J. J. Keller® Compliance Network Logo
Start Experiencing Compliance Network for Free!
Update to Professional Trial!

Be Part of the Ultimate Safety & Compliance Community

Trending news, knowledge-building content, and more – all personalized to you!

Already have an account?
FREE TRIAL UPGRADE!
Thank you for investing in EnvironmentalHazmat related content. Click 'UPGRADE' to continue.
CANCEL
YOU'RE ALL SET!
Enjoy your limited-time access to the Compliance Network!
A confirmation welcome email has been sent to your email address from ComplianceNetwork@t.jjkellercompliancenetwork.com. Please check your spam/junk folder if you can't find it in your inbox.
YOU'RE ALL SET!
Thank you for your interest in EnvironmentalHazmat related content.
WHOOPS!
You've reached your limit of free access, if you'd like more info, please contact us at 800-327-6868.
You'll also get exclusive access to:
TRY IT FREE TODAY
Already have an account? .

Based on the Environmental Protection Agency's (EPA's) reconsideration of the air quality criteria and the national ambient air quality standards (NAAQS) for particulate matter (PM), the EPA is revising the primary annual PM 2.5 standard by lowering the level from 12.0 µg/m 3 to 9.0 µg/m 3 . The Agency is retaining the current primary 24-hour PM 2.5 standard and the primary 24-hour PM 10 standard. The Agency also is not changing the secondary 24-hour PM 2.5 standard, secondary annual PM 2.5 standard, and secondary 24-hour PM 10 standard at this time. The EPA is also finalizing revisions to other key aspects related to the PM NAAQS, including revisions to the Air Quality Index (AQI) and monitoring requirements for the PM NAAQS.

DATES: This final rule is effective May 6, 2024, published in the Federal Register March 6, 2024, page 16202.

View final rule.

§50.20 National primary ambient air quality standards for PM2.5.
Entire sectionAddedView text
Appendix K to Part 50 - Interpretation of the National Ambient Air Quality Standards for Particulate Matter
Section 1.0 paragraph (b)RevisedView text
Section 2.3 paragraph (d)AddedView text
Section 3.0 paragraphs (a) and (b)AddedView text
Appendix L to Part 50 - Reference Method for the Determination of Fine Particulate Matter as PM2.5 in the Atmosphere
Section 7.3.4RevisedView text
Section 7.3.4.5AddedView text
Appendix N to Part 50 - Interpretation of the National Ambient Air Quality Standards for PM2.5
Section 1.0 paragraph (a)RevisedView text
Section 3.0 paragraph (d)(3)AddedView text
Section 4.1 paragraph (a)RevisedView text
Section 4.2 paragraph (a)RevisedView text
§53.4 Applications for reference or equivalent method determinations.
(a), (d)RevisedView text
(b)(7)AddedView text
§53.8 Designation of reference and equivalent methods.
(a)RevisedView text
§53.14 Modification of a reference or equivalent method.
(c)(4)-(6)RevisedView text
Table A–1 to Subpart A of Part 53—Summary of Applicable Requirements for Reference and Equivalent Methods for Air Monitoring of Criteria Pollutants
Entire tableRevisedView text
Table B-1 to Subpart B of Part 53- Performance Limit Specifications for Automated Methods
Footnote 4RevisedView text
Table B-3 to Subpart B of Part 53 - Interferent Test Concentration,1 Parts per Million
Entire tableRevisedView text
Appendix A to Subpart B of Part 53 - Optional Forms for Reporting Test Results
Figures B-3 and B-5RevisedView text
§53.35 Test procedure for Class II and Class III methods for PM2.5 and PM10−2.5.
(b)(1)(ii)(D)RevisedView text
Table C-4 to Subpart C of Part 53—Test Specifications for PM10, PM2.5, and PM10–2.5 Candidate Equivalent Methods
Entire tableRevisedView text
§53.43 Test procedures.
Formulas in (a)(2)(xvi) and (c)(2)(iv)RevisedView text
§53.51 Demonstration of compliance with design specifications and manufacturing and test requirements.
(d)(2)RevisedView text
§53.61 Test conditions.
(g)RevisedView text
§58.1 Definitions.
Definition for ”Approved regional method (ARM)”RemovedView text
Definition for ”Traceable”RemovedView text
§58.10 Annual monitoring network plan and periodic network assessment.
(a)(1), (b)(10), (b)(13), (d)RevisedView text
(b)(14)AddedView text
§58.11 Network technical requirements.
(a)(2), (e)RevisedView text
§58.12 Operating schedules.
(d)(1)RevisedView text
§58.15 Annual air monitoring data certification.
Entire sectionRevisedView text
§58.20 Special purpose monitors (SPM).
(b)-(e)RevisedView text
Appendix A to Part 58 - Quality Assurance Requirements for Monitors used in Evaluations of National Ambient Air Quality Standards
Entire appendixRevisedView text
Appendix B to Part 58 - Quality Assurance Requirements for Prevention of Significant Deterioration (PSD) Air Monitoring
Entire appendixView text
Appendix C to Part 58—Ambient Air Quality Monitoring Methodology
Section 2RevisedView text
Appendix D to Part 58—Network Design Criteria for Ambient Air Quality Monitoring
Sections 1, 1.1(b), introductory text before table in 4.7.1(a), 4.7.1(b)(3), 4.7.2RevisedView text
Appendix E to Part 58—Probe and Monitoring Path Siting Criteria for Ambient Air Quality Monitoring
Entire appendixRevisedView text
Appendix G to Part 58—Uniform Air Quality Index (AQI) and Daily Reporting
Entire appendixRevisedView text

New Text

Appendix K to Part 50 - Interpretation of the National Ambient Air Quality Standards for Particulate Matter

* * * *

(b) The terms used in this appendix are defined as follows:

Average refers to the arithmetic mean of the estimated number of exceedances per year, as per section 3.1 of this appendix.

Collocated monitors refer to two or more air measurement instruments for the same parameter (e.g., PM 10 mass) operated at the same site location, and whose placement is consistent with part 53 of this chapter. For purposes of considering a combined site record in this appendix, when two or more monitors are operated at the same site, one monitor is designated as the “primary” monitor with any additional monitors designated as “collocated.” It is implicit in these appendix procedures that the primary monitor and collocated monitor(s) are all reference or equivalent methods; however, it is not a requirement that the primary and collocated monitors utilize the same specific sampling and analysis method.

Combined site data record is the data set used for performing computations in this appendix and represents data for the primary monitors augmented with data from collocated monitors according to the procedure specified in section 3.0(a) of this appendix.

Daily value for PM10 refers to the 24-hour average concentration of PM 10 calculated or measured from midnight to midnight (local time).

Exceedance means a daily value that is above the level of the 24-hour standard after rounding to the nearest 10 µg/m 3i.e., values ending in 5 or greater are to be rounded up).

Expected annual value is the number approached when the annual values from an increasing number of years are averaged, in the absence of long-term trends in emissions or meteorological conditions.

Primary monitors are suitable monitors designated by a State or local agency in their annual network plan as the default data source for creating a combined site data record. If there is only one suitable monitor at a particular site location, then it is presumed to be a primary monitor.

Year refers to a calendar year.

Appendix L to Part 50 - Reference Method for the Determination of Fine Particulate Matter as PM2.5 in the Atmosphere

* * * *

7.3.4 Particle size separator. The sampler shall be configured with one of the three alternative particle size separators described in this section. One separator is an impactor-type separator (WINS impactor) described in sections 7.3.4.1, 7.3.4.2, and 7.3.4.3 of this appendix. One alternative separator is a cyclone-type separator (VSCC TM) described in section 7.3.4.4 of this appendix. The other alternative separator is also a cyclone-type separator (TE–PM 2.5 C) described in section 7.3.4.5 of this appendix.

Appendix N to Part 50 - Interpretation of the National Ambient Air Quality Standards for PM2.5

1.0 General

(a) This appendix explains the data handling conventions and computations necessary for determining when the national ambient air quality standards (NAAQS) for PM 2.5 are met, specifically the primary and secondary annual and 24-hour PM 2.5 NAAQS specified in §§50.7, 50.13, 50.18, and 50.20. PM 2.5 is defined, in general terms, as particles with an aerodynamic diameter less than or equal to a nominal 2.5 micrometers. PM 2.5 mass concentrations are measured in the ambient air by a Federal Reference Method (FRM) based on appendix L to this part, as applicable, and designated in accordance with part 53 of this chapter or by a Federal Equivalent Method (FEM) designated in accordance with part 53 of this chapter. Only those FRM and FEM measurements that are derived in accordance with part 58 of this chapter (i.e., that are deemed “suitable”) shall be used in comparisons with the PM 2.5 NAAQS. The data handling and computation procedures to be used to construct annual and 24-hour NAAQS metrics from reported PM 2.5 mass concentrations, and the associated instructions for comparing these calculated metrics to the levels of the PM 2.5 NAAQS, are specified in sections 2.0, 3.0, and 4.0 of this appendix.

* * * *

4.1 Annual PM2 . 5 NAAQS

(a) Levels of the primary and secondary annual PM 2.5 NAAQS are specified in §§50.7, 50.13, 50.18, and 50.20 as applicable.

* * * * *

4.2 Twenty-Four-Hour PM2 . 5 NAAQS

(a) Levels of the primary and secondary 24-hour PM 2.5 NAAQS are specified in §§50.7, 50.13, 50.18, and 50.20 as applicable.

§53.4 Applications for reference or equivalent method determinations.

(a) Applications for FRM or FEM determinations and modification requests of existing designated instruments shall be submitted to: U.S. Environmental Protection Agency, Director, Center for Environmental Measurement and Modeling, Reference and Equivalent Methods Designation Program (MD–D205–03), 109 T.W. Alexander Drive, P.O. Box 12055, Research Triangle Park, North Carolina 27711 (commercial delivery address: 4930 Old Page Road, Durham, North Carolina 27703).

* * * *

(d) For candidate reference or equivalent methods or for designated instruments that are the subject of a modification request, the applicant, if requested by EPA, shall provide to EPA a representative sampler or analyzer for test purposes. The sampler or analyzer shall be shipped free on board (FOB) destination to Director, Center for Environmental Measurements and Modeling, Reference and Equivalent Methods Designation Program (MD D205–03), U.S. Environmental Protection Agency, 4930 Old Page Road, Durham, North Carolina 27703, scheduled to arrive concurrently with or within 30 days of the arrival of the other application materials. This sampler or analyzer may be subjected to various tests that EPA determines to be necessary or appropriate under §53.5(f), and such tests may include special tests not described in this part. If the instrument submitted under this paragraph (d) malfunctions, becomes inoperative, or fails to perform as represented in the application before the necessary EPA testing is completed, the applicant shall be afforded the opportunity to repair or replace the device at no cost to the EPA. Upon completion of EPA testing, the sampler or analyzer submitted under this paragraph (d) shall be repacked by EPA for return shipment to the applicant, using the same packing materials used for shipping the instrument to EPA unless alternative packing is provided by the applicant. Arrangements for, and the cost of, return shipment shall be the responsibility of the applicant. The EPA does not warrant or assume any liability for the condition of the sampler or analyzer upon return to the applicant.

§53.8 Designation of reference and equivalent methods.

(a) A candidate method determined by the Administrator to satisfy the applicable requirements of this part shall be designated as an FRM or FEM (as applicable) by and upon publication of the designation in the Federal Register . Applicants shall not publicly announce, market, or sell the candidate sampler and analyzer as an approved FRM or FEM (as applicable) until the designation is published in the Federal Register .

§53.14 Modification of a reference or equivalent method.

* * * *

(c)(4) Send notice to the applicant that additional information must be submitted before a determination can be made and specify the additional information that is needed (in such cases, the 90-day period shall commence upon receipt of the additional information).

(c)(5) Send notice to the applicant that additional tests are necessary and specify which tests are necessary and how they shall be interpreted (in such cases, the 90-day period shall commence upon receipt of the additional test data).

(c)(6) Send notice to the applicant that additional tests will be conducted by the Administrator and specify the reasons for and the nature of the additional tests (in such cases, the 90-day period shall commence 1 calendar day after the additional tests are completed).

Table A–1 to Subpart A of Part 53—Summary of Applicable Requirements for Reference and Equivalent Methods for Air Monitoring of Criteria Pollutants

Table A–1 to Subpart A of Part 53—Summary of Applicable Requirements for Reference and Equivalent Methods for Air Monitoring of Criteria Pollutants
1 Some requirements may apply, based on the nature of each particular candidate method, as determined by the Administrator.
2 Alternative Class III requirements may be substituted.
PollutantReference or equivalentManual or automatedApplicable appendix of part 50 of this chapterApplicable subparts of this part
ABCDEF
SO 2ReferenceManualA–2
AutomatedA–1
EquivalentManualA–1
AutomatedA–1
COReferenceAutomatedC
EquivalentManualC
AutomatedC
O 3ReferenceAutomatedD
EquivalentManualD
AutomatedD
NO 2ReferenceAutomatedF
EquivalentManualF
AutomatedF
PbReferenceManualG
EquivalentManualG
AutomatedG
PM 10 -PbReferenceManualQ
EquivalentManualQ
AutomatedQ
PM 10ReferenceManualJ
EquivalentManualJ
AutomatedJ
PM 2.5ReferenceManualL
Equivalent Class IManualL
Equivalent Class IIManualL 12
Equivalent Class IIIAutomatedL 11
PM 10–2.5ReferenceManualL, 2 O
Equivalent Class IManualL, 2 O
Equivalent Class IIManualL, 2 O21,2
Equivalent Class IIIAutomated1 L, O1

Table B-1 to Subpart B of Part 53- Performance Limit Specifications for Automated Methods

* * * *

4 For nitric oxide interference for the SO 2 ultraviolet fluorescence (UVF) method, interference equivalent is ±0.003 ppm for the lower range.

Table B-3 to Subpart B of Part 53 - Interferent Test Concentration,1 Parts per Million

Table B–3 to Subpart B of Part 53—Interferent Test Concentration[Parts per million]
PollutantAnalyzer type 2Hydro-chloric acidAmmoniaHydrogen sulfideSulfur dioxideNitrogen dioxideNitric oxideCarbon dioxideEthyleneOzoneM-xyleneWater vaporCarbon monoxideMethaneEthaneNaphthalene
1 Concentrations of interferent listed must be prepared and controlled to ±10 percent of the stated value.
2 Analyzer types not listed will be considered by the Administrator as special cases.
3 Do not mix interferent with the pollutant.
4 Concentration of pollutant used for test. These pollutant concentrations must be prepared to ±10 percent of the stated value.
5 If candidate method utilizes an elevated-temperature scrubber for removal of aromatic hydrocarbons, perform this interference test.
6 If naphthalene test concentration cannot be accurately quantified, remove the scrubber, use a test concentration that causes a full-scale response, reattach the scrubber, and evaluate response for interference.
SO 2Ultraviolet fluorescence5 0.14 0.140.50.50.50.220,0006 0.05
SO 2Flame photometric0.014 0.147503 20,00050
SO 2Gas chromatography0.14 0.147503 20,00050
SO 2Spectrophotometric-wet chemical (pararosanaline)0.20.10.14 0.140.57500.5
SO 2Electrochemical0.20.10.14 0.140.50.50.20.53 20,000
SO 2Conductivity0.20.14 0.140.5750
SO 2Spectrophotometric-gas phase, including DOAS4 0.140.50.50.50.2
O 3Ethylene Chemiluminescence3 0.17504 0.083 20,000
O 3NO-chemiluminescence3 0.10.57504 0.083 20,000
O 3Electrochemical3 0.10.50.54 0.083 20,000
O 3Spectrophotometric-wet chemical (potassium iodide)3 0.10.50.53 0.54 0.08
O 3Spectrophotometric-gas phase, including ultraviolet absorption and DOAS0.50.53 0.54 0.080.0220,000
CONon-dispersive Infrared75020,0004 10
COGas chromatography with flame ionization detector20,0004 100.5
COElectrochemical0.50.220,0004 10
COCatalytic combustion-thermal detection0.17500.220,0004 105.00.5
COIR fluorescence75020,0004 100.5
COMercury replacement-UV photometric0.24 100.5
NO 2Chemiluminescent3 0.10.54 0.10.520,000
NO 2Spectrophotometric-wet chemical (azo-dye reaction)0.54 0.10.57500.5
NO 2Electrochemical0.23 0.10.54 0.10.57500.520,00050
NO 2Spectrophotometric-gas phase3 0.10.54 0.10.50.520,00050

Appendix A to Subpart B of Part 53 - Optional Forms for Reporting Test Results

* * * * *

Figure B–3 to Appendix A to Subpart B of Part 53—Form for Test Data and Calculations for Lower Detectable Limit (LDL) and Interference Equivalent (IE) (see §53.23(c) and (d))

LDL Interference Test Data

Applicant _________________

Analyzer _________________

Date _________________

Pollutant _________________



* * * * *

Figure B–5 to Appendix A to Subpart B of Part 53—Form for Calculating Zero Drift, Span Drift and Precision (see §53.23(e))

Calculation of Zero Drift, Span Drift, and Precision

Applicant _________________

Analyzer _________________

Date _________________

Pollutant _________________



§53.35 Test procedure for Class II and Class III methods for PM2.5 and PM10−2.5.

