most facilities
2025-09-19T05:00:00Z

EPA proposes to remove GHG reporting requirements for most facilities

The Environmental Protection Agency (EPA) published a significant proposed rule on September 16, 2025. The agency proposes to eliminate the Greenhouse Gas Reporting Program (GHGRP) requirements for nearly all regulated entities except for petroleum and natural gas systems. EPA also plans to suspend compliance requirements for covered facilities until reporting year (RY) 2034.

Further, the proposed rule notes that Congress amended the Clean Air Act in July 2025 to start the Waste Emissions Charge (WEC) program in 2034. The changes essentially reinstate the WEC program that was previously disapproved.

The GHGRP requires covered entities to submit annual reports of GHG emissions. The regulation applies to 47 source categories, including:

  • Large direct emitters of GHG emissions (25,000 or more metric tons of carbon dioxide equivalent per year),
  • Fuel and industrial gas suppliers, and
  • Carbon dioxide injection sites.

What are the possible changes?

EPA proposes to:

  • Remove the requirements of 40 CFR Part 98 for all source categories under Part 98 except for the Petroleum and Natural Gas Systems source category (Part 98 Subpart W),
  • Remove the Natural Gas Distribution industry segment (98.230) from the Petroleum and Natural Gas Systems source category, and
  • Suspend the reporting requirements for the Petroleum and Natural Gas Systems source category until January 1, 2034.

How could this impact facilities?

If finalized, EPA’s proposed rule would have major effects:

  • Nearly all of the covered source categories (apart from petroleum and natural gas systems) would no longer be subject to the GHGRP regulations after RY 2024.
  • Natural gas distributors would be removed from Part 98 Subpart W and, therefore, no longer subject to the GHGRP regulations after RY 2024.
  • Facilities in the Petroleum and Natural Gas Systems source category (except for natural gas distributors) would be subject to the GHGRP regulations. However, requirements wouldn’t apply until RY 2034. The next report would be due by March 31, 2035, and annually thereafter.

About the WEC program

Amendments to Section 136 of the Clean Air Act in 2022 required EPA to start collecting a WEC from facilities in the Petroleum and Natural Gas Systems source category (except those in the natural gas distribution industry segment) that exceed waste emissions thresholds.

In March 2025, a joint congressional resolution disapproved the regulation implementing the WEC program, making the rule ineffective. Further, EPA issued a final rule in May 2025 that removed the WEC regulations from the Code of Federal Regulations.

However, the One Big Beautiful Bill Act (signed into law in July 2025) amended Section 136(g) of the Clean Air Act to begin imposing and collecting a WEC from the Petroleum and Natural Gas Systems source category (except for natural gas distributors) for emissions reported for calendar year 2034 and later.

How can I participate in the rulemaking?

You can register for and attend EPA’s virtual public hearing for the proposed rule on October 1, 2025. Additionally, you may submit public comments on the proposed rule (Docket Id. No. EPA-HQ-OAR-2025-0186) through November 3, 2025.

Key to remember: EPA proposes to eliminate the Greenhouse Gas Reporting Program requirements for all source categories except the petroleum and natural gas systems category and to suspend compliance obligations until 2034.

Expert Insights: Lessons that lead
2025-09-19T05:00:00Z

Expert Insights: Lessons that lead

As we continue to navigate the evolving landscape of regulatory changes, one truth remains constant: environmental compliance isn’t just a regulatory requirement; it must be a priority for leadership. Every facility, regardless of size or sector, can lead by example, not only through innovation but also through the lessons learned from challenges.

One such lesson came from a chemical manufacturing facility we worked with in the Midwest. They experienced a near-miss incident involving a wastewater neutralization tank. During a routine transfer, an operator noticed a sudden pH spike in the effluent stream. Quick thinking and immediate shutdown procedures prevented a potential discharge violation. Upon investigation, they discovered that a mislabeled tote of caustic solution was mistakenly added to the neutralization system.

The root causes? There was a breakdown in labeling protocols and a lack of crosschecking during chemical transfers. The facility responded swiftly by:

  • Implementing a barcode-based chemical tracking system,
  • Retraining staff on hazard communication, and
  • Revising their standard operating procedures.

Since then, the facility has reported zero chemical handling errors and has shared the lessons across the corporate network.

This incident serves as a powerful reminder that environmental compliance isn’t just about systems and sensors. It’s about people, processes, and a culture of vigilance. Mistakes can happen, but how we respond defines our commitment to continuous improvement.