* * * *

(b)(1)(ii)(D) Site D shall be in a large city east of the Mississippi River, having characteristically high humidity levels.

Table C-4 to Subpart C of Part 53—Test Specifications for PM10, PM2.5, and PM10–2.5 Candidate Equivalent Methodss

Table C–4 to Subpart C of Part 53—Test Specifications for PM 10 , PM 2.5 , and PM 10–2.5 Candidate Equivalent Methods
SpecificationPM 10PM 2.5PM 10–2.5
Class IClass IIClass IIIClass IIClass III
1 Some missing daily measurement values may be permitted; see test procedure.
2 Calculated as the root mean square over all measurement sets.
Acceptable concentration range (R j), µg/m 35–3003–2003–2003–2003–2003–200.
Minimum number of test sites212424.
Minimum number of candidate method samplers or analyzers per site333 13 13 13. 1
Number of reference method samplers per site333 13 13 13. 1
Minimum number of acceptable sample sets per site for PM 10 methods:
R j < 20 µg/m 33
R j > 20 µg/m 33
Total10
Minimum number of acceptable sample sets per site for PM 2.5 and PM 10–2.5 candidate equivalent methods:
R j < 15 µg/m 3 for 24-hr or R j < 8 µg/m 3 for 48-hr samples.33333.
Rj > 15 µg/m 3 for 24-hr or R j > 8 µg/m 3 for 48-hr samples33333.
Each season1023232323.
Total, each site102323 (46 for two-season sites)2323 (46 for two-season sites).
Precision of replicate reference method measurements, P Rj or RP Rj , respectively; RP for Class II or III PM 2.5 or PM 10–2.5 , maximum5 μg/m 3 or 7%.2 μg/m 3 or 5%.10% 210% 210% 210%. 2
Precision of PM 2.5 or PM 10–2.5 candidate method, CP, each site10% 215% 215% 215%. 2
Slope of regression relationship1 ±0.101 ±0.051 ±0.101 ±0.101 ±0.101 ±0.12.
Intercept of regression relationship, µg/m 30 ±50 ±1Between: 13.55—(15.05 × slope), but not less than—1.5; and 16.56—(15.05 × slope), but not more than +1.5Between: 15.05—(17.32 × slope), but not less than—2.0; and 15.05—(13.20 × slope), but not more than +2.0Between: 62.05—(70.5 × slope), but not less than—3.5; and 78.95—(70.5 × slope), but not more than +3.5Between: 70.50—(82.93 × slope), but not less than—7.0; and 70.50—(61.16 × slope), but not more than +7.0.
Correlation of reference method and candidate method measurements≥ 0.97≥ 0.97≥ 0.93—for CCV ≤ 0.4; ≥ 0.85 + 0.2 × CCV—for 0.4 ≤ CCV ≤ 0.5; ≥ 0.95—for CCV ≥ 0.5

§53.43 Test procedures.

(a)(2)(xvi)



(c)(2)(iv) * * *



if C j is below 80 µg/m 3 , or



if C j is above 80 µg/m 3 .

§53.51 Demonstration of compliance with design specifications and manufacturing and test requirements.

* * * *

(d)(2) VSCC and TE–PM2.5C separators. For samplers and monitors utilizing the BGI VSCC or Tisch TE–PM 2.5 C particle size separators specified in sections 7.3.4.4 and 7.3.4.5 of appendix L to part 50 of this chapter, respectively, the respective manufacturers shall identify the critical dimensions and manufacturing tolerances for the separator, devise appropriate test procedures to verify that the critical dimensions and tolerances are maintained during the manufacturing process, and carry out those procedures on each separator manufactured to verify conformance of the manufactured products. The manufacturer shall also maintain records of these tests and their test results and submit evidence that this procedure is incorporated into the manufacturing procedure, that the test is or will be routinely implemented, and that an appropriate procedure is in place for the disposition of units that fail this tolerance tests.

§53.61 Test conditions.

(g) Vibrating Orifice Aerosol Generator (VOAG) and Flow-Focusing Monodisperse Aerosol Generator (FMAG) conventions. This section prescribes conventions regarding the use of the vibrating orifice aerosol generator (VOAG) and the flow-focusing monodisperse aerosol generator (FMAG) for the size-selective performance tests outlined in §§53.62, 53.63, 53.64, and 53.65.

(1) Particle aerodynamic diameter. The VOAG and FMAG produce near-monodisperse droplets through the controlled breakup of a liquid jet. When the liquid solution consists of a non-volatile solute dissolved in a volatile solvent, the droplets dry to form particles of near-monodisperse size.

(i) The physical diameter of a generated spherical particle can be calculated from the operational parameters of the VOAG and FMAG as:

Equation 1



where:

Dp = particle physical diameter, µm;

Q = liquid volumetric flow rate, µm 3/sec;

Cvol = volume concentration (particle volume produced per drop volume), dimensionless; and

f = frequency of applied vibrational signal, 1/sec.

(ii) A given particle's aerodynamic behavior is a function of its physical particle size, particle shape, and density. Aerodynamic diameter is defined as the diameter of a unit density (ρo = 1g/cm 3) sphere having the same settling velocity as the particle under consideration. For converting a spherical particle of known density to aerodynamic diameter, the governing relationship is:

Equation 2



where:

Dae = particle aerodynamic diameter, µm;

ρp = particle density, g/cm 3;

ρo = aerodynamic particle density = 1 g/cm 3;

CDp = Cunningham's slip correction factor for physical particle diameter, dimensionless; and

CDae = Cunningham's slip correction factor for aerodynamic particle diameter, dimensionless.

(iii) At room temperature and standard pressure, the Cunningham's slip correction factor is solely a function of particle diameter:

Equation 3



or

Equation 4



(iv) Since the slip correction factor is itself a function of particle diameter, the aerodynamic diameter in equation 2 of paragraph (g)(1)(ii) of this section cannot be solved directly but must be determined by iteration.

(2) Solid particle generation. (i) Solid particle tests performed in this subpart shall be conducted using particles composed of ammonium fluorescein. For use in the VOAG or FMAG, liquid solutions of known volumetric concentration can be prepared by diluting fluorescein powder (C 2 OH 12 O 5 , FW = 332.31, CAS 2321–07–5) with aqueous ammonia. Guidelines for preparation of fluorescein solutions of the desired volume concentration (C vol) are presented in Vanderpool and Rubow (1988) (Reference 2 in appendix A to this subpart). For purposes of converting particle physical diameter to aerodynamic diameter, an ammonium fluorescein particle density of 1.35 g/cm 3 shall be used.

(ii) Mass deposits of ammonium fluorescein shall be extracted and analyzed using solutions of 0.01 N ammonium hydroxide.

(iii) Calculation of the physical diameter of the particles produced by the VOAG and FMAG requires knowledge of the liquid solution's volume concentration (C vol). Because uranine is essentially insoluble in oleic acid, the total particle volume is the sum of the oleic acid volume and the uranine volume. The volume concentration of the liquid solution shall be calculated as:



Where:

V u = uranine volume, ml;

V oleic = oleic acid volume, ml;

V sol = total solution volume, ml;

M u = uranine mass, g;

P u = uranine density, g/cm 3 ;

M oleic = oleic acid mass, g; and

P oleic = oleic acid density, g/cm 3 .

(3) Liquid particle generation. (i) Tests prescribed in §53.63 for inlet aspiration require the use of liquid particle tests composed of oleic acid tagged with uranine to enable subsequent fluorometric quantitation of collected aerosol mass deposits. Oleic acid (C18H34O2, FW = 282.47, CAS 112-80-1) has a density of 0.8935 g/cm 3. Because the viscosity of oleic acid is relatively high, significant errors can occur when dispensing oleic acid using volumetric pipettes. For this reason, it is recommended that oleic acid solutions be prepared by quantifying dispensed oleic acid gravimetrically. The volume of oleic acid dispensed can then be calculated simply by dividing the dispensed mass by the oleic acid density.

(ii) Oleic acid solutions tagged with uranine shall be prepared as follows. A known mass of oleic acid shall first be diluted using absolute ethanol. The desired mass of the uranine tag should then be diluted in a separate container using absolute ethanol. Uranine (C20H10O5Na2, FW = 376.3, CAS 518-47-8) is the disodium salt of fluorescein and has a density of 1.53 g/cm 3. In preparing uranine tagged oleic acid particles, the uranine content shall not exceed 20 percent on a mass basis. Once both oleic acid and uranine solutions are properly prepared, they can then be combined and diluted to final volume using absolute ethanol.

(iii) Calculation of the physical diameter of the particles produced by the VOAG requires knowledge of the liquid solution's volume concentration (Cvol). Because uranine is essentially insoluble in oleic acid, the total particle volume is the sum of the oleic acid volume and the uranine volume. The volume concentration of the liquid solution shall be calculated as:

Equation 5



where:

Vu = uranine volume, ml;

Voleic = oleic acid volume, ml;

Vsol = total solution volume, ml;

Mu = uranine mass, g;

ρu = uranine density, g/cm 3;

Moleic = oleic acid mass, g; and

ρoleic = oleic acid density, g/cm. 3

(iv) For purposes of converting the particles' physical diameter to aerodynamic diameter, the density of the generated particles shall be calculated as:

Equation 6



(v) Mass deposits of oleic acid shall be extracted and analyzed using solutions of 0.01 N sodium hydroxide.

§58.1 Definitions.

* * * *

Traceable means a measurement result from a local standard whereby the result can be related to the International System of Units (SI) through a documented unbroken chain of calibrations, each contributing to the measurement uncertainty. Traceable measurement results must be compared and certified, either directly or via not more than one intermediate standard, to a National Institute of Standards and Technology (NIST)-certified reference standard. Examples include but are not limited to NIST Standard Reference Material (SRM), NIST-traceable Reference Material (NTRM), or a NIST-certified Research Gas Mixture (RGM). Traceability to the SI through other National Metrology Institutes (NMIs) in addition to NIST is allowed if a Declaration of Equivalence (DoE) exists between NIST and that NMI.

§58.10 Annual monitoring network plan and periodic network assessment.

* * * *

(a)(1) Beginning July 1, 2007, the State, or where applicable local, agency shall submit to the Regional Administrator an annual monitoring network plan which shall provide for the documentation of the establishment and maintenance of an air quality surveillance system that consists of a network of SLAMS monitoring stations that can include FRM and FEM monitors that are part of SLAMS, NCore, CSN, PAMS, and SPM stations. The plan shall include a statement of whether the operation of each monitor meets the requirements of appendices A, B, C, D, and E to this part, where applicable. The Regional Administrator may require additional information in support of this statement. The annual monitoring network plan must be made available for public inspection and comment for at least 30 days prior to submission to the EPA and the submitted plan shall include and address, as appropriate, any received comments.

* * * * *

(b)(10) Any monitors for which a waiver has been requested or granted by the EPA Regional Administrator as allowed for under appendix D or appendix E to this part. For those monitors where a waiver has been approved, the annual monitoring network plan shall include the date the waiver was approved.

* * * * *

(b)(13) The identification of any PM 2.5 FEMs used in the monitoring agency's network where the data are not of sufficient quality such that data are not to be compared to the national ambient air quality standards (NAAQS). For required SLAMS where the agency identifies that the PM 2.5 Class III FEM does not produce data of sufficient quality for comparison to the NAAQS, the monitoring agency must ensure that an operating FRM or filter-based FEM meeting the sample frequency requirements described in §58.12 or other Class III PM 2.5 FEM with data of sufficient quality is operating and reporting data to meet the network design criteria described in appendix D to this part.

* * * * *

(d) The State, or where applicable local, agency shall perform and submit to the EPA Regional Administrator an assessment of the air quality surveillance system every 5 years to determine, at a minimum, if the network meets the monitoring objectives defined in appendix D to this part, whether new sites are needed, whether existing sites are no longer needed and can be terminated, and whether new technologies are appropriate for incorporation into the ambient air monitoring network. The network assessment must consider the ability of existing and proposed sites to support air quality characterization for areas with relatively high populations of susceptible individuals (e.g., children with asthma) and other at-risk populations, and, for any sites that are being proposed for discontinuance, the effect on data users other than the agency itself, such as nearby States and Tribes or health effects studies. The State, or where applicable local, agency must submit a copy of this 5-year assessment, along with a revised annual network plan, to the Regional Administrator. The assessments are due every 5 years beginning July 1, 2010.

§58.11 Network technical requirements.

* * * *

(a)(2) Beginning January 1, 2009, State and local governments shall follow the quality assurance criteria contained in appendix A to this part that apply to SPM sites when operating any SPM site which uses an FRM or an FEM and meets the requirements of appendix E to this part, unless the Regional Administrator approves an alternative to the requirements of appendix A with respect to such SPM sites because meeting those requirements would be physically and/or financially impractical due to physical conditions at the monitoring site and the requirements are not essential to achieving the intended data objectives of the SPM site. Alternatives to the requirements of appendix A may be approved for an SPM site as part of the approval of the annual monitoring plan, or separately.

* * * *

(e) State and local governments must assess data from Class III PM 2.5 FEM monitors operated within their network using the performance criteria described in table C–4 to subpart C of part 53 of this chapter, for cases where the data are identified as not of sufficient comparability to a collocated FRM, and the monitoring agency requests that the FEM data should not be used in comparison to the NAAQS. These assessments are required in the monitoring agency's annual monitoring network plan described in §58.10(b) for cases where the FEM is identified as not of sufficient comparability to a collocated FRM. For these collocated PM 2.5 monitors, the performance criteria apply with the following additional provisions:

(1) The acceptable concentration range (Rj), µg/m 3 may include values down to 0 µg/m 3 .

(2) The minimum number of test sites shall be at least one; however, the number of test sites will generally include all locations within an agency's network with collocated FRMs and FEMs.

(3) The minimum number of methods shall include at least one FRM and at least one FEM.

(4) Since multiple FRMs and FEMs may not be present at each site, the precision statistic requirement does not apply, even if precision data are available.

(5) All seasons must be covered with no more than 36 consecutive months of data in total aggregated together.

(6) The key statistical metric to include in an assessment is the bias (both additive and multiplicative) of the PM 2.5 continuous FEM(s) compared to a collocated FRM(s). Correlation is required to be reported in the assessment, but failure to meet the correlation criteria, by itself, is not cause to exclude data from a continuous FEM monitor.

§58.12 Operating schedules.

* * * *

(1)(i) Manual PM 2.5 samplers at required SLAMS stations without a collocated continuously operating PM 2.5 monitor must operate on at least a 1-in-3 day schedule unless a waiver for an alternative schedule has been approved per paragraph (d)(1)(ii) of this section.

(ii) For SLAMS PM 2.5 sites with both manual and continuous PM 2.5 monitors operating, the monitoring agency may request approval for a reduction to 1-in-6 day PM 2.5 sampling or for seasonal sampling from the EPA Regional Administrator. Other requests for a reduction to 1-in-6 day PM 2.5 sampling or for seasonal sampling may be approved on a case-by-case basis. The EPA Regional Administrator may grant sampling frequency reductions after consideration of factors (including but not limited to the historical PM 2.5 data quality assessments, the location of current PM 2.5 design value sites, and their regulatory data needs) if the Regional Administrator determines that the reduction in sampling frequency will not compromise data needed for implementation of the NAAQS. Required SLAMS stations whose measurements determine the design value for their area and that are within plus or minus 10 percent of the annual NAAQS, and all required sites where one or more 24-hour values have exceeded the 24-hour NAAQS each year for a consecutive period of at least 3 years are required to maintain at least a 1-in-3 day sampling frequency until the design value no longer meets the criteria in this paragraph (d)(1)(ii) for 3 consecutive years. A continuously operating FEM PM 2.5 monitor satisfies the requirement in this paragraph (d)(1)(ii) unless it is identified in the monitoring agency's annual monitoring network plan as not appropriate for comparison to the NAAQS and the EPA Regional Administrator has approved that the data from that monitor may be excluded from comparison to the NAAQS.

(iii) Required SLAMS stations whose measurements determine the 24-hour design value for their area and whose data are within plus or minus 5 percent of the level of the 24-hour PM 2.5 NAAQS must have an FRM or FEM operate on a daily schedule if that area's design value for the annual NAAQS is less than the level of the annual PM 2.5 standard. A continuously operating FEM or PM 2.5 monitor satisfies the requirement in this paragraph (d)(1)(iii) unless it is identified in the monitoring agency's annual monitoring network plan as not appropriate for comparison to the NAAQS and the EPA Regional Administrator has approved that the data from that monitor may be excluded from comparison to the NAAQS. The daily schedule must be maintained until the referenced design values no longer meets the criteria in this paragraph (d)(1)(iii) for 3 consecutive years.