We encourage you to reflect on your own facility’s “teachable moments.” Share them. Learn from them. Every lesson learned is a step toward a safer and more compliant operation.

See More

Most Recent Highlights In Safety & Health

e-Manifest Third Rule compliance checklist: Countdown to December 1
2025-09-12T05:00:00Z

e-Manifest Third Rule compliance checklist: Countdown to December 1

The date of December 1 often evokes thoughts of colder weather, the start of the Christmas season, and … waste manifests?! That’s certainly the case this year for hazardous waste handlers. On December 1, 2025, the rest of the Third Rule’s compliance requirements for electronic manifests take effect.

The Environmental Protection Agency’s (EPA’s) final Third Rule, established under the Resource Conservation and Recovery Act (RCRA), amends the Hazardous Waste Electronic Manifest System (e-Manifest system) standards. Many of the requirements began in January 2025. The Third Rule’s remaining regulatory changes start on December 1, 2025. Are you prepared to comply?

e-Manifest compliance check

Use this checklist to help you ensure that your business is set to comply with the rest of the Third Rule’s requirements that take effect in December.

Transition to the 4-copy forms

Under the Third Rule, EPA replaced the 5-copy paper manifests and continuation sheets with 4-copy paper manifests (EPA Form 8700-22) and continuation sheets (EPA Form 8700-22A). However, the agency allows hazardous waste handlers to continue using the 5-copy paper forms until further notice. EPA will provide a 90-day notice before it intends to stop accepting the 5-copy forms.

Note: At the time of the publication of this article, EPA has not yet given any authorized printer approval to print the new 4-copy manifest forms. As an authorized printer of the hazardous waste manifest forms, J. J. Keller & Associates, Inc. is working closely with EPA for approval to print the new 4-copy forms.

Users need Certifier permission on the e-Manifest module or Site Manager permission on the RCRA Information (RCRAInfo) Industry Application to submit manifests.

Compliance check:

☑ Begin to use the 4-copy manifests and continuation sheets as soon as they’re made available.

☑ Ensure that at least one user has Certifier or Site Manager permission.

Submit export manifests and related fees to e-Manifest

As of December 1, 2025, domestic hazardous waste exporters must submit all export manifests and continuation sheets (paper and electronic) to the e-Manifest system and pay the associated user fees.

An exporter is considered any entity that originates a manifest to export a hazardous waste shipment. This includes generators; transporters; treatment, storage, and disposal facilities; and recognized traders.

EPA will invoice exporters monthly for the manifest activities conducted during the previous month. The agency applies a fee per manifest, and the amount varies based on the type of submission (scanned image upload, data and image upload, or fully/hybrid electronic manifest).

Only individuals with Site Manager permission on RCRAInfo can pay manifest fees.

Compliance check:

☑ Prepare to use the e-Manifest system for export manifests and pay user fees.

☑ Verify that at least one person has Site Manager permission.

Submit manifest-related reports to e-Manifest

The Third Rule requires hazardous waste handlers to submit all Discrepancy, Exception, and Unmanifested Waste Reports to the e-Manifest system starting on December 1, 2025.

Generators submit Exception Reports, and receiving facilities submit Discrepancy and Unmanifested Waste Reports. No fees apply.

To submit the manifest-related reports to the e-Manifest system, users require Certifier permission for the module.

Compliance check:

☑ Be ready to submit manifest-related reports to the e-Manifest system.

☑ Confirm that at least one user has Certifier permission.

Send manifest copies to exporters

Beginning on December 1, 2025, entities that transport hazardous waste export shipments out of the U.S. (i.e., last transporters) have to send a signed copy of the manifest and continuation sheet to the exporter instead of the generator.

Further, the Third Rule clarifies that starting on December 1, 2025, transporters can use the e-Manifest system to export hazardous waste and send exporters copies of the signed manifest and continuation sheet. Transporters planning to do so need to set up a RCRAInfo account to use the e-Manifest system and assign Certifier permission to the user(s) who will submit the manifests.

Compliance check:

☑ Plan to send signed copies of the manifest and continuation sheet to the exporter.

☑ If applicable, register an account on RCRAInfo, and ensure at least one user has Certifier permission.