(iv) Changes in sampling frequency attributable to changes in design values shall be implemented no later than January 1 of the calendar year following the certification of such data as described in §58.15.

§58.15 Annual air monitoring data certification.

(a) The State, or where appropriate local, agency shall submit to the EPA Regional Administrator an annual air monitoring data certification letter to certify data collected by FRM and FEM monitors at SLAMS and SPM sites that meet criteria in appendix A to this part from January 1 to December 31 of the previous year. The head official in each monitoring agency, or his or her designee, shall certify that the previous year of ambient concentration and quality assurance data are completely submitted to AQS and that the ambient concentration data are accurate to the best of her or his knowledge, taking into consideration the quality assurance findings. The annual data certification letter is due by May 1 of each year.

(b) Along with each certification letter, the State shall submit to the Regional Administrator an annual summary report of all the ambient air quality data collected by FRM and FEM monitors at SLAMS and SPM sites. The annual report(s) shall be submitted for data collected from January 1 to December 31 of the previous year. The annual summary serves as the record of the specific data that is the object of the certification letter.

(c) Along with each certification letter, the State shall submit to the Regional Administrator a summary of the precision and accuracy data for all ambient air quality data collected by FRM and FEM monitors at SLAMS and SPM sites. The summary of precision and accuracy shall be submitted for data collected from January 1 to December 31 of the previous year.

§58.20 Special purpose monitors (SPM).

* * * *

(b) Any SPM data collected by an air monitoring agency using a Federal reference method (FRM) or Federal equivalent method (FEM) must meet the requirements of §§58.11 and 58.12 and appendix A to this part or an approved alternative to appendix A. Compliance with appendix E to this part is optional but encouraged except when the monitoring agency's data objectives are inconsistent with the requirements in appendix E. Data collected at an SPM using a FRM or FEM meeting the requirements of appendix A must be submitted to AQS according to the requirements of §58.16. Data collected by other SPMs may be submitted. The monitoring agency must also submit to AQS an indication of whether each SPM reporting data to AQS monitor meets the requirements of appendices A and E.

(c) All data from an SPM using an FRM or FEM which has operated for more than 24 months are eligible for comparison to the relevant NAAQS, subject to the conditions of §§58.11(e) and 58.30, unless the air monitoring agency demonstrates that the data came from a particular period during which the requirements of appendix A, appendix C, or appendix E to this part were not met, subject to review and EPA Regional Office approval as part of the annual monitoring network plan described in §58.10.

(d) If an SPM using an FRM or FEM is discontinued within 24 months of start-up, the Administrator will not base a NAAQS violation determination for the PM 2.5 or ozone NAAQS solely on data from the SPM.

(e) If an SPM using an FRM or FEM is discontinued within 24 months of start-up, the Administrator will not designate an area as nonattainment for the CO, SO 2 , NO 2 , or 24-hour PM 10 NAAQS solely on the basis of data from the SPM. Such data are eligible for use in determinations of whether a nonattainment area has attained one of these NAAQS.

Appendix A to Part 58 - Quality Assurance Requirements for Monitors used in Evaluations of National Ambient Air Quality Standards

1. General Information

2. Quality System Requirements

3. Measurement Quality Check Requirements

4. Calculations for Data Quality Assessments

5. Reporting Requirements

6. References

1. General Information

1.1 Applicability. (a) This appendix specifies the minimum quality system requirements applicable to SLAMS and other monitor types whose data are intended to be used to determine compliance with the NAAQS (e.g., SPMs, tribal, CASTNET, NCore, industrial, etc.), unless the EPA Regional Administrator has reviewed and approved the monitor for exclusion from NAAQS use and these quality assurance requirements.

(b) Primary quality assurance organizations are encouraged to develop and maintain quality systems more extensive than the required minimums. Additional guidance for the requirements reflected in this appendix can be found in the “Quality Assurance Handbook for Air Pollution Measurement Systems,” Volume II (see reference 10 of this appendix) and at a national level in references 1, 2, and 3 of this appendix.

1.2 Primary Quality Assurance Organization (PQAO). A PQAO is defined as a monitoring organization or a group of monitoring organizations or other organization that is responsible for a set of stations that monitors the same pollutant and for which data quality assessments will be pooled. Each criteria pollutant sampler/monitor must be associated with only one PQAO. In some cases, data quality is assessed at the PQAO level.

1.2.1 Each PQAO shall be defined such that measurement uncertainty among all stations in the organization can be expected to be reasonably homogeneous as a result of common factors. Common factors that should be considered in defining PQAOs include:

(a) Operation by a common team of field operators according to a common set of procedures;

(b) Use of a common quality assurance project plan (QAPP) or standard operating procedures;

(c) Common calibration facilities and standards;

(d) Oversight by a common quality assurance organization; and

(e) Support by a common management organization (i.e., state agency) or laboratory.

Since data quality assessments are made and data certified at the PQAO level, the monitoring organization identified as the PQAO will be responsible for the oversight of the quality of data of all monitoring organizations within the PQAO.

1.2.2 Monitoring organizations having difficulty describing its PQAO or in assigning specific monitors to primary quality assurance organizations should consult with the appropriate EPA Regional Office. Any consolidation of monitoring organizations to PQAOs shall be subject to final approval by the appropriate EPA Regional Office.

1.2.3 Each PQAO is required to implement a quality system that provides sufficient information to assess the quality of the monitoring data. The quality system must, at a minimum, include the specific requirements described in this appendix. Failure to conduct or pass a required check or procedure, or a series of required checks or procedures, does not by itself invalidate data for regulatory decision making. Rather, PQAOs and the EPA shall use the checks and procedures required in this appendix in combination with other data quality information, reports, and similar documentation that demonstrate overall compliance with Part 58. Accordingly, the EPA and PQAOs shall use a “weight of evidence” approach when determining the suitability of data for regulatory decisions. The EPA reserves the authority to use or not use monitoring data submitted by a monitoring organization when making regulatory decisions based on the EPA's assessment of the quality of the data. Consensus built validation templates or validation criteria already approved in QAPPs should be used as the basis for the weight of evidence approach.

1.3 Definitions.

(a) Measurement Uncertainty. A term used to describe deviations from a true concentration or estimate that are related to the measurement process and not to spatial or temporal population attributes of the air being measured.

(b) Precision. A measurement of mutual agreement among individual measurements of the same property usually under prescribed similar conditions, expressed generally in terms of the standard deviation.

(c) Bias. The systematic or persistent distortion of a measurement process which causes errors in one direction.

(d) Accuracy. The degree of agreement between an observed value and an accepted reference value. Accuracy includes a combination of random error (imprecision) and systematic error (bias) components which are due to sampling and analytical operations.

(e) Completeness. A measure of the amount of valid data obtained from a measurement system compared to the amount that was expected to be obtained under correct, normal conditions.

(f) Detection Limit. The lowest concentration or amount of target analyte that can be determined to be different from zero by a single measurement at a stated level of probability.

1.4 Measurement Quality Checks. The measurement quality checks described in section 3 of this appendix shall be reported to AQS and are included in the data required for certification.

1.5 Assessments and Reports. Periodic assessments and documentation of data quality are required to be reported to the EPA. To provide national uniformity in this assessment and reporting of data quality for all networks, specific assessment and reporting procedures are prescribed in detail in sections 3, 4, and 5 of this appendix. On the other hand, the selection and extent of the quality assurance and quality control activities used by a monitoring organization depend on a number of local factors such as field and laboratory conditions, the objectives for monitoring, the level of data quality needed, the expertise of assigned personnel, the cost of control procedures, pollutant concentration levels, etc. Therefore, quality system requirements in section 2 of this appendix are specified in general terms to allow each monitoring organization to develop a quality system that is most efficient and effective for its own circumstances while achieving the data quality objectives described in this appendix.

2. Quality System Requirements

A quality system (reference 1 of this appendix) is the means by which an organization manages the quality of the monitoring information it produces in a systematic, organized manner. It provides a framework for planning, implementing, assessing and reporting work performed by an organization and for carrying out required quality assurance and quality control activities.

2.1 Quality Management Plans and Quality Assurance Project Plans. All PQAOs must develop a quality system that is described and approved in quality management plans (QMP) and QAPPs to ensure that the monitoring results:

(a) Meet a well-defined need, use, or purpose (reference 5 of this appendix);

(b) Provide data of adequate quality for the intended monitoring objectives;

(c) Satisfy stakeholder expectations;

(d) Comply with applicable standards specifications;

(e) Comply with statutory (and other legal) requirements; and

(f) Reflect consideration of cost and economics.

2.1.1 The QMP describes the quality system in terms of the organizational structure, functional responsibilities of management and staff, lines of authority, and required interfaces for those planning, implementing, assessing and reporting activities involving environmental data operations (EDO). The QMP must be suitably documented in accordance with EPA requirements (reference 2 of this appendix), and approved by the appropriate Regional Administrator, or his or her representative. The quality system described in the QMP will be reviewed during the systems audits described in section 2.5 of this appendix. Organizations that implement long-term monitoring programs with EPA funds should have a separate QMP document. Smaller organizations, organizations that do infrequent work with the EPA or have monitoring programs of limited size or scope may combine the QMP with the QAPP if approved by, and subject to any conditions of the EPA. Additional guidance on this process can be found in reference 10 of this appendix. Approval of the recipient's QMP by the appropriate Regional Administrator or his or her representative may allow delegation of authority to the PQAOs independent quality assurance function to review and approve environmental data collection activities adequately described and covered under the scope of the QMP and documented in appropriate planning documents (QAPP). Where a PQAO or monitoring organization has been delegated authority to review and approve their QAPP, an electronic copy must be submitted to the EPA region at the time it is submitted to the PQAO/monitoring organization's QAPP approving authority. The QAPP will be reviewed by the EPA during systems audits or circumstances related to data quality. The QMP submission and approval dates for PQAOs/monitoring organizations must be reported to AQS either by the monitoring organization or the EPA Region.

2.1.2 The QAPP is a formal document describing, in sufficient detail, the quality system that must be implemented to ensure that the results of work performed will satisfy the stated objectives. PQAOs must develop QAPPs that describe how the organization intends to control measurement uncertainty to an appropriate level in order to achieve the data quality objectives for the EDO. The quality assurance policy of the EPA requires every EDO to have a written and approved QAPP prior to the start of the EDO. It is the responsibility of the PQAO/monitoring organization to adhere to this policy. The QAPP must be suitably documented in accordance with EPA requirements (reference 3 of this appendix) and include standard operating procedures for all EDOs either within the document or by appropriate reference. The QAPP must identify each PQAO operating monitors under the QAPP as well as generally identify the sites and monitors to which it is applicable either within the document or by appropriate reference. The QAPP submission and approval dates must be reported to AQS either by the monitoring organization or the EPA Region.

2.1.3 The PQAO/monitoring organization's quality system must have adequate resources both in personnel and funding to plan, implement, assess and report on the achievement of the requirements of this appendix and it's approved QAPP.

2.2 Independence of Quality Assurance. The PQAO must provide for a quality assurance management function, that aspect of the overall management system of the organization that determines and implements the quality policy defined in a PQAO's QMP. Quality management includes strategic planning, allocation of resources and other systematic planning activities (e.g., planning, implementation, assessing and reporting) pertaining to the quality system. The quality assurance management function must have sufficient technical expertise and management authority to conduct independent oversight and assure the implementation of the organization's quality system relative to the ambient air quality monitoring program and should be organizationally independent of environmental data generation activities.

2.3. Data Quality Performance Requirements.

2.3.1 Data Quality Objectives. The DQOs, or the results of other systematic planning processes, are statements that define the appropriate type of data to collect and specify the tolerable levels of potential decision errors that will be used as a basis for establishing the quality and quantity of data needed to support the monitoring objectives (reference 5 of this appendix). The DQOs will be developed by the EPA to support the primary regulatory objectives for each criteria pollutant. As they are developed, they will be added to the regulation. The quality of the conclusions derived from data interpretation can be affected by population uncertainty (spatial or temporal uncertainty) and measurement uncertainty (uncertainty associated with collecting, analyzing, reducing and reporting concentration data). This appendix focuses on assessing and controlling measurement uncertainty.

2.3.1.1 Measurement Uncertainty for Automated and Manual PM2.5Methods. The goal for acceptable measurement uncertainty is defined for precision as an upper 90 percent confidence limit for the coefficient of variation (CV) of 10 percent and ±10 percent for total bias.

2.3.1.2 Measurement Uncertainty for Automated O3Methods. The goal for acceptable measurement uncertainty is defined for precision as an upper 90 percent confidence limit for the CV of 7 percent and for bias as an upper 95 percent confidence limit for the absolute bias of 7 percent.

2.3.1.3 Measurement Uncertainty for Pb Methods. The goal for acceptable measurement uncertainty is defined for precision as an upper 90 percent confidence limit for the CV of 20 percent and for bias as an upper 95 percent confidence limit for the absolute bias of 15 percent.

2.3.1.4 Measurement Uncertainty for NO2. The goal for acceptable measurement uncertainty is defined for precision as an upper 90 percent confidence limit for the CV of 15 percent and for bias as an upper 95 percent confidence limit for the absolute bias of 15 percent.

2.3.1.5 Measurement Uncertainty for SO2. The goal for acceptable measurement uncertainty for precision is defined as an upper 90 percent confidence limit for the CV of 10 percent and for bias as an upper 95 percent confidence limit for the absolute bias of 10 percent.

2.4 National Performance Evaluation Programs. The PQAO shall provide for the implementation of a program of independent and adequate audits of all monitors providing data for NAAQS compliance purposes including the provision of adequate resources for such audit programs. A monitoring plan (or QAPP) which provides for PQAO participation in the EPA's National Performance Audit Program (NPAP), the PM2.5 Performance Evaluation Program (PM2.5-PEP) program and the Pb Performance Evaluation Program (Pb-PEP) and indicates the consent of the PQAO for the EPA to apply an appropriate portion of the grant funds, which the EPA would otherwise award to the PQAO for these QA activities, will be deemed by the EPA to meet this requirement. For clarification and to participate, PQAOs should contact either the appropriate EPA regional quality assurance (QA) coordinator at the appropriate EPA Regional Office location, or the NPAP coordinator at the EPA Air Quality Assessment Division, Office of Air Quality Planning and Standards, in Research Triangle Park, North Carolina. The PQAOs that plan to implement these programs (self-implement) rather than use the federal programs must meet the adequacy requirements found in the appropriate sections that follow, as well as meet the definition of independent assessment that follows.

2.4.1 Independent assessment. An assessment performed by a qualified individual, group, or organization that is not part of the organization directly performing and accountable for the work being assessed. This auditing organization must not be involved with the generation of the ambient air monitoring data. An organization can conduct the performance evaluation (PE) if it can meet this definition and has a management structure that, at a minimum, will allow for the separation of its routine sampling personnel from its auditing personnel by two levels of management. In addition, the sample analysis of audit filters must be performed by a laboratory facility and laboratory equipment separate from the facilities used for routine sample analysis. Field and laboratory personnel will be required to meet PE field and laboratory training and certification requirements to establish comparability to federally implemented programs.

2.5 Technical Systems Audit Program. Technical systems audits of each PQAO shall be conducted at least every 3 years by the appropriate EPA Regional Office and reported to the AQS. If a PQAO is made up of more than one monitoring organization, all monitoring organizations in the PQAO should be audited within 6 years (two TSA cycles of the PQAO). As an example, if a state has five local monitoring organizations that are consolidated under one PQAO, all five local monitoring organizations should receive a technical systems audit within a 6-year period. Systems audit programs are described in reference 10 of this appendix.

2.6 Gaseous and Flow Rate Audit Standards.

2.6.1 Gaseous pollutant concentration standards (permeation devices or cylinders of compressed gas) used to obtain test concentrations for CO, SO 2 , NO, and NO 2 must be EPA Protocol Gases certified in accordance with one of the procedures given in Reference 4 of this appendix.

2.6.1.1 The concentrations of EPA Protocol Gas standards used for ambient air monitoring must be certified with a 95-percent confidence interval to have an analytical uncertainty of no more than ±2.0 percent (inclusive) of the certified concentration (tag value) of the gas mixture. The uncertainty must be calculated in accordance with the statistical procedures defined in Reference 4 of this appendix.

2.6.1.2 Specialty gas producers advertising certification with the procedures provided in Reference 4 of this appendix and distributing gases as “EPA Protocol Gas” for ambient air monitoring purposes must adhere to the regulatory requirements specified in 40 CFR 75.21(g) or not use “EPA” in any form of advertising. Monitoring organizations must provide information to the EPA on the specialty gas producers they use on an annual basis. PQAOs, when requested by the EPA, must participate in the EPA Ambient Air Protocol Gas Verification Program at least once every 5 years by sending a new unused standard to a designated verification laboratory.

2.6.2 Test concentrations for O3 must be obtained in accordance with the ultraviolet photometric calibration procedure specified in appendix D to Part 50 of this chapter and by means of a certified NIST-traceable O3 transfer standard. Consult references 7 and 8 of this appendix for guidance on transfer standards for O3.

2.6.3 Flow rate measurements must be made by a flow measuring instrument that is NIST-traceable to an authoritative volume or other applicable standard. Guidance for certifying some types of flowmeters is provided in reference 10 of this appendix.

2.7 Primary Requirements and Guidance. Requirements and guidance documents for developing the quality system are contained in references 1 through 11 of this appendix, which also contain many suggested procedures, checks, and control specifications. Reference 10 describes specific guidance for the development of a quality system for data collected for comparison to the NAAQS. Many specific quality control checks and specifications for methods are included in the respective reference methods described in Part 50 of this chapter or in the respective equivalent method descriptions available from the EPA (reference 6 of this appendix). Similarly, quality control procedures related to specifically designated reference and equivalent method monitors are contained in the respective operation or instruction manuals associated with those monitors.

3. Measurement Quality Check Requirements

This section provides the requirements for PQAOs to perform the measurement quality checks that can be used to assess data quality. Data from these checks are required to be submitted to the AQS within the same time frame as routinely-collected ambient concentration data as described in 40 CFR 58.16. Table A-1 of this appendix provides a summary of the types and frequency of the measurement quality checks that will be described in this section.

3.1. Gaseous Monitors of SO2, NO2, O3, and CO.

3.1.1 One-Point Quality Control (QC) Check for SO2, NO2, O3, and CO. (a) A one-point QC check must be performed at least once every 2 weeks on each automated monitor used to measure SO2, NO2, O3 and CO. With the advent of automated calibration systems, more frequent checking is strongly encouraged. See Reference 10 of this appendix for guidance on the review procedure. The QC check is made by challenging the monitor with a QC check gas of known concentration (effective concentration for open path monitors) between the prescribed range of 0.005 and 0.08 parts per million (ppm) for SO2, NO2, and O3, and between the prescribed range of 0.5 and 5 ppm for CO monitors. The QC check gas concentration selected within the prescribed range should be related to the monitoring objectives for the monitor. If monitoring at an NCore site or for trace level monitoring, the QC check concentration should be selected to represent the mean or median concentrations at the site. If the mean or median concentrations at trace gas sites are below the MDL of the instrument the agency can select the lowest concentration in the prescribed range that can be practically achieved. If the mean or median concentrations at trace gas sites are above the prescribed range the agency can select the highest concentration in the prescribed range. An additional QC check point is encouraged for those organizations that may have occasional high values or would like to confirm the monitors' linearity at the higher end of the operational range or around NAAQS concentrations. If monitoring for NAAQS decisions, the QC concentration can be selected at a higher concentration within the prescribed range but should also consider precision points around mean or median monitor concentrations.

(b) Point analyzers must operate in their normal sampling mode during the QC check and the test atmosphere must pass through all filters, scrubbers, conditioners and other components used during normal ambient sampling and as much of the ambient air inlet system as is practicable. The QC check must be conducted before any calibration or adjustment to the monitor.

(c) Open path monitors are tested by inserting a test cell containing a QC check gas concentration into the optical measurement beam of the instrument. If possible, the normally used transmitter, receiver, and as appropriate, reflecting devices should be used during the test, and the normal monitoring configuration of the instrument should be altered as little as possible to accommodate the test cell for the test. However, if permitted by the associated operation or instruction manual, an alternate local light source or an alternate optical path that does not include the normal atmospheric monitoring path may be used. The actual concentration of the QC check gas in the test cell must be selected to produce an effective concentration in the range specified earlier in this section. Generally, the QC test concentration measurement will be the sum of the atmospheric pollutant concentration and the QC test concentration. As such, the result must be corrected to remove the atmospheric concentration contribution. The corrected concentration is obtained by subtracting the average of the atmospheric concentrations measured by the open path instrument under test immediately before and immediately after the QC test from the QC check gas concentration measurement. If the difference between these before and after measurements is greater than 20 percent of the effective concentration of the test gas, discard the test result and repeat the test. If possible, open path monitors should be tested during periods when the atmospheric pollutant concentrations are relatively low and steady.

(d) Report the audit concentration of the QC gas and the corresponding measured concentration indicated by the monitor to AQS. The percent differences between these concentrations are used to assess the precision and bias of the monitoring data as described in sections 4.1.2 (precision) and 4.1.3 (bias) of this appendix.

3.1.2 Annual performance evaluation for SO2, NO2, O3, or CO. A performance evaluation must be conducted on each primary monitor once a year. This can be accomplished by evaluating 25 percent of the primary monitors each quarter. The evaluation should be conducted by a trained experienced technician other than the routine site operator.

3.1.2.1 The evaluation is made by challenging the monitor with audit gas standards of known concentration from at least three audit levels. One point must be within two to three times the method detection limit of the instruments within the PQAOs network, the second point will be less than or equal to the 99th percentile of the data at the site or the network of sites in the PQAO or the next highest audit concentration level. The third point can be around the primary NAAQS or the highest 3-year concentration at the site or the network of sites in the PQAO. An additional 4th level is encouraged for those agencies that would like to confirm the monitors' linearity at the higher end of the operational range. In rare circumstances, there may be sites measuring concentrations above audit level 10. Notify the appropriate EPA region and the AQS program in order to make accommodations for auditing at levels above level 10.

Audit levelConcentration Range, ppm
O3SO2NO2CO
10.004-0.00590.0003-0.00290.0003-0.00290.020-0.059
20.006-0.0190.0030-0.00490.0030-0.00490.060-0.199
30.020-0.0390.0050-0.00790.0050-0.00790.200-0.899
40.040-0.0690.0080-0.01990.0080-0.01990.900-2.999
50.070-0.0890.0200-0.04990.0200-0.04993.000-7.999
60.090-0.1190.0500-0.09990.0500-0.09998.000-15.999
70.120-0.1390.1000-0.14990.1000-0.299916.000-30.999
80.140-0.1690.1500-0.25990.3000-0.499931.000-39.999
90.170-0.1890.2600-0.79990.5000-0.799940.000-49.999
100.190-0.2590.8000-1.0000.8000-1.00050.000-60.000

3.1.2.2 The standards from which audit gas test concentrations are obtained must meet the specifications of section 2.6.1 of this appendix. The gas standards and equipment used for the performance evaluation must not be the same as the standards and equipment used for one-point QC, calibrations, span evaluations or NPAP.

3.1.2.3 For point analyzers, the evaluation shall be carried out by allowing the monitor to analyze the audit gas test atmosphere in its normal sampling mode such that the test atmosphere passes through all filters, scrubbers, conditioners, and other sample inlet components used during normal ambient sampling and as much of the ambient air inlet system as is practicable.

3.1.2.4 Open-path monitors are evaluated by inserting a test cell containing the various audit gas concentrations into the optical measurement beam of the instrument. If possible, the normally used transmitter, receiver, and, as appropriate, reflecting devices should be used during the evaluation, and the normal monitoring configuration of the instrument should be modified as little as possible to accommodate the test cell for the evaluation. However, if permitted by the associated operation or instruction manual, an alternate local light source or an alternate optical path that does not include the normal atmospheric monitoring path may be used. The actual concentrations of the audit gas in the test cell must be selected to produce effective concentrations in the evaluation level ranges specified in this section of this appendix. Generally, each evaluation concentration measurement result will be the sum of the atmospheric pollutant concentration and the evaluation test concentration. As such, the result must be corrected to remove the atmospheric concentration contribution. The corrected concentration is obtained by subtracting the average of the atmospheric concentrations measured by the open path instrument under test immediately before and immediately after the evaluation test (or preferably before and after each evaluation concentration level) from the evaluation concentration measurement. If the difference between the before and after measurements is greater than 20 percent of the effective concentration of the test gas standard, discard the test result for that concentration level and repeat the test for that level. If possible, open path monitors should be evaluated during periods when the atmospheric pollutant concentrations are relatively low and steady. Also, if the open-path instrument is not installed in a permanent manner, the monitoring path length must be reverified to be within ±3 percent to validate the evaluation since the monitoring path length is critical to the determination of the effective concentration.

3.1.2.5 Report both the evaluation concentrations (effective concentrations for open-path monitors) of the audit gases and the corresponding measured concentration (corrected concentrations, if applicable, for open path monitors) indicated or produced by the monitor being tested to AQS. The percent differences between these concentrations are used to assess the quality of the monitoring data as described in section 4.1.1 of this appendix.

3.1.3 National Performance Audit Program (NPAP).

The NPAP is a performance evaluation which is a type of audit where quantitative data are collected independently in order to evaluate the proficiency of an analyst, monitoring instrument or laboratory. Due to the implementation approach used in the program, NPAP provides a national independent assessment of performance while maintaining a consistent level of data quality. Details of the program can be found in reference 11 of this appendix. The program requirements include:

3.1.3.1 Performing audits of the primary monitors at 20 percent of monitoring sites per year, and 100 percent of the sites every 6 years. High-priority sites may be audited more frequently. Since not all gaseous criteria pollutants are monitored at every site within a PQAO, it is not required that 20 percent of the primary monitors for each pollutant receive an NPAP audit each year only that 20 percent of the PQAOs monitoring sites receive an NPAP audit. It is expected that over the 6-year period all primary monitors for all gaseous pollutants will receive an NPAP audit.

3.1.3.2 Developing a delivery system that will allow for the audit concentration gasses to be introduced to the probe inlet where logistically feasible.

3.1.3.3 Using audit gases that are verified against the NIST standard reference methods or special review procedures and validated per the certification periods specified in Reference 4 of this appendix (EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards) for CO, SO 2 , and NO 2 and using O 3 analyzers that are verified quarterly against a standard reference photometer.

3.1.3.4 As described in section 2.4 of this appendix, the PQAO may elect, on an annual basis, to utilize the federally implemented NPAP program. If the PQAO plans to self-implement NPAP, the EPA will establish training and other technical requirements for PQAOs to establish comparability to federally implemented programs. In addition to meeting the requirements in sections 3.1.3.1 through 3.1.3.3 of this appendix, the PQAO must:

(a) Utilize an audit system equivalent to the federally implemented NPAP audit system and is separate from equipment used in annual performance evaluations.

(b) Perform a whole system check by having the NPAP system tested against an independent and qualified EPA lab, or equivalent.

(c) Evaluate the system with the EPA NPAP program through collocated auditing at an acceptable number of sites each year (at least one for an agency network of five or less sites; at least two for a network with more than five sites).

(d) Incorporate the NPAP in the PQAO's quality assurance project plan.

(e) Be subject to review by independent, EPA-trained personnel.

(f) Participate in initial and update training/certification sessions.

3.1.3.5 OAQPS, in consultation with the relevant EPA Regional Office, may approve the PQAO's plan to self-implement NPAP if the OAQPS determines that the PQAO's self-implementation plan is equivalent to the federal programs and adequate to meet the objectives of national consistency and data quality.

3.2 PM2.5.

3.2.1 Flow Rate Verification for PM2.5. A one-point flow rate verification check must be performed at least once every month (each verification minimally separated by 14 days) on each monitor used to measure PM2.5. The verification is made by checking the operational flow rate of the monitor. If the verification is made in conjunction with a flow rate adjustment, it must be made prior to such flow rate adjustment. For the standard procedure, use a flow rate transfer standard certified in accordance with section 2.6 of this appendix to check the monitor's normal flow rate. Care should be used in selecting and using the flow rate measurement device such that it does not alter the normal operating flow rate of the monitor. Report the flow rate of the transfer standard and the corresponding flow rate measured by the monitor to AQS. The percent differences between the audit and measured flow rates are used to assess the bias of the monitoring data as described in section 4.2.2 of this appendix (using flow rates in lieu of concentrations).

3.2.2 Semi-Annual Flow Rate Audit for PM2.5. Audit the flow rate of the particulate monitor twice a year. The two audits should ideally be spaced between 5 and 7 months apart. The EPA strongly encourages more frequent auditing. The audit should (preferably) be conducted by a trained experienced technician other than the routine site operator. The audit is made by measuring the monitor's normal operating flow rate(s) using a flow rate transfer standard certified in accordance with section 2.6 of this appendix. The flow rate standard used for auditing must not be the same flow rate standard used for verifications or to calibrate the monitor. However, both the calibration standard and the audit standard may be referenced to the same primary flow rate or volume standard. Care must be taken in auditing the flow rate to be certain that the flow measurement device does not alter the normal operating flow rate of the monitor. Report the audit flow rate of the transfer standard and the corresponding flow rate measured by the monitor to AQS. The percent differences between these flow rates are used to evaluate monitor performance.

3.2.3 Collocated Quality Control Sampling Procedures for PM2.5. For each pair of collocated monitors, designate one sampler as the primary monitor whose concentrations will be used to report air quality for the site, and designate the other as the quality control monitor. There can be only one primary monitor at a monitoring site for a given time period.

3.2.3.1 For each distinct monitoring method designation (FRM or FEM) that a PQAO is using for a primary monitor, the PQAO must have 15 percent of the primary monitors of each method designation collocated (values of 0.5 and greater round up); and have at least one collocated quality control monitor (if the total number of monitors is less than three). The first collocated monitor must be a designated FRM monitor.

3.2.3.2 In addition, monitors selected for collocation must also meet the following requirements:

(a) A primary monitor designated as an EPA FRM shall be collocated with a quality control monitor having the same EPA FRM method designation.

(b) For each primary monitor designated as an EPA FEM used by the PQAO, 50 percent of the monitors designated for collocation, or the first if only one collocation is necessary, shall be collocated with a FRM quality control monitor and 50 percent of the monitors shall be collocated with a monitor having the same method designation as the FEM primary monitor. If an odd number of collocated monitors is required, the additional monitor shall be a FRM quality control monitor. An example of the distribution of collocated monitors for each unique FEM is provided below. Table A-2 of this appendix demonstrates the collocation procedure with a PQAO having one type of primary FRM and multiple primary FEMs.

#Primary FEMS of a unique method
designation
#Collocated#Collocated with an FRM#Collocated with same method
designation
1-9110
10-16211
17-23321
24-29422
30-36532
37-43633

3.2.3.3 Since the collocation requirements are used to assess precision of the primary monitors and there can only be one primary monitor at a monitoring site, a site can only count for the collocation of the method designation of the primary monitor at that site.

3.2.3.4 The collocated monitors should be deployed according to the following protocol:

(a) Fifty percent of the collocated quality control monitors should be deployed at sites with annual average or daily concentrations estimated to be within plus or minus 20 percent of either the annual or 24-hour NAAQS and the remainder at the PQAOs discretion;

(b) If an organization has no sites with annual average or daily concentrations within ±20 percent of the annual NAAQS or 24-hour NAAQS, 50 percent of the collocated quality control monitors should be deployed at those sites with the annual mean concentrations or 24-hour concentrations among the highest for all sites in the network and the remainder at the PQAOs discretion.

(c) The two collocated monitors must be within 4 meters (inlet to inlet) of each other and at least 2 meters apart for flow rates greater than 200 liters/min or at least 1 meter apart for samplers having flow rates less than 200 liters/min to preclude airflow interference. A waiver allowing up to 10 meters horizontal distance and up to 3 meters vertical distance (inlet to inlet) between a primary and collocated sampler may be approved by the Regional Administrator for sites at a neighborhood or larger scale of representation during the annual network plan approval process. Sampling and analytical methodologies must be the consistently implemented for both primary and collocated quality control samplers and for all other samplers in the network.

(d) Sample the collocated quality control monitor on a 1-in-12 day schedule. Report the measurements from both primary and collocated quality control monitors at each collocated sampling site to AQS. The calculations for evaluating precision between the two collocated monitors are described in section 4.2.1 of this appendix.

3.2.4 PM2.5 Performance Evaluation Program (PEP) Procedures. The PEP is an independent assessment used to estimate total measurement system bias. These evaluations will be performed under the national performance evaluation program (NPEP) as described in section 2.4 of this appendix or a comparable program. A prescribed number of Performance evaluation sampling events will be performed annually within each PQAO. For PQAOs with less than or equal to five monitoring sites, five valid performance evaluation audits must be collected and reported each year. For PQAOs with greater than five monitoring sites, eight valid performance evaluation audits must be collected and reported each year. A valid performance evaluation audit means that both the primary monitor and PEP audit concentrations are valid and equal to or greater than 2 µg/m3. Siting of the PEP monitor must be consistent with section 3.2.3.4(c) of this appendix. However, any horizontal distance greater than 4 meters and any vertical distance greater than one meter must be reported to the EPA regional PEP coordinator. Additionally for every monitor designated as a primary monitor, a primary quality assurance organization must:

3.2.4.1 Have each method designation evaluated each year; and,

3.2.4.2 Have all FRM, FEM or ARM samplers subject to a PEP audit at least once every 6 years, which equates to approximately 15 percent of the monitoring sites audited each year.