Use e-Manifest resources for additional help

EPA has multiple resources to help regulated hazardous waste handlers comply with e-Manifest regulations, including the upcoming Third Rule’s requirements that take effect on December 1, 2025. Consider using the resources the agency provides on “The Hazardous Waste Electronic Manifest (e-Manifest) System” website, such as:

  • Webinars,
  • Demonstration videos,
  • General and user-specific FAQs about the e-Manifest program, and
  • The e-Manifest Helpdesk for industry users.

The compliance checklist and e-Manifest resources can help you ensure that your facility will be ready to comply with the rest of the Third Rule’s requirements by December.

Key to remember: The remaining e-Manifest Third Rule requirements take effect on December 1, 2025. Facilities should confirm that they’re prepared to comply.

Hazardous waste handlers may continue use of 5-copy manifest forms
2025-09-12T05:00:00Z

Hazardous waste handlers may continue use of 5-copy manifest forms

The Environmental Protection Agency (EPA) announced that it will accept 5-copy paper manifest forms from entities regulated by the Resource Conservation and Recovery Act (RCRA) hazardous waste manifest program until further notice.

What changed?

The final Third Rule (effective on January 22, 2025) made multiple changes to the hazardous waste manifest regulations, one of which requires regulated entities to use 4-copy manifests (EPA Form 8700-22) and continuation sheets (EPA Form 8700-22A) instead of the previous 5-copy forms.

Initially, EPA stated that it would no longer accept 5-copy forms starting on December 1, 2025. However, the agency has removed the limit and will accept the 5-copy forms until further notice. Additionally, EPA will give a 90-day notice before the agency plans to stop accepting the 5-copy forms.

As an authorized printer of the hazardous waste manifest forms, J. J. Keller & Associates, Inc. is working closely with EPA for approval to print the new 4-copy forms. At the time of publication of this news article, the federal agency hasn’t yet approved any authorized printer to print the new forms.

Exporter and importer requirements

Hazardous waste exporters and importers that use the 5-copy manifest forms are required to put the consent numbers for their wastes in the Special Handling Instructions and Additional Information Field (Item 14) of the 5-copy manifest. If applicable, exporters must also enter their EPA Identification (ID) numbers in Item 14. The agency recommends using this format: “Exporter EPA ID #AAANNNNNNNNN."

Please note that we will monitor any additional changes that result from EPA's decision to continue accepting 5-copy paper manifest forms and provide updates accordingly.

Key to remember: EPA will accept 5-copy manifests and continuation sheets beyond the initial deadline of December 1, 2025, until further notice.

Countdown to compliance: EPA’s AIM Act and its impact on refrigerant users
2025-09-11T05:00:00Z

Countdown to compliance: EPA’s AIM Act and its impact on refrigerant users

Starting January 1, 2026, the Environmental Protection Agency (EPA) will enforce sweeping changes under the American Innovation and Manufacturing (AIM) Act, targeting the use and management of hydrofluorocarbons (HFCs)—potent greenhouse gases used in refrigeration, air conditioning, and fire suppression.

These rules apply to all businesses with equipment containing 15 pounds or more of refrigerant with a Global Warming Potential (GWP) over 53, including but not limited to grocery stores, refrigerated transport fleets, repair shops, and small businesses.

Key requirements for end users

1. Leak detection and repair

  • Automatic leak detection systems (ALDs) are mandatory for systems with 1,500 pounds or more of refrigerant.
  • Leaks must be repaired within 30 days or a retirement/retrofit plan must be submitted
  • Leak rate thresholds:
    • Industrial process refrigeration: 30%
    • Commercial refrigeration: 20%
    • Transport & comfort cooling: 10%

2. Refrigerant reclamation

  • Repairs must use reclaimed refrigerants in supermarket systems, refrigerated transport, and commercial ice makers
  • Reclaimed HFCs must contain no more than 15% virgin HFCs and be properly labeled

3. Recordkeeping and reporting

  • Businesses must maintain detailed logs of:
    • Refrigerant purchases and usage
    • Leak events and repairs
    • Equipment servicing and disposal
  • Records must be available for EPA audits at any time.