3.2.4.3. Additional information concerning the PEP is contained in reference 10 of this appendix. The calculations for evaluating bias between the primary monitor and the performance evaluation monitor for PM2.5 are described in section 4.2.5 of this appendix.

3.3PM10.

3.3.1 Flow Rate Verification for PM10Low Volume Samplers (less than 200 liter/minute). A one-point flow rate verification check must be performed at least once every month (each verification minimally separated by 14 days) on each monitor used to measure PM10. The verification is made by checking the operational flow rate of the monitor. If the verification is made in conjunction with a flow rate adjustment, it must be made prior to such flow rate adjustment. For the standard procedure, use a flow rate transfer standard certified in accordance with section 2.6 of this appendix to check the monitor's normal flow rate. Care should be taken in selecting and using the flow rate measurement device such that it does not alter the normal operating flow rate of the monitor. The percent differences between the audit and measured flow rates are reported to AQS and used to assess the bias of the monitoring data as described in section 4.2.2 of this appendix (using flow rates in lieu of concentrations).

3.3.2 Flow Rate Verification for PM10High Volume Samplers (greater than 200 liters/minute). For PM10 high volume samplers, the verification frequency is one verification every 90 days (quarter) with 4 in a year. Other than verification frequency, follow the same technical procedure as described in section 3.3.1 of this appendix.

3.3.3 Semi-Annual Flow Rate Audit for PM10. Audit the flow rate of the particulate monitor twice a year. The two audits should ideally be spaced between 5 and 7 months apart. The EPA strongly encourages more frequent auditing. The audit should (preferably) be conducted by a trained experienced technician other than the routine site operator. The audit is made by measuring the monitor's normal operating flow rate using a flow rate transfer standard certified in accordance with section 2.6 of this appendix. The flow rate standard used for auditing must not be the same flow rate standard used for verifications or to calibrate the monitor. However, both the calibration standard and the audit standard may be referenced to the same primary flow rate or volume standard. Care must be taken in auditing the flow rate to be certain that the flow measurement device does not alter the normal operating flow rate of the monitor. Report the audit flow rate of the transfer standard and the corresponding flow rate measured by the monitor to AQS. The percent differences between these flow rates are used to evaluate monitor performance.

3.3.4 Collocated Quality Control Sampling Procedures for Manual PM10. Collocated sampling for PM10 is only required for manual samplers. For each pair of collocated monitors, designate one sampler as the primary monitor whose concentrations will be used to report air quality for the site and designate the other as the quality control monitor.

3.3.4.1 For manual PM10 samplers, a PQAO must:

(a) Have 15 percent of the primary monitors collocated (values of 0.5 and greater round up); and

(b) Have at least one collocated quality control monitor (if the total number of monitors is less than three).

3.3.4.2 The collocated quality control monitors should be deployed according to the following protocol:

(a) Fifty percent of the collocated quality control monitors should be deployed at sites with daily concentrations estimated to be within plus or minus 20 percent of the applicable NAAQS and the remainder at the PQAOs discretion;

(b) If an organization has no sites with daily concentrations within plus or minus 20 percent of the NAAQS, 50 percent of the collocated quality control monitors should be deployed at those sites with the daily mean concentrations among the highest for all sites in the network and the remainder at the PQAOs discretion.

(c) The two collocated monitors must be within 4 meters (inlet to inlet) of each other and at least 2 meters apart for flow rates greater than 200 liters/min or at least 1 meter apart for samplers having flow rates less than 200 liters/min to preclude airflow interference. A waiver allowing up to 10 meters horizontal distance and up to 3 meters vertical distance (inlet to inlet) between a primary and collocated sampler may be approved by the Regional Administrator for sites at a neighborhood or larger scale of representation. This waiver may be approved during the annual network plan approval process. Sampling and analytical methodologies must be the consistently implemented for both collocated samplers and for all other samplers in the network.

(d) Sample the collocated quality control monitor on a 1-in-12 day schedule. Report the measurements from both primary and collocated quality control monitors at each collocated sampling site to AQS. The calculations for evaluating precision between the two collocated monitors are described in section 4.2.1 of this appendix.

(e) In determining the number of collocated quality control sites required for PM10, monitoring networks for lead (Pb-PM10) should be treated independently from networks for particulate matter (PM), even though the separate networks may share one or more common samplers. However, a single quality control monitor that meets the collocation requirements for Pb-PM10 and PM10 may serve as a collocated quality control monitor for both networks. Extreme care must be taken when using the filter from a quality control monitor for both PM10 and Pb analysis. A PM10 filter weighing should occur prior to any Pb analysis.

3.4 Pb.

3.4.1 Flow Rate Verification for Pb-PM10Low Volume Samplers (less than 200 liter/minute). A one-point flow rate verification check must be performed at least once every month (each verification minimally separated by 14 days) on each monitor used to measure Pb. The verification is made by checking the operational flow rate of the monitor. If the verification is made in conjunction with a flow rate adjustment, it must be made prior to such flow rate adjustment. For the standard procedure, use a flow rate transfer standard certified in accordance with section 2.6 of this appendix to check the monitor's normal flow rate. Care should be taken in selecting and using the flow rate measurement device such that it does not alter the normal operating flow rate of the monitor. The percent differences between the audit and measured flow rates are reported to AQS and used to assess the bias of the monitoring data as described in section 4.2.2 of this appendix (using flow rates in lieu of concentrations).

3.4.2 Flow Rate Verification for Pb High Volume Samplers (greater than 200 liters/minute). For high volume samplers, the verification frequency is one verification every 90 days (quarter) with four in a year. Other than verification frequency, follow the same technical procedure as described in section 3.4.1 of this appendix.

3.4.3 Semi-Annual Flow Rate Audit for Pb. Audit the flow rate of the particulate monitor twice a year. The two audits should ideally be spaced between 5 and 7 months apart. The EPA strongly encourages more frequent auditing. The audit should (preferably) be conducted by a trained experienced technician other than the routine site operator. The audit is made by measuring the monitor's normal operating flow rate using a flow rate transfer standard certified in accordance with section 2.6 of this appendix. The flow rate standard used for auditing must not be the same flow rate standard used for verifications or to calibrate the monitor. However, both the calibration standard and the audit standard may be referenced to the same primary flow rate or volume standard. Care must be taken in auditing the flow rate to be certain that the flow measurement device does not alter the normal operating flow rate of the monitor. Report the audit flow rate of the transfer standard and the corresponding flow rate measured by the monitor to AQS. The percent differences between these flow rates are used to evaluate monitor performance.

3.4.4 Collocated Quality Control Sampling for TSP Pb for monitoring sites other than non-source oriented NCore. For each pair of collocated monitors for manual TSP Pb samplers, designate one sampler as the primary monitor whose concentrations will be used to report air quality for the site, and designate the other as the quality control monitor.

3.4.4.1 A PQAO must:

(a) Have 15 percent of the primary monitors (not counting non-source oriented NCore sites in PQAO) collocated. Values of 0.5 and greater round up; and

(b) Have at least one collocated quality control monitor (if the total number of monitors is less than three).

3.4.4.2 The collocated quality control monitors should be deployed according to the following protocol:

(a) The first collocated Pb site selected must be the site measuring the highest Pb concentrations in the network. If the site is impractical, alternative sites, approved by the EPA Regional Administrator, may be selected. If additional collocated sites are necessary, collocated sites may be chosen that reflect average ambient air Pb concentrations in the network.

(b) The two collocated monitors must be within 4 meters (inlet to inlet) of each other and at least 2 meters apart for flow rates greater than 200 liters/min or at least 1 meter apart for samplers having flow rates less than 200 liters/min to preclude airflow interference.

(c) Sample the collocated quality control monitor on a 1-in-12 day schedule. Report the measurements from both primary and collocated quality control monitors at each collocated sampling site to AQS. The calculations for evaluating precision between the two collocated monitors are described in section 4.2.1 of this appendix.

3.4.5 Collocated Quality Control Sampling for Pb-PM10 at monitoring sites other than non-source oriented NCore. If a PQAO is monitoring for Pb-PM10 at sites other than at a non-source oriented NCore site then the PQAO must:

3.4.5.1 Have 15 percent of the primary monitors (not counting non-source oriented NCore sites in PQAO) collocated. Values of 0.5 and greater round up; and

3.4.5.2 Have at least one collocated quality control monitor (if the total number of monitors is less than three).

3.4.5.3 The collocated monitors should be deployed according to the following protocol:

(a) Fifty percent of the collocated quality control monitors should be deployed at sites with the highest 3-month average concentrations and the remainder at the PQAOs discretion.

(b) The two collocated monitors must be within 4 meters (inlet to inlet) of each other and at least 2 meters apart for flow rates greater than 200 liters/min or at least 1 meter apart for samplers having flow rates less than 200 liters/min to preclude airflow interference. A waiver allowing up to 10 meters horizontal distance and up to 3 meters vertical distance (inlet to inlet) between a primary and collocated sampler may be approved by the Regional Administrator for sites at a neighborhood or larger scale of representation. This waiver may be approved during the annual network plan approval process. Sampling and analytical methodologies must be the consistently implemented for both collocated samplers and for all other samplers in the network.

(c) Sample the collocated quality control monitor on a 1-in-12 day schedule. Report the measurements from both primary and collocated quality control monitors at each collocated sampling site to AQS. The calculations for evaluating precision between the two collocated monitors are described in section 4.2.1 of this appendix.

(d) In determining the number of collocated quality control sites required for Pb-PM10, monitoring networks for PM10 should be treated independently from networks for Pb-PM10, even though the separate networks may share one or more common samplers. However, a single quality control monitor that meets the collocation requirements for Pb-PM10 and PM10 may serve as a collocated quality control monitor for both networks. Extreme care must be taken when using a using the filter from a quality control monitor for both PM10 and Pb analysis. A PM10 filter weighing should occur prior to any Pb analysis.

3.4.6 Pb Analysis Audits. Each calendar quarter, audit the Pb reference or equivalent method analytical procedure using filters containing a known quantity of Pb. These audit filters are prepared by depositing a Pb standard on unexposed filters and allowing them to dry thoroughly. The audit samples must be prepared using batches of reagents different from those used to calibrate the Pb analytical equipment being audited. Prepare audit samples in the following concentration ranges:

RangeEquivalent ambient Pb
concentration, µg/m 3
130-100% of Pb NAAQS.
2200-300% of Pb NAAQS.

(a) Extract the audit samples using the same extraction procedure used for exposed filters.

(b) Analyze three audit samples in each of the two ranges each quarter samples are analyzed. The audit sample analyses shall be distributed as much as possible over the entire calendar quarter.

(c) Report the audit concentrations (in µg Pb/filter or strip) and the corresponding measured concentrations (in µg Pb/filter or strip) to AQS using AQS unit code 077. The percent differences between the concentrations are used to calculate analytical accuracy as described in section 4.2.6 of this appendix.

3.4.7 Pb PEP Procedures for monitoring sites other than non-source oriented NCore. The PEP is an independent assessment used to estimate total measurement system bias. These evaluations will be performed under the NPEP described in section 2.4 of this appendix or a comparable program. Each year, one performance evaluation audit must be performed at one Pb site in each primary quality assurance organization that has less than or equal to five sites and two audits at PQAOs with greater than five sites. Non-source oriented NCore sites are not counted. Siting of the PEP monitor must be consistent with section 3.4.5.3(b). However, any horizontal distance greater than 4 meters and any vertical distance greater than 1 meter must be reported to the EPA regional PEP coordinator. In addition, each year, four collocated samples from PQAOs with less than or equal to five sites and six collocated samples at PQAOs with greater than five sites must be sent to an independent laboratory, the same laboratory as the performance evaluation audit, for analysis. The calculations for evaluating bias between the primary monitor and the performance evaluation monitor for Pb are described in section 4.2.4 of this appendix.

4. Calculations for Data Quality Assessments

(a) Calculations of measurement uncertainty are carried out by the EPA according to the following procedures. The PQAOs must report the data to AQS for all measurement quality checks as specified in this appendix even though they may elect to perform some or all of the calculations in this section on their own.

(b) The EPA will provide annual assessments of data quality aggregated by site and PQAO for SO2, NO2, O3 and CO and by PQAO for PM10, PM2.5, and Pb.

(c) At low concentrations, agreement between the measurements of collocated quality control samplers, expressed as relative percent difference or percent difference, may be relatively poor. For this reason, collocated measurement pairs are selected for use in the precision and bias calculations only when both measurements are equal to or above the following limits:

(1) Pb: 0.002 µg/m 3 (Methods approved after 3/04/2010, with exception of manual equivalent method EQLA-0813-803).

(2) Pb: 0.02 µg/m 3 (Methods approved before 3/04/2010, and manual equivalent method EQLA-0813-803).

(3) PM10 (Hi-Vol): 15 µg/m 3.

(4) PM10 (Lo-Vol): 3 µg/m 3.

(5) PM2.5: 3 µg/m 3.

4.1 Statistics for the Assessment of QC Checks for SO2, NO2, O3 and CO.

4.1.1 Percent Difference. Many of the measurement quality checks start with a comparison of an audit concentration or value (flow rate) to the concentration/value measured by the monitor and use percent difference as the comparison statistic as described in equation 1 of this section. For each single point check, calculate the percent difference, di, as follows:



where meas is the concentration indicated by the PQAO's instrument and audit is the audit concentration of the standard used in the QC check being measured.

4.1.2 Precision Estimate. The precision estimate is used to assess the one-point QC checks for SO2, NO2, O3, or CO described in section 3.1.1 of this appendix. The precision estimator is the coefficient of variation upper bound and is calculated using equation 2 of this section:



where n is the number of single point checks being aggregated; X 20.1,n-1 is the 10th percentile of a chi-squared distribution with n-1 degrees of freedom.

4.1.3 Bias Estimate. The bias estimate is calculated using the one-point QC checks for SO2, NO2, O3, or CO described in section 3.1.1 of this appendix. The bias estimator is an upper bound on the mean absolute value of the percent differences as described in equation 3 of this section:



where n is the number of single point checks being aggregated; t0.95,n-1 is the 95th quantile of a t-distribution with n-1 degrees of freedom; the quantity AB is the mean of the absolute values of the di ′ s and is calculated using equation 4 of this section:



and the quantity AS is the standard deviation of the absolute value of the di ′ s and is calculated using equation 5 of this section:



4.1.3.1 Assigning a sign (positive/negative) to the bias estimate. Since the bias statistic as calculated in equation 3 of this appendix uses absolute values, it does not have a tendency (negative or positive bias) associated with it. A sign will be designated by rank ordering the percent differences of the QC check samples from a given site for a particular assessment interval.

4.1.3.2 Calculate the 25th and 75th percentiles of the percent differences for each site. The absolute bias upper bound should be flagged as positive if both percentiles are positive and negative if both percentiles are negative. The absolute bias upper bound would not be flagged if the 25th and 75th percentiles are of different signs.

4.2 Statistics for the Assessment of PM10, PM2.5, and Pb.

4.2.1 Collocated Quality Control Sampler Precision Estimate for PM10, PM2.5, and Pb . Precision is estimated via duplicate measurements from collocated samplers. It is recommended that the precision be aggregated at the PQAO level quarterly, annually, and at the 3-year level. The data pair would only be considered valid if both concentrations are greater than or equal to the minimum values specified in section 4(c) of this appendix. For each collocated data pair, calculate ti, using equation 6 to this appendix:



Where Xi is the concentration from the primary sampler and Yi is the concentration value from the audit sampler. The coefficient of variation upper bound is calculated using equation 7 to this appendix:



Where k is the number of valid data pairs being aggregated, and X 20.1,k-1 is the 10th percentile of a chi-squared distribution with k-1 degrees of freedom. The factor of 2 in the denominator adjusts for the fact that each ti is calculated from two values with error.

4.2.2 One-Point Flow Rate Verification Bias Estimate forPM10,PM2.5and Pb. For each one-point flow rate verification, calculate the percent difference in volume using equation 1 of this appendix where meas is the value indicated by the sampler's volume measurement and audit is the actual volume indicated by the auditing flow meter. The absolute volume bias upper bound is then calculated using equation 3, where n is the number of flow rate audits being aggregated; t0.95,n-1 is the 95th quantile of a t-distribution with n-1 degrees of freedom, the quantity AB is the mean of the absolute values of the di′s and is calculated using equation 4 of this appendix, and the quantity AS in equation 3 of this appendix is the standard deviation of the absolute values if the di′s and is calculated using equation 5 of this appendix.