4. Disposal and recycling

  • HFCs must be recovered from disposable cylinders before disposal
  • Fire suppression systems must be recycled prior to disposal, and technician training is required

Sector-specific impacts

Grocery retailers

  • Must retrofit or replace systems using restricted HFCs like R-404A or R-22
  • Natural refrigerants (CO₂, ammonia) are encouraged but require new equipment and trained technicians
  • Legacy systems may become costly to maintain due to refrigerant scarcity

Refrigerated transport

  • Subject to leak repair thresholds and reclamation rules
  • Must track refrigerant use across fleets and ensure timely repairs

Repair shops

  • Must use reclaimed refrigerants for servicing regulated systems
  • Required to follow EPA labeling and documentation standards

All end users: what you must do now

  • Inventory your equipment: Identify all systems with refrigerants over 15 lbs and GWP greater than 53
  • Install ALDs: For large systems, ensure real-time leak monitoring is in place
  • Train staff: Ensure technicians understand new servicing, reporting, and disposal rules
  • Upgrade Recordkeeping: Use digital tools to automate tracking and reporting

Looking ahead: state-level rules may be stricter

States like California, Washington, and New York are implementing stricter refrigerant rules that may exceed federal AIM Act standards. Businesses operating across state lines must monitor local regulations and prepare for additional reporting and inspections.

Key to remember: If your business uses refrigerants, the AIM Act likely applies to you. Start preparing now to avoid penalties and ensure compliance by 2026.

EPA's Spring 2025 regulatory agenda focuses on PFAS, fossil fuels, and rule reconsiderations
2025-09-09T05:00:00Z

EPA's Spring 2025 regulatory agenda focuses on PFAS, fossil fuels, and rule reconsiderations

The Environmental Protection Agency (EPA) published the Spring 2025 Semiannual Agenda of Regulatory and Deregulatory Actions on September 4, 2025. The agenda outlines the agency’s upcoming regulatory actions and their status in the rulemaking process.

EPA has major updates on the docket, such as:

  • Repealing all greenhouse gas (GHG) standards for fossil fuel-fired power plants and the 2024 amendments to the Mercury Air Toxics Standard for power plants (final rules expected December 2025);
  • Establishing risk management rules for multiple chemical substances, such as 1-bromopropane and n-methylpyrrolidone (final rules expected April 2026);
  • Adding hazardous waste solar panels to the federal universal waste program and setting universal waste standards specific to lithium batteries (proposed rule expected February 2026);
  • Setting the Renewable Fuel Standards for 2026 and 2027 and implementing regulatory program changes (final rule expected October 2025); and
  • Reconsidering current rules, like:
    • The GHG Reporting Program (final rule expected November 2025),
    • The National Emission Standards for Hazardous Air Pollutants (NESHAP) for iron and steel and the NESHAP for oil and natural gas (proposed rules expected November 2025 and December 2025, respectively), and
    • The 2024 amendments to the procedures for conducting Toxic Substances Control Act chemical risk evaluations (final rule expected April 2026).

Additionally, the agency intends to address per- and polyfluoroalkyl substances (PFAS) across multiple media. For example, EPA plans to:

  • Rescind the National Primary Drinking Water Regulations for PFHxS, PFNA, GenX, and mixtures of these three as well as for PFBS (proposed rule expected September 2025);
  • Add certain PFAS to the Toxics Release Inventory (final rule expected February 2026); and
  • Address PFAS discharges from PFAS manufacturers (proposed rule expected January 2026).

This article highlights some of the major rules we’re monitoring closely. You can review the entire agenda to learn about all the rulemakings on EPA’s docket. Please note that the agenda dates are tentative, indicating when the agency seeks to publish the rulemakings in the Federal Register.