4.2.3 Semi-Annual Flow Rate Audit Bias Estimate forPM10,PM2.5and Pb. Use the same procedure described in section 4.2.2 for the evaluation of flow rate audits.

4.2.4 Performance Evaluation Programs Bias Estimate for Pb. The Pb bias estimate is calculated using the paired routine and the PEP monitor as described in section 3.4.7. Use the same procedures as described in section 4.1.3 of this appendix.

4.2.5 Performance Evaluation Programs Bias Estimate for PM2.5 . The bias estimate is calculated using the PEP audits described in section 3.2.4. of this appendix. The bias estimator is based on, s i , the absolute difference in concentrations divided by the square root of the PEP concentration.



4.2.6 PbAnalysis Audit Bias Estimate. The bias estimate is calculated using the analysis audit data described in section 3.4.6. Use the same bias estimate procedure as described in section 4.1.3 of this appendix.

5. Reporting Requirements

5.1 Reporting Requirements. For each pollutant, prepare a list of all monitoring sites and their AQS site identification codes in each PQAO and submit the list to the appropriate EPA Regional Office, with a copy to AQS. Whenever there is a change in this list of monitoring sites in a PQAO, report this change to the EPA Regional Office and to AQS.

5.1.1 Quarterly Reports. For each quarter, each PQAO shall report to AQS directly (or via the appropriate EPA Regional Office for organizations not direct users of AQS) the results of all valid measurement quality checks it has carried out during the quarter. The quarterly reports must be submitted consistent with the data reporting requirements specified for air quality data as set forth in 40 CFR 58.16. The EPA strongly encourages early submission of the quality assurance data in order to assist the PQAOs ability to control and evaluate the quality of the ambient air data.

5.1.2 Annual Reports.

5.1.2.1 When the PQAO has certified relevant data for the calendar year, the EPA will calculate and report the measurement uncertainty for the entire calendar year.

6. References

(1) American National Standard Institute—Quality Management Systems For Environmental Information And Technology Programs—Requirements With Guidance For Use. ASQ/ANSI E4–2014. February 2014. Available from ANSI Webstore https://webstore.ansi.org/.

(2) EPA Requirements for Quality Management Plans. EPA QA/R-2. EPA/240/B-01/002. March 2001, Reissue May 2006. Office of Environmental Information, Washington DC 20460. http://www.epa.gov/quality/agency-wide-quality-system-documents.

(3) EPA Requirements for Quality Assurance Project Plans for Environmental Data Operations. EPA QA/R-5. EPA/240/B-01/003. March 2001, Reissue May 2006. Office of Environmental Information, Washington DC 20460. http://www.epa.gov/quality/agency-wide-quality-system-documents.

(4) EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards. EPA–600/R–12/531. May, 2012. Available from U.S. Environmental Protection Agency, National Risk Management Research Laboratory, Research Triangle Park NC 27711. https://www.epa.gov/nscep.

(5) Guidance for the Data Quality Objectives Process. EPA QA/G-4. EPA/240/B-06/001. February, 2006. Office of Environmental Information, Washington DC 20460. http://www.epa.gov/quality/agency-wide-quality-system-documents.

(6) List of Designated Reference and Equivalent Methods. Available from U.S. Environmental Protection Agency, Center for Environmental Measurements and Modeling, Air Methods and Characterization Division, MD–D205–03, Research Triangle Park, NC 27711. https://www.epa.gov/amtic/air-monitoring-methods-criteria-pollutants.

(7) Transfer Standards for the Calibration of Ambient Air Monitoring Analyzers for Ozone. EPA–454/B–13–004 U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, October, 2013. https://www.epa.gov/sites/default/files/2020-09/documents/ozonetransferstandardguidance.pdf.

(8) Paur, R.J. and F.F. McElroy. Technical Assistance Document for the Calibration of Ambient Ozone Monitors. EPA-600/4-79-057. U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, September, 1979. http://www.epa.gov/ttn/amtic/cpreldoc.html.

(9) Quality Assurance Handbook for Air Pollution Measurement Systems, Volume 1—A Field Guide to Environmental Quality Assurance. EPA–600/R–94/038a. April 1994. Available from U.S. Environmental Protection Agency, ORD Publications Office, Center for Environmental Research Information (CERI), 26 W. Martin Luther King Drive, Cincinnati, OH 45268. https://www.epa.gov/amtic/ambient-air-monitoring-quality-assurance#documents.

(10) Quality Assurance Handbook for Air Pollution Measurement Systems, Volume II: Ambient Air Quality Monitoring Program Quality System Development. EPA–454/B–13–003. https://www.epa.gov/amtic/ambient-air-monitoring-quality-assurance#documents.

(11) National Performance Evaluation Program Standard Operating Procedures. https://www.epa.gov/amtic/ambient-air-monitoring-quality-assurance#npep.

Table A–1 to Section 6 of Appendix A—Minimum Data Assessment Requirements for NAAQS Related Criteria Pollutant Monitors
MethodAssessment methodCoverageMinimum frequencyParameters reportedAQS assessment type
1 Effective concentration for open path analyzers.
2 Corrected concentration, if applicable for open path analyzers.
3 Both primary and collocated sampler values are reported as raw data.
4 PM 2.5 is the only particulate criteria pollutant requiring collocation of continuous and manual primary monitors.
5 EPA's recommended maximum number of days that should exist between checks to ensure that the checks are routinely conducted over time and to limit data impacts resulting from a failed check.
Gaseous Methods (CO, NO 2 , SO 2 , O 3):
One-Point QC for SO 2 , NO 2 , O 3 , COResponse check at concentration 0.005–0.08 ppm SO 2 , NO 2 , O 3 , and 0.5 and 5 ppm COEach analyzerOnce per 2 weeks 5Audit concentration 1 and measured concentration. 2One-Point QC.
Annual performance evaluation for SO 2 , NO 2 , O 3 , COSee section 3.1.2 of this appendixEach analyzerOnce per yearAudit concentration 1 and measured concentration 2 for each levelAnnual PE.
NPAP for SO 2 , NO 2 , O 3 , COIndependent Audit20% of sites each yearOnce per yearAudit concentration 1 and measured concentration 2 for each levelNPAP.
Particulate Methods:
Continuous 4 method—collocated quality control sampling PM 2.5Collocated samplers15%1-in-12 daysPrimary sampler concentration and duplicate sampler concentration. 3No Transaction reported as raw data.
Manual method—collocated quality control sampling PM 10 , PM 2.5 , Pb-TSP, Pb-PM 10Collocated samplers15%1-in-12 daysPrimary sampler concentration and duplicate sampler concentration. 3No Transaction reported as raw data.
Flow rate verification PM 10 (low Vol) PM 2.5 , Pb-PM 10Check of sampler flow rateEach samplerOnce every month 5Audit flow rate and measured flow rate indicated by the samplerFlow Rate Verification.
Flow rate verification PM 10 (High-Vol), Pb-TSPCheck of sampler flow rateEach samplerOnce every quarter 5Audit flow rate and measured flow rate indicated by the samplerFlow Rate Verification.
Semi-annual flow rate audit PM 10 , TSP, PM 10 –2.5, PM 2.5 , Pb-TSP, Pb-PM 10Check of sampler flow rate using independent standardEach samplerOnce every 6 months 5Audit flow rate and measured flow rate indicated by the samplerSemi Annual Flow Rate Audit.
Pb analysis audits Pb-TSP, Pb-PM 10Check of analytical system with Pb audit strips/filtersAnalyticalOnce each quarter 5Measured value and audit value (ug Pb/filter) using AQS unit code 077Pb Analysis Audits.
Performance Evaluation Program PM 2.5Collocated samplers(1) 5 valid audits for primary QA orgs, with ≤5 sites (2) 8 valid audits for primary QA orgs, with >5 sites (3) All samplers in 6 yearsDistributed over all 4 quarters 5Primary sampler concentration and performance evaluation sampler concentrationPEP.
Performance Evaluation Program Pb-TSP, Pb-PM 10Collocated samplers(1) 1 valid audit and 4 collocated samples for primary QA orgs, with ≤5 sites (2) 2 valid audits and 6 collocated samples for primary QA orgs with >5 sitesDistributed over all 4 quarters 5Primary sampler concentration and performance evaluation sampler concentration. Primary sampler concentration and duplicate sampler concentrationPEP.

Table A-2 of Appendix A to Part 58 - Summary of PM2.5 Number and Type of Collocation (15% Collocation Requirement) Required Using an Example of a PQAO That Has 54 Primary Monitors (54 sites) With One Federal Reference Method Type and Three Types of Approved Federal Equivalent Methods
Primary sampler method designationTotal No. of monitorsTotal No. of collocatedNo. of
collocated
with FRM
No. of
collocated
with same
method
designation
as primary
FRM20333
FEM (A)20321
FEM (B)2110
FEM (C)12211

Appendix B to Part 58 - Quality Assurance Requirements for Prevention of Significant Deterioration (PSD) Air Monitoring

1. General Information

2. Quality System Requirements

3. Measurement Quality Check Requirements

4. Calculations for Data Quality Assessments

5. Reporting Requirements

6. References

1. General Information

1.1 Applicability.

(a) This appendix specifies the minimum quality assurance requirements for the control and assessment of the quality of the ambient air monitoring data submitted to a PSD reviewing authority or the EPA by an organization operating an air monitoring station, or network of stations, operated in order to comply with Part 51 New Source Review - Prevention of Significant Deterioration (PSD). Such organizations are encouraged to develop and maintain quality assurance programs more extensive than the required minimum. Additional guidance for the requirements reflected in this appendix can be found in the “Quality Assurance Handbook for Air Pollution Measurement Systems,” Volume II (Ambient Air) and “Quality Assurance Handbook for Air Pollution Measurement Systems,” Volume IV (Meteorological Measurements) and at a national level in references 1, 2, and 3 of this appendix.

(b) It is not assumed that data generated for PSD under this appendix will be used in making NAAQS decisions. However, if all the requirements in this appendix are followed (including the NPEP programs) and reported to AQS, with review and concurrence from the EPA region, data may be used for NAAQS decisions. With the exception of the NPEP programs (NPAP, PM2.5 PEP, Pb-PEP), for which implementation is at the discretion of the PSD reviewing authority, all other quality assurance and quality control requirements found in the appendix must be met.

1.2 PSD Primary Quality Assurance Organization (PQAO). A PSD PQAO is defined as a monitoring organization or a coordinated aggregation of such organizations that is responsible for a set of stations within one PSD reviewing authority that monitors the same pollutant and for which data quality assessments will be pooled. Each criteria pollutant sampler/monitor must be associated with only one PSD PQAO.

1.2.1 Each PSD PQAO shall be defined such that measurement uncertainty among all stations in the organization can be expected to be reasonably homogeneous, as a result of common factors. A PSD PQAO must be associated with only one PSD reviewing authority. Common factors that should be considered in defining PSD PQAOs include:

(a) Operation by a common team of field operators according to a common set of procedures;

(b) Use of a common QAPP and/or standard operating procedures;

(c) Common calibration facilities and standards;

(d) Oversight by a common quality assurance organization; and

(e) Support by a common management organization or laboratory.

1.2.2 PSD monitoring organizations having difficulty describing its PQAO or in assigning specific monitors to a PSD PQAO should consult with the PSD reviewing authority. Any consolidation of PSD PQAOs shall be subject to final approval by the PSD reviewing authority.

1.2.3 Each PSD PQAO is required to implement a quality system that provides sufficient information to assess the quality of the monitoring data. The quality system must, at a minimum, include the specific requirements described in this appendix. Failure to conduct or pass a required check or procedure, or a series of required checks or procedures, does not by itself invalidate data for regulatory decision making. Rather, PSD PQAOs and the PSD reviewing authority shall use the checks and procedures required in this appendix in combination with other data quality information, reports, and similar documentation that demonstrate overall compliance with parts 51, 52 and 58 of this chapter. Accordingly, the PSD reviewing authority shall use a “weight of evidence” approach when determining the suitability of data for regulatory decisions. The PSD reviewing authority reserves the authority to use or not use monitoring data submitted by a PSD monitoring organization when making regulatory decisions based on the PSD reviewing authority's assessment of the quality of the data. Generally, consensus built validation templates or validation criteria already approved in quality assurance project plans (QAPPs) should be used as the basis for the weight of evidence approach.

1.3 Definitions.

(a) Measurement Uncertainty. A term used to describe deviations from a true concentration or estimate that are related to the measurement process and not to spatial or temporal population attributes of the air being measured.

(b) Precision. A measurement of mutual agreement among individual measurements of the same property usually under prescribed similar conditions, expressed generally in terms of the standard deviation.

(c) Bias. The systematic or persistent distortion of a measurement process which causes errors in one direction.

(d) Accuracy. The degree of agreement between an observed value and an accepted reference value. Accuracy includes a combination of random error (imprecision) and systematic error (bias) components which are due to sampling and analytical operations.

(e) Completeness. A measure of the amount of valid data obtained from a measurement system compared to the amount that was expected to be obtained under correct, normal conditions.

(f) Detectability. The low critical range value of a characteristic that a method specific procedure can reliably discern.

1.4 Measurement Quality Check Reporting. The measurement quality checks described in section 3 of this appendix, are required to be submitted to the PSD reviewing authority within the same time frame as routinely-collected ambient concentration data as described in 40 CFR 58.16. The PSD reviewing authority may as well require that the measurement quality check data be reported to AQS.

1.5 Assessments and Reports. Periodic assessments and documentation of data quality are required to be reported to the PSD reviewing authority. To provide national uniformity in this assessment and reporting of data quality for all networks, specific assessment and reporting procedures are prescribed in detail in sections 3, 4, and 5 of this appendix.

2. Quality System Requirements

A quality system (reference 1 of this appendix) is the means by which an organization manages the quality of the monitoring information it produces in a systematic, organized manner. It provides a framework for planning, implementing, assessing and reporting work performed by an organization and for carrying out required quality assurance and quality control activities.

2.1 Quality Assurance Project Plans. All PSD PQAOs must develop a quality system that is described and approved in quality assurance project plans (QAPP) to ensure that the monitoring results:

(a) Meet a well-defined need, use, or purpose (reference 5 of this appendix);

(b) Provide data of adequate quality for the intended monitoring objectives;

(c) Satisfy stakeholder expectations;

(d) Comply with applicable standards specifications;

(e) Comply with statutory (and other legal) requirements; and

(f) Assure quality assurance and quality control adequacy and independence.

2.1.1 The QAPP is a formal document that describes these activities in sufficient detail and is supported by standard operating procedures. The QAPP must describe how the organization intends to control measurement uncertainty to an appropriate level in order to achieve the objectives for which the data are collected. The QAPP must be documented in accordance with EPA requirements (reference 3 of this appendix).

2.1.2 The PSD PQAO's quality system must have adequate resources both in personnel and funding to plan, implement, assess and report on the achievement of the requirements of this appendix and it's approved QAPP.

2.1.3 Incorporation of quality management plan (QMP) elements into the QAPP. The QMP describes the quality system in terms of the organizational structure, functional responsibilities of management and staff, lines of authority, and required interfaces for those planning, implementing, assessing and reporting activities involving environmental data operations (EDO). The PSD PQAOs may combine pertinent elements of the QMP into the QAPP rather than requiring the submission of both QMP and QAPP documents separately, with prior approval of the PSD reviewing authority. Additional guidance on QMPs can be found in reference 2 of this appendix.

2.2 Independence of Quality Assurance Management. The PSD PQAO must provide for a quality assurance management function for its PSD data collection operation, that aspect of the overall management system of the organization that determines and implements the quality policy defined in a PSD PQAO's QAPP. Quality management includes strategic planning, allocation of resources and other systematic planning activities (e.g., planning, implementation, assessing and reporting) pertaining to the quality system. The quality assurance management function must have sufficient technical expertise and management authority to conduct independent oversight and assure the implementation of the organization's quality system relative to the ambient air quality monitoring program and should be organizationally independent of environmental data generation activities.

2.3 Data Quality Performance Requirements.

2.3.1 Data Quality Objectives (DQOs). The DQOs, or the results of other systematic planning processes, are statements that define the appropriate type of data to collect and specify the tolerable levels of potential decision errors that will be used as a basis for establishing the quality and quantity of data needed to support air monitoring objectives (reference 5 of the appendix). The DQOs have been developed by the EPA to support attainment decisions for comparison to national ambient air quality standards (NAAQS). The PSD reviewing authority and the PSD monitoring organization will be jointly responsible for determining whether adherence to the EPA developed NAAQS DQOs specified in appendix A of this part are appropriate or if DQOs from a project-specific systematic planning process are necessary.

2.3.1.1 Measurement Uncertainty for Automated and Manual PM2.5Methods. The goal for acceptable measurement uncertainty for precision is defined as an upper 90 percent confidence limit for the coefficient of variation (CV) of 10 percent and plus or minus 10 percent for total bias.