Final Rule Stage
Projected publication dateTitle
December 2025Phasedown of Hydrofluorocarbons: Reconsideration of Certain Regulatory Requirements Under the Technology Transitions Provisions of the American Innovation and Manufacturing Act of 2020
January 2026Accidental Release Prevention Requirements: Risk Management Programs Under the Clean Air Act; Common Sense Approach to Chemical Accident Prevention
February 2026Addition of Certain Per- and Polyfluoroalkyl Substances (PFAS) to the Toxics Release Inventory (TRI)
February 2026Initial Air Quality Designations for the 2024 Revised Primary Annual Fine Particle (PM2.5) National Ambient Air Quality Standards (NAAQS)
April 2026Listing of Specific PFAS as Hazardous Constituents
Proposed Rule Stage
Projected publication date of notice of proposed rulemaking
Title
October 2025Effluent Limitations Guidelines and Standards for the Oil and Gas Extraction Category (40 CFR 435 Subpart E)
October 2025New Source Performance Standards for the Synthetic Organic Chemical Manufacturing Industry and National Emission Standards for Hazardous Air Pollutants for the Synthetic Organic Chemical Manufacturing Industry
November 2025Additional Reconsideration of Standards of Performance for New, Reconstructed, and Modified Sources and Emissions Guidelines for Existing Sources: Oil and Natural Gas Sector Climate Review
November 2025PFAS Requirements in NPDES Permit Applications
November 2025Steam Electric Effluent Limitations Guideline Reconsideration Rule
December 2025Updates to the RCRA Hazardous Waste Regulations and Related Technical Corrections — Permitting Updates Rule 
January 2026Paper Manifest Sunset Rule; Modification of the Hazardous Waste Manifest System 
January 2026Revision to “Begin Actual Construction” in the New Source Review Preconstruction Permitting Program
April 2026Reconsideration of National Emission Standards for Hazardous Air Pollutants: Gasoline Distribution Technology Reviews and New Source Performance Standards Review for Bulk Gasoline Terminals
May 2026Formaldehyde; Regulation Under the Toxic Substances Control Act (TSCA)
Pre-Rule Stage
Projected publication date or other actionTitle
September 2025 (advanced notice of proposed rulemaking)Visibility Protection: Regional Haze State Plan Requirements Rule Revision
December 2025 (end review)National Emission Standards for Hazardous Air Pollutants for Brick and Structural Clay Products Manufacturing; and Clay Ceramics Manufacturing
Key to remember: EPA’s planned rulemakings may impact regulatory compliance with air, land, and water rules.
EHS Monthly Round Up - August 2025

EHS Monthly Round Up - August 2025

In this August 2025 roundup video, we'll review the most impactful environmental health and safety news.

Hi everyone! Welcome to the monthly news roundup video, where we’ll review the most impactful environmental health and safety news. Let’s take a look at what’s happened over the past month!

OSHA extended the comment period for multiple proposed rules it published on July 1. Stakeholders now have an extra 60 days, until November 1, to comment. Impacted rules include those for respiratory protection, construction illumination, COVID-19, and the General Duty Clause.

OSHA is expanding its Voluntary Protection Programs to help employers develop strong safety programs and lower injury rates. To participate, employers must submit an application to OSHA and undergo an onsite evaluation by a team of safety and health professionals.

Following a series of recent trench collapses, OSHA urges employers to take steps to protect workers. Trench collapses can be prevented by sloping or benching trench walls at an angle, shoring trench walls with supports, and shielding walls with trench boxes. More information can be found on OSHA’s website.

The Mine Safety and Health Administration launched a webpage for its new Compliance Assistance in Safety and Health, or CASH, program. The agency anticipates a surge in domestic mining productivity and seeks to proactively provide miners and mine operators with compliance assistance materials.

Turning to environmental news, EPA proposes challenges to California’s Clean Truck Check program. The program aims to reduce emissions of nitrogen oxides and particulate matter for heavy-duty vehicles. EPA supports the regulation as it applies to California-registered vehicles but disapproves the regulation as it applies to out of state and out of country vehicles. Stakeholders have until September 25 to comment on the proposal.

On August 14, EPA released the July 2025 nonconfidential TSCA Inventory of chemical substances manufactured, processed, or imported in the U.S. The Inventory contains over 86 thousand chemicals, nearly half of which are in active use. The next inventory update is planned for late 2026.

And finally, EPA proposes to rescind the 2009 Endangerment Finding and repeal greenhouse gas emissions for new motor vehicles and vehicle engines. The agency will accept comments on the proposal through September 15.

Thanks for tuning in to the monthly news roundup. We’ll see you next month!

See More

Most Recent Highlights In Human Resources

Update: EPA withdraws direct rule, keeps proposed rule for alternative CCR reporting option
2025-09-05T05:00:00Z

Update: EPA withdraws direct rule, keeps proposed rule for alternative CCR reporting option

On September 4, 2025, the Environmental Protection Agency (EPA) withdrew a direct final rule it issued on July 22, 2025, that offered active and inactive coal combustion residuals (CCR) facilities an alternative reporting option and delayed corresponding compliance obligations for CCR management units (CCRMUs). However, the parallel proposed rule that was published with the direct final rule remains in place, and EPA has extended the comment period through September 15, 2025.

Who does this affect?

The direct and proposed rules impact (a) active CCR facilities and (b) inactive CCR facilities with inactive surface impoundments (called legacy CCR surface impoundments) that are regulated by the 2024 Legacy Rule.

What does this mean?

Because the direct rule was withdrawn, the alternative reporting option for the Facility Evaluation Report (FER) Part 1 doesn’t apply, and the compliance deadlines for the related CCRMU requirements revert to the previous timelines.