2.3.1.2 Measurement Uncertainty for Automated Ozone Methods. The goal for acceptable measurement uncertainty is defined for precision as an upper 90 percent confidence limit for the CV of 7 percent and for bias as an upper 95 percent confidence limit for the absolute bias of 7 percent.

2.3.1.3 Measurement Uncertainty for Pb Methods. The goal for acceptable measurement uncertainty is defined for precision as an upper 90 percent confidence limit for the CV of 20 percent and for bias as an upper 95 percent confidence limit for the absolute bias of 15 percent.

2.3.1.4 Measurement Uncertainty for NO2. The goal for acceptable measurement uncertainty is defined for precision as an upper 90 percent confidence limit for the CV of 15 percent and for bias as an upper 95 percent confidence limit for the absolute bias of 15 percent.

2.3.1.5 Measurement Uncertainty for SO2. The goal for acceptable measurement uncertainty for precision is defined as an upper 90 percent confidence limit for the CV of 10 percent and for bias as an upper 95 percent confidence limit for the absolute bias of 10 percent.

2.4 National Performance Evaluation Program. Organizations operating PSD monitoring networks are required to implement the EPA's national performance evaluation program (NPEP) if the data will be used for NAAQS decisions and at the discretion of the PSD reviewing authority if PSD data are not used for NAAQS decisions. The NPEP includes the National Performance Audit Program (NPAP), the PM2.5 Performance Evaluation Program (PM2.5-PEP) and the Pb Performance Evaluation Program (Pb-PEP). The PSD QAPP shall provide for the implementation of NPEP including the provision of adequate resources for such NPEP if the data will be used for NAAQS decisions or if required by the PSD reviewing authority. Contact the PSD reviewing authority to determine the best procedure for implementing the audits which may include an audit by the PSD reviewing authority, a contractor certified for the activity, or through self-implementation which is described in sections below. A determination of which entity will be performing this audit program should be made as early as possible and during the QAPP development process. The PSD PQAOs, including contractors that plan to implement these programs on behalf of PSD PQAOs, that plan to implement these programs (self-implement) rather than use the federal programs, must meet the adequacy requirements found in the appropriate sections that follow, as well as meet the definition of independent assessment that follows.

2.4.1 Independent Assessment. An assessment performed by a qualified individual, group, or organization that is not part of the organization directly performing and accountable for the work being assessed. This auditing organization must not be involved with the generation of the routinely-collected ambient air monitoring data. An organization can conduct the performance evaluation (PE) if it can meet this definition and has a management structure that, at a minimum, will allow for the separation of its routine sampling personnel from its auditing personnel by two levels of management. In addition, the sample analysis of audit filters must be performed by a laboratory facility and laboratory equipment separate from the facilities used for routine sample analysis. Field and laboratory personnel will be required to meet the performance evaluation field and laboratory training and certification requirements. The PSD PQAO will be required to participate in the centralized field and laboratory standards certification and comparison processes to establish comparability to federally implemented programs.

2.5 Technical Systems Audit Program. The PSD reviewing authority or the EPA may conduct system audits of the ambient air monitoring programs or organizations operating PSD networks. The PSD monitoring organizations shall consult with the PSD reviewing authority to verify the schedule of any such technical systems audit. Systems audit programs are described in reference 10 of this appendix.

2.6 Gaseous and Flow Rate Audit Standards.

2.6.1 Gaseous pollutant concentration standards (permeation devices or cylinders of compressed gas) used to obtain test concentrations for CO, SO 2 , NO, and NO 2 must be EPA Protocol Gases certified in accordance with one of the procedures given in Reference 4 of this appendix.

2.6.1.1 The concentrations of EPA Protocol Gas standards used for ambient air monitoring must be certified with a 95-percent confidence interval to have an analytical uncertainty of no more than ±2.0 percent (inclusive) of the certified concentration (tag value) of the gas mixture. The uncertainty must be calculated in accordance with the statistical procedures defined in Reference 4 of this appendix.

2.6.1.2 Specialty gas producers advertising certification with the procedures provided in Reference 4 of this appendix and distributing gases as “EPA Protocol Gas” for ambient air monitoring purposes must adhere to the regulatory requirements specified in 40 CFR 75.21(g) or not use “EPA” in any form of advertising. The PSD PQAOs must provide information to the PSD reviewing authority on the specialty gas producers they use (or will use) for the duration of the PSD monitoring project. This information can be provided in the QAPP or monitoring plan but must be updated if there is a change in the specialty gas producers used.

2.6.2 Test concentrations for ozone (O3) must be obtained in accordance with the ultraviolet photometric calibration procedure specified in appendix D to Part 50, and by means of a certified NIST-traceable O3 transfer standard. Consult references 7 and 8 of this appendix for guidance on transfer standards for O3.

2.6.3 Flow rate measurements must be made by a flow measuring instrument that is NIST-traceable to an authoritative volume or other applicable standard. Guidance for certifying some types of flow-meters is provided in reference 10 of this appendix.

2.7 Primary Requirements and Guidance. Requirements and guidance documents for developing the quality system are contained in references 1 through 11 of this appendix, which also contain many suggested procedures, checks, and control specifications. Reference 10 describes specific guidance for the development of a quality system for data collected for comparison to the NAAQS. Many specific quality control checks and specifications for methods are included in the respective reference methods described in Part 50 or in the respective equivalent method descriptions available from the EPA (reference 6 of this appendix). Similarly, quality control procedures related to specifically designated reference and equivalent method monitors are contained in the respective operation or instruction manuals associated with those monitors. For PSD monitoring, the use of reference and equivalent method monitors are required.

3. Measurement Quality Check Requirements

This section provides the requirements for PSD PQAOs to perform the measurement quality checks that can be used to assess data quality. Data from these checks are required to be submitted to the PSD reviewing authority within the same time frame as routinely-collected ambient concentration data as described in 40 CFR 58.16. Table B-1 of this appendix provides a summary of the types and frequency of the measurement quality checks that are described in this section. Reporting these results to AQS may be required by the PSD reviewing authority.

3.1 Gaseous monitors of SO2, NO2, O3, and CO.

3.1.1 One-Point Quality Control (QC) Check for SO2,NO2, O3, andCO. (a) A one-point QC check must be performed at least once every 2 weeks on each automated monitor used to measure SO2, NO2, O3 and CO. With the advent of automated calibration systems, more frequent checking is strongly encouraged and may be required by the PSD reviewing authority. See Reference 10 of this appendix for guidance on the review procedure. The QC check is made by challenging the monitor with a QC check gas of known concentration (effective concentration for open path monitors) between the prescribed range of 0.005 and 0.08 parts per million (ppm) for SO2, NO2, and O3, and between the prescribed range of 0.5 and 5 ppm for CO monitors. The QC check gas concentration selected within the prescribed range should be related to monitoring objectives for the monitor. If monitoring for trace level monitoring, the QC check concentration should be selected to represent the mean or median concentrations at the site. If the mean or median concentrations at trace gas sites are below the MDL of the instrument the agency can select the lowest concentration in the prescribed range that can be practically achieved. If the mean or median concentrations at trace gas sites are above the prescribed range the agency can select the highest concentration in the prescribed range. The PSD monitoring organization will consult with the PSD reviewing authority on the most appropriate one-point QC concentration based on the objectives of the monitoring activity. An additional QC check point is encouraged for those organizations that may have occasional high values or would like to confirm the monitors' linearity at the higher end of the operational range or around NAAQS concentrations. If monitoring for NAAQS decisions the QC concentration can be selected at a higher concentration within the prescribed range but should also consider precision points around mean or median concentrations.

(b) Point analyzers must operate in their normal sampling mode during the QC check and the test atmosphere must pass through all filters, scrubbers, conditioners and other components used during normal ambient sampling and as much of the ambient air inlet system as is practicable. The QC check must be conducted before any calibration or adjustment to the monitor.

(c) Open-path monitors are tested by inserting a test cell containing a QC check gas concentration into the optical measurement beam of the instrument. If possible, the normally used transmitter, receiver, and as appropriate, reflecting devices should be used during the test and the normal monitoring configuration of the instrument should be altered as little as possible to accommodate the test cell for the test. However, if permitted by the associated operation or instruction manual, an alternate local light source or an alternate optical path that does not include the normal atmospheric monitoring path may be used. The actual concentration of the QC check gas in the test cell must be selected to produce an effective concentration in the range specified earlier in this section. Generally, the QC test concentration measurement will be the sum of the atmospheric pollutant concentration and the QC test concentration. As such, the result must be corrected to remove the atmospheric concentration contribution. The corrected concentration is obtained by subtracting the average of the atmospheric concentrations measured by the open path instrument under test immediately before and immediately after the QC test from the QC check gas concentration measurement. If the difference between these before and after measurements is greater than 20 percent of the effective concentration of the test gas, discard the test result and repeat the test. If possible, open path monitors should be tested during periods when the atmospheric pollutant concentrations are relatively low and steady.

(d) Report the audit concentration of the QC gas and the corresponding measured concentration indicated by the monitor. The percent differences between these concentrations are used to assess the precision and bias of the monitoring data as described in sections 4.1.2 (precision) and 4.1.3 (bias) of this appendix.

3.1.2 Quarterly performance evaluation for SO2,NO2, O3, or CO. Evaluate each primary monitor each monitoring quarter (or 90 day frequency) during which monitors are operated or a least once (if operated for less than one quarter). The quarterly performance evaluation (quarterly PE) must be performed by a qualified individual, group, or organization that is not part of the organization directly performing and accountable for the work being assessed. The person or entity performing the quarterly PE must not be involved with the generation of the routinely-collected ambient air monitoring data. A PSD monitoring organization can conduct the quarterly PE itself if it can meet this definition and has a management structure that, at a minimum, will allow for the separation of its routine sampling personnel from its auditing personnel by two levels of management. The quarterly PE also requires a set of equipment and standards independent from those used for routine calibrations or zero, span or precision checks.

3.1.2.1 The evaluation is made by challenging the monitor with audit gas standards of known concentration from at least three audit levels. One point must be within two to three times the method detection limit of the instruments within the PQAOs network, the second point will be less than or equal to the 99th percentile of the data at the site or the network of sites in the PQAO or the next highest audit concentration level. The third point can be around the primary NAAQS or the highest 3-year concentration at the site or the network of sites in the PQAO. An additional 4th level is encouraged for those PSD organizations that would like to confirm the monitor's linearity at the higher end of the operational range. In rare circumstances, there may be sites measuring concentrations above audit level 10. These sites should be identified to the PSD reviewing authority.

Audit levelConcentration range, ppm
O3SO2NO2CO
10.004-0.00590.0003-0.00290.0003-0.00290.020-0.059
20.006-0.0190.0030-0.00490.0030-0.00490.060-0.199
30.020-0.0390.0050-0.00790.0050-0.00790.200-0.899
40.040-0.0690.0080-0.01990.0080-0.01990.900-2.999
50.070-0.0890.0200-0.04990.0200-0.04993.000-7.999
60.090-0.1190.0500-0.09990.0500-0.09998.000-15.999
70.120-0.1390.1000-0.14990.1000-0.299916.000-30.999
80.140-0.1690.1500-0.25990.3000-0.499931.000-39.999
90.170-0.1890.2600-0.79990.5000-0.799940.000-49.999
100.190-0.2590.8000-1.0000.8000-1.00050.000-60.000

3.1.2.2 [Reserved]

3.1.2.3 The standards from which audit gas test concentrations are obtained must meet the specifications of section 2.6.1 of this appendix.

3.1.2.4 For point analyzers, the evaluation shall be carried out by allowing the monitor to analyze the audit gas test atmosphere in its normal sampling mode such that the test atmosphere passes through all filters, scrubbers, conditioners, and other sample inlet components used during normal ambient sampling and as much of the ambient air inlet system as is practicable.

3.1.2.5 Open-path monitors are evaluated by inserting a test cell containing the various audit gas concentrations into the optical measurement beam of the instrument. If possible, the normally used transmitter, receiver, and, as appropriate, reflecting devices should be used during the evaluation, and the normal monitoring configuration of the instrument should be modified as little as possible to accommodate the test cell for the evaluation. However, if permitted by the associated operation or instruction manual, an alternate local light source or an alternate optical path that does not include the normal atmospheric monitoring path may be used. The actual concentrations of the audit gas in the test cell must be selected to produce effective concentrations in the evaluation level ranges specified in this section of this appendix. Generally, each evaluation concentration measurement result will be the sum of the atmospheric pollutant concentration and the evaluation test concentration. As such, the result must be corrected to remove the atmospheric concentration contribution. The corrected concentration is obtained by subtracting the average of the atmospheric concentrations measured by the open-path instrument under test immediately before and immediately after the evaluation test (or preferably before and after each evaluation concentration level) from the evaluation concentration measurement. If the difference between the before and after measurements is greater than 20 percent of the effective concentration of the test gas standard, discard the test result for that concentration level and repeat the test for that level. If possible, open-path monitors should be evaluated during periods when the atmospheric pollutant concentrations are relatively low and steady. Also, if the open-path instrument is not installed in a permanent manner, the monitoring path length must be reverified to be within ±3 percent to validate the evaluation, since the monitoring path length is critical to the determination of the effective concentration.

3.1.2.6 Report both the evaluation concentrations (effective concentrations for open-path monitors) of the audit gases and the corresponding measured concentration (corrected concentrations, if applicable, for open-path monitors) indicated or produced by the monitor being tested. The percent differences between these concentrations are used to assess the quality of the monitoring data as described in section 4.1.1 of this appendix.

3.1.3 National Performance Audit Program (NPAP). As stated in sections 1.1 and 2.4, PSD monitoring networks may be subject to the NPEP, which includes the NPAP. The NPAP is a performance evaluation which is a type of audit where quantitative data are collected independently in order to evaluate the proficiency of an analyst, monitoring instrument and laboratory. Due to the implementation approach used in this program, NPAP provides for a national independent assessment of performance with a consistent level of data quality. The NPAP should not be confused with the quarterly PE program described in section 3.1.2. The PSD organizations shall consult with the PSD reviewing authority or the EPA regarding whether the implementation of NPAP is required and the implementation options available. Details of the EPA NPAP can be found in reference 11 of this appendix. The program requirements include:

3.1.3.1 Performing audits on 100 percent of monitors and sites each year including monitors and sites that may be operated for less than 1 year. The PSD reviewing authority has the authority to require more frequent audits at sites they consider to be high priority.

3.1.3.2 Developing a delivery system that will allow for the audit concentration gasses to be introduced at the probe inlet where logistically feasible.

3.1.3.3 Using audit gases that are verified against the NIST standard reference methods or special review procedures and validated per the certification periods specified in Reference 4 of this appendix (EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards) for CO, SO 2 , and NO 2 and using O 3 analyzers that are verified quarterly against a standard reference photometer.

3.1.3.4 The PSD PQAO may elect to self-implement NPAP. In these cases, the PSD reviewing authority will work with those PSD PQAOs to establish training and other technical requirements to establish comparability to federally implemented programs. In addition to meeting the requirements in sections 3.1.1.3 through 3.1.3.3, the PSD PQAO must:

(a) Ensure that the PSD audit system is equivalent to the EPA NPAP audit system and is an entirely separate set of equipment and standards from the equipment used for quarterly performance evaluations. If this system does not generate and analyze the audit concentrations, as the EPA NPAP system does, its equivalence to the EPA NPAP system must be proven to be as accurate under a full range of appropriate and varying conditions as described in section 3.1.3.6.

(b) Perform a whole system check by having the PSD audit system tested at an independent and qualified EPA lab, or equivalent.

(c) Evaluate the system with the EPA NPAP program through collocated auditing at an acceptable number of sites each year (at least one for a PSD network of five or less sites; at least two for a network with more than five sites).

(d) Incorporate the NPAP into the PSD PQAO's QAPP.

(e) Be subject to review by independent, EPA-trained personnel.

(f) Participate in initial and update training/certification sessions.

3.2 PM2.5.

3.2.1 Flow Rate Verification for PM2.5. A one-point flow rate verification check must be performed at least once every month (each verification minimally separated by 14 days) on each monitor used to measure PM2.5. The verification is made by checking the operational flow rate of the monitor. If the verification is made in conjunction with a flow rate adjustment, it must be made prior to such flow rate adjustment. For the standard procedure, use a flow rate transfer standard certified in accordance with section 2.6 of this appendix to check the monitor's normal flow rate. Care should be used in selecting and using the flow rate measurement device such that it does not alter the normal operating flow rate of the monitor. Flow rate verification results are to be reported to the PSD reviewing authority quarterly as described in section 5.1. Reporting these results to AQS is encouraged. The percent differences between the audit and measured flow rates are used to assess the bias of the monitoring data as described in section 4.2.2 of this appendix (using flow rates in lieu of concentrations).

3.2.2 Semi-Annual Flow Rate Audit for PM2.5. Every 6 months, audit the flow rate of the PM2.5 particulate monitors. For short-term monitoring operations (those less than 1 year), the flow rate audits must occur at start up, at the midpoint, and near the completion of the monitoring project. The audit must be conducted by a trained technician other than the routine site operator. The audit is made by measuring the monitor's normal operating flow rate using a flow rate transfer standard certified in accordance with section 2.6 of this appendix. The flow rate standard used for auditing must not be the same flow rate standard used for verifications or to calibrate the monitor. However, both the calibration standard and the audit standard may be referenced to the same primary flow rate or volume standard. Care must be taken in auditing the flow rate to be certain that the flow measurement device does not alter the normal operating flow rate of the monitor. Report the audit flow rate of the transfer standard and the corresponding flow rate measured by the monitor. The percent differences between these flow rates are used to evaluate monitor performance.

3.2.3 Collocated Sampling Procedures for PM2.5. A PSD PQAO must have at least one collocated monitor for each PSD monitoring network.

3.2.3.1 For each pair of collocated monitors, designate one sampler as the primary monitor whose concentrations will be used to report air quality for the site, and designate the other as the QC monitor. There can be only one primary monitor at a monitoring site for a given time period.

(a) If the primary monitor is a FRM, then the quality control monitor must be a FRM of the same method designation.

(b) If the primary monitor is a FEM, then the quality control monitor must be a FRM unless the PSD PQAO submits a waiver for this requirement, provides a specific reason why a FRM cannot be implemented, and the waiver is approved by the PSD reviewing authority. If the waiver is approved, then the quality control monitor must be the same method designation as the primary FEM monitor.

3.2.3.2 In addition, the collocated monitors should be deployed according to the following protocol:

(a) The collocated quality control monitor(s) should be deployed at sites with the highest predicted daily PM2.5 concentrations in the network. If the highest PM2.5 concentration site is impractical for collocation purposes, alternative sites approved by the PSD reviewing authority may be selected. If additional collocated sites are necessary, the PSD PQAO and the PSD reviewing authority should determine the appropriate location(s) based on data needs.

(b) The two collocated monitors must be within 4 meters of each other and at least 2 meters apart for flow rates greater than 200 liters/min or at least 1 meter apart for samplers having flow rates less than 200 liters/min to preclude airflow interference. A waiver allowing up to 10 meters horizontal distance and up to 3 meters vertical distance (inlet to inlet) between a primary and collocated quality control monitor may be approved by the PSD reviewing authority for sites at a neighborhood or larger scale of representation. This waiver may be approved during the QAPP review and approval process. Sampling and analytical methodologies must be the consistently implemented for both collocated samplers and for all other samplers in the network.

(c) Sample the collocated quality control monitor on a 6-day schedule for sites not requiring daily monitoring and on a 3-day schedule for any site requiring daily monitoring. Report the measurements from both primary and collocated quality control monitors at each collocated sampling site. The calculations for evaluating precision between the two collocated monitors are described in section 4.2.1 of this appendix.

3.2.4 PM2.5 Performance Evaluation Program (PEP) Procedures. The PEP is an independent assessment used to estimate total measurement system bias. These evaluations will be performed under the NPEP as described in section 2.4 of this appendix or a comparable program. Performance evaluations will be performed annually within each PQAO. For PQAOs with less than or equal to five monitoring sites, five valid performance evaluation audits must be collected and reported each year. For PQAOs with greater than five monitoring sites, eight valid performance evaluation audits must be collected and reported each year. A valid performance evaluation audit means that both the primary monitor and PEP audit concentrations are valid and equal to or greater than 2 µg/m3. Siting of the PEP monitor must be consistent with section 3.2.3.4(c) of this appendix. However, any horizontal distance greater than 4 meters and any vertical distance greater than one meter must be reported to the EPA regional PEP coordinator. Additionally for every monitor designated as a primary monitor, a primary quality assurance organization must:

3.2.4.1 Have each method designation evaluated each year; and,

3.2.4.2 Have all FRM and FEM samplers subject to a PEP audit at least once every 6 years, which equates to approximately 15 percent of the monitoring sites audited each year.

3.2.4.3 Additional information concerning the PEP is contained in Reference 10 of this appendix. The calculations for evaluating bias between the primary monitor and the performance evaluation monitor for PM 2.5 are described in section 4.2.5 of this appendix.

3.3 PM10.

3.3.1 Flow Rate Verification for PM10. A one-point flow rate verification check must be performed at least once every month (each verification minimally separated by 14 days) on each monitor used to measure PM10. The verification is made by checking the operational flow rate of the monitor. If the verification is made in conjunction with a flow rate adjustment, it must be made prior to such flow rate adjustment. For the standard procedure, use a flow rate transfer standard certified in accordance with section 2.6 of this appendix to check the monitor's normal flow rate. Care should be taken in selecting and using the flow rate measurement device such that it does not alter the normal operating flow rate of the monitor. The percent differences between the audit and measured flow rates are used to assess the bias of the monitoring data as described in section 4.2.2 of this appendix (using flow rates in lieu of concentrations).

3.3.2 Semi-Annual Flow Rate Audit for PM10. Every 6 months, audit the flow rate of the PM10 particulate monitors. For short-term monitoring operations (those less than 1 year), the flow rate audits must occur at start up, at the midpoint, and near the completion of the monitoring project. Where possible, the EPA strongly encourages more frequent auditing. The audit must be conducted by a trained technician other than the routine site operator. The audit is made by measuring the monitor's normal operating flow rate using a flow rate transfer standard certified in accordance with section 2.6 of this appendix. The flow rate standard used for auditing must not be the same flow rate standard used for verifications or to calibrate the monitor. However, both the calibration standard and the audit standard may be referenced to the same primary flow rate or volume standard. Care must be taken in auditing the flow rate to be certain that the flow measurement device does not alter the normal operating flow rate of the monitor. Report the audit flow rate of the transfer standard and the corresponding flow rate measured by the monitor. The percent differences between these flow rates are used to evaluate monitor performance

3.3.3 Collocated Sampling Procedures for Manual PM10. A PSD PQAO must have at least one collocated monitor for each PSD monitoring network.

3.3.3.1 For each pair of collocated monitors, designate one sampler as the primary monitor whose concentrations will be used to report air quality for the site, and designate the other as the quality control monitor.

3.3.3.2 In addition, the collocated monitors should be deployed according to the following protocol:

(a) The collocated quality control monitor(s) should be deployed at sites with the highest predicted daily PM10 concentrations in the network. If the highest PM10 concentration site is impractical for collocation purposes, alternative sites approved by the PSD reviewing authority may be selected.

(b) The two collocated monitors must be within 4 meters of each other and at least 2 meters apart for flow rates greater than 200 liters/min or at least 1 meter apart for samplers having flow rates less than 200 liters/min to preclude airflow interference. A waiver allowing up to 10 meters horizontal distance and up to 3 meters vertical distance (inlet to inlet) between a primary and collocated sampler may be approved by the PSD reviewing authority for sites at a neighborhood or larger scale of representation. This waiver may be approved during the QAPP review and approval process. Sampling and analytical methodologies must be the consistently implemented for both collocated samplers and for all other samplers in the network.

(c) Sample the collocated quality control monitor on a 6-day schedule or 3-day schedule for any site requiring daily monitoring. Report the measurements from both primary and collocated quality control monitors at each collocated sampling site. The calculations for evaluating precision between the two collocated monitors are described in section 4.2.1 of this appendix.

(d) In determining the number of collocated sites required for PM10, PSD monitoring networks for Pb-PM10 should be treated independently from networks for particulate matter (PM), even though the separate networks may share one or more common samplers. However, a single quality control monitor that meets the collocation requirements for Pb-PM10 and PM10 may serve as a collocated quality control monitor for both networks. Extreme care must be taken if using the filter from a quality control monitor for both PM10 and Pb analysis. PM10 filter weighing should occur prior to any Pb analysis.

3.4 Pb.

3.4.1 Flow Rate Verification for Pb. A one-point flow rate verification check must be performed at least once every month (each verification minimally separated by 14 days) on each monitor used to measure Pb. The verification is made by checking the operational flow rate of the monitor. If the verification is made in conjunction with a flow rate adjustment, it must be made prior to such flow rate adjustment. Use a flow rate transfer standard certified in accordance with section 2.6 of this appendix to check the monitor's normal flow rate. Care should be taken in selecting and using the flow rate measurement device such that it does not alter the normal operating flow rate of the monitor. The percent differences between the audit and measured flow rates are used to assess the bias of the monitoring data as described in section 4.2.2 of this appendix (using flow rates in lieu of concentrations).

3.4.2 Semi-Annual Flow Rate Audit for Pb. Every 6 months, audit the flow rate of the Pb particulate monitors. For short-term monitoring operations (those less than 1 year), the flow rate audits must occur at start up, at the midpoint, and near the completion of the monitoring project. Where possible, the EPA strongly encourages more frequent auditing. The audit must be conducted by a trained technician other than the routine site operator. The audit is made by measuring the monitor's normal operating flow rate using a flow rate transfer standard certified in accordance with section 2.6 of this appendix. The flow rate standard used for auditing must not be the same flow rate standard used to in verifications or to calibrate the monitor. However, both the calibration standard and the audit standard may be referenced to the same primary flow rate or volume standard. Great care must be taken in auditing the flow rate to be certain that the flow measurement device does not alter the normal operating flow rate of the monitor. Report the audit flow rate of the transfer standard and the corresponding flow rate measured by the monitor. The percent differences between these flow rates are used to evaluate monitor performance.

3.4.3 Collocated Sampling for Pb. A PSD PQAO must have at least one collocated monitor for each PSD monitoring network.

3.4.3.1 For each pair of collocated monitors, designate one sampler as the primary monitor whose concentrations will be used to report air quality for the site, and designate the other as the quality control monitor.

3.4.3.2 In addition, the collocated monitors should be deployed according to the following protocol:

(a) The collocated quality control monitor(s) should be deployed at sites with the highest predicted daily Pb concentrations in the network. If the highest Pb concentration site is impractical for collocation purposes, alternative sites approved by the PSD reviewing authority may be selected.

(b) The two collocated monitors must be within 4 meters of each other and at least 2 meters apart for flow rates greater than 200 liters/min or at least 1 meter apart for samplers having flow rates less than 200 liters/min to preclude airflow interference. A waiver allowing up to 10 meters horizontal distance and up to 3 meters vertical distance (inlet to inlet) between a primary and collocated sampler may be approved by the PSD reviewing authority for sites at a neighborhood or larger scale of representation. This waiver may be approved during the QAPP review and approval process. Sampling and analytical methodologies must be the consistently implemented for both collocated samplers and all other samplers in the network.

(c) Sample the collocated quality control monitor on a 6-day schedule if daily monitoring is not required or 3-day schedule for any site requiring daily monitoring. Report the measurements from both primary and collocated quality control monitors at each collocated sampling site. The calculations for evaluating precision between the two collocated monitors are described in section 4.2.1 of this appendix.

(d) In determining the number of collocated sites required for Pb-PM10, PSD monitoring networks for PM10 should be treated independently from networks for Pb-PM10, even though the separate networks may share one or more common samplers. However, a single quality control monitor that meets the collocation requirements for Pb-PM10 and PM10 may serve as a collocated quality control monitor for both networks. Extreme care must be taken if using a using the filter from a quality control monitor for both PM10 and Pb analysis. The PM10 filter weighing should occur prior to any Pb analysis.

3.4.4 Pb Analysis Audits. Each calendar quarter, audit the Pb reference or equivalent method analytical procedure using filters containing a known quantity of Pb. These audit filters are prepared by depositing a Pb standard on unexposed filters and allowing them to dry thoroughly. The audit samples must be prepared using batches of reagents different from those used to calibrate the Pb analytical equipment being audited. Prepare audit samples in the following concentration ranges:

RangeEquivalent ambient
Pb concentration, µg/m 3
130-100% of Pb NAAQS.
2200-300% of Pb NAAQS.

(a) Audit samples must be extracted using the same extraction procedure used for exposed filters.

(b) Analyze three audit samples in each of the two ranges each quarter samples are analyzed. The audit sample analyses shall be distributed as much as possible over the entire calendar quarter.

(c) Report the audit concentrations (in µg Pb/filter or strip) and the corresponding measured concentrations (in µg Pb/filter or strip) using AQS unit code 077 (if reporting to AQS). The percent differences between the concentrations are used to calculate analytical accuracy as described in section 4.2.5 of this appendix.

3.4.5 Pb Performance Evaluation Program (PEP) Procedures. As stated in sections 1.1 and 2.4, PSD monitoring networks may be subject to the NPEP, which includes the Pb PEP. The PSD monitoring organizations shall consult with the PSD reviewing authority or the EPA regarding whether the implementation of Pb-PEP is required and the implementation options available for the Pb-PEP. The PEP is an independent assessment used to estimate total measurement system bias. Each year, one PE audit must be performed at one Pb site in each PSD PQAO network that has less than or equal to five sites and two audits for PSD PQAO networks with greater than five sites. In addition, each year, four collocated samples from PSD PQAO networks with less than or equal to five sites and six collocated samples from PSD PQAO networks with greater than five sites must be sent to an independent laboratory for analysis. The calculations for evaluating bias between the primary monitor and the PE monitor for Pb are described in section 4.2.4 of this appendix.

4. Calculations for Data Quality Assessments

(a) Calculations of measurement uncertainty are carried out by PSD PQAO according to the following procedures. The PSD PQAOs should report the data for all appropriate measurement quality checks as specified in this appendix even though they may elect to perform some or all of the calculations in this section on their own.

(b) At low concentrations, agreement between the measurements of collocated samplers, expressed as relative percent difference or percent difference, may be relatively poor. For this reason, collocated measurement pairs will be selected for use in the precision and bias calculations only when both measurements are equal to or above the following limits:

(1) Pb: 0.002 µg/m 3 (Methods approved after 3/04/2010, with exception of manual equivalent method EQLA-0813-803).

(2) Pb: 0.02 µg/m 3 (Methods approved before 3/04/2010, and manual equivalent method EQLA-0813-803).

(3) PM10 (Hi-Vol): 15 µg/m 3.

(4) PM10 (Lo-Vol): 3 µg/m 3.

(5) PM2.5: 3 µg/m 3.

(c) The PM2.5 3 µg/m 3 limit for the PM2.5−PEP may be superseded by mutual agreement between the PSD PQAO and the PSD reviewing authority as specified in section 3.2.4 of the appendix and detailed in the approved QAPP.

4.1 Statistics for the Assessment of QC Checks for SO2, NO2, O3and CO.

4.1.1 Percent Difference. Many of the measurement quality checks start with a comparison of an audit concentration or value (flow-rate) to the concentration/value measured by the monitor and use percent difference as the comparison statistic as described in equation 1 of this section. For each single point check, calculate the percent difference, di, as follows:



where meas is the concentration indicated by the PQAO's instrument and audit is the audit concentration of the standard used in the QC check being measured.

4.1.2 Precision Estimate. The precision estimate is used to assess the one-point QC checks for SO2, NO2, O3, or CO described in section 3.1.1 of this appendix. The precision estimator is the coefficient of variation upper bound and is calculated using equation 2 of this section:



where n is the number of single point checks being aggregated; X 20.1,n-1 is the 10th percentile of a chi-squared distribution with n-1 degrees of freedom.

4.1.3 Bias Estimate. The bias estimate is calculated using the one-point QC checks for SO2, NO2, O3, or CO described in section 3.1.1 of this appendix. The bias estimator is an upper bound on the mean absolute value of the percent differences as described in equation 3 of this section:



where n is the number of single point checks being aggregated; t0.95,n-1 is the 95th quantile of a t-distribution with n-1 degrees of freedom; the quantity AB is the mean of the absolute values of the di′s and is calculated using equation 4 of this section:



and the quantity AS is the standard deviation of the absolute value of the di′s and is calculated using equation 5 of this section:



4.1.3.1 Assigning a sign (positive/negative) to the bias estimate. Since the bias statistic as calculated in equation 3 of this appendix uses absolute values, it does not have a tendency (negative or positive bias) associated with it. A sign will be designated by rank ordering the percent differences of the QC check samples from a given site for a particular assessment interval.

4.1.3.2 Calculate the 25th and 75th percentiles of the percent differences for each site. The absolute bias upper bound should be flagged as positive if both percentiles are positive and negative if both percentiles are negative. The absolute bias upper bound would not be flagged if the 25th and 75th percentiles are of different signs.

4.2 Statistics for the Assessment of PM10,PM2.5, and Pb.

4.2.1 Collocated Quality Control Sampler Precision Estimate for PM10, PM2.5, and Pb . Precision is estimated via duplicate measurements from collocated samplers. It is recommended