The parallel proposed rule remains active and contains the same changes as the withdrawn direct final rule, including:

  • Adding an alternative option for active CCR facilities and legacy CCR surface impoundments to submit FER Parts 1 and 2 together by February 8, 2027; and
  • Extending the related compliance deadlines for facilities with CCRMUs.

Further, the proposed rule seeks public input on potentially delaying both FER reporting deadlines and adjusting the CCRMU compliance timelines accordingly. The proposed additional extension would give CCR facilities the option to:

  • Submit FER Part 1 by February 8, 2027, and FER Part 2 by February 8, 2028; or
  • Submit FER Parts 1 and 2 together by February 8, 2028.

You can submit comments to Docket ID No. EPA-HQ-OLEM-2020-0107.

Please see the original Industry News article ("EPA offers CCR facilities delayed reporting option and extends compliance deadlines") for more information about the withdrawn direct rule and the active proposed rule.

Key to remember: EPA has withdrawn a direct final rule that offered active and inactive coal combustion facilities an alternative reporting option, but the agency has kept the corresponding proposed rule in place.

OSHA renews alliance to improve worker safety in waste and recycling industry
2025-09-03T05:00:00Z

OSHA renews alliance to improve worker safety in waste and recycling industry

In a renewed alliance, OSHA, the National Waste & Recycling Association (NWRA), and the Solid Waste Association of North America (SWANA) will continue to work together to improve the safety and health of workers in the solid waste and recycling industry.

The partnership will focus on safety issues such as:

  • Transportation hazards;
  • Slips, trips, and falls;
  • Needlestick and musculoskeletal injuries; and
  • Health issues associated with lithium battery hazards in waste/recycling collection and processing.

OSHA, NWRA, and SWANA will develop resources to help employers prevent and mitigate hazards, including:

  • Educational articles,
  • Fact sheets, and
  • Toolkits.

The group will share these resources and additional information at conferences, forums, and meetings, with much of their outreach aimed at reaching small- and medium-sized employers who may have limited access to safety information.

2025-08-29T05:00:00Z

New Mexico bans PFAS from oil and gas well completions and recompletions

Effective date: July 29, 2025

This applies to: Oil and gas operations

Description of change: The New Mexico Oil Conservation Commission adopted amendments to ban per- and polyfluoroalkyl substances (PFAS) from being used in completions (bringing into production) or recompletions (restarting production) of oil wells. The amendments to 19.15 N.M.A.C.:

  • Require operators to provide certification that no PFAS chemicals were used;
  • Require applicants for a permit to drill, deepen, or plug back a well to certify that they won’t introduce PFAS-containing additives;
  • Adds completion operations to the factors that trigger notification and diligence action requirements when potential loss of containment or damage occurs; and
  • Adds FracFocus disclosure requirements.
2025-08-29T05:00:00Z

Colorado provides alternative window, door, skylight efficiency standards

Effective date: January 1, 2026

This applies to: Residential windows, doors, and skylights sold or leased for residential use in the state

Description of change: As of January 1, 2026, all residential windows, doors, and skylights sold or leased for residential use in Colorado must meet specific energy efficiency standards established by House Bill 23-1161. The Colorado Energy Office established an alternative energy standard for compliance. Manufacturers may choose between the standard at C.R.S. 6-7.5-105(5)(j)(l) and the alternative standard at 5 CCR 1004-2(1.1).

2025-08-29T05:00:00Z

Washington updates protocol for Cap-and-Invest Program

Effective date: August 21, 2025

This applies to: Businesses subject to the Climate Commitment Act Program rule

Description of change: The Department of Ecology updated the offset protocol for ozone-depleting substances (ODS) to expand the scope of offset projects available to Cap-and-Invest Program participants. The amendments to chapter 173-446 WAC:

  • Restrict project invalidation liability for ODS projects,
  • Adopt a new ODS protocol based on one used by the California Air Resources Board, and
  • Require all ODS offset projects that begin after the effective date of this rule to use the new protocol.

View related state info: Clean air operating permits — Washington

See More
New Network Poll
Do you provide over-the-counter medications in your first aid kits?

Do you provide over-the-counter medications in your first aid kits?

No active poll
Please come back soon!
See More
See More
See More
See More
Saved to my EVENT CALENDAR!
View your saved links by clicking the arrow next to your profile picture located in the header. Then, click “My Activity” to view the Event Calendar on your Activity page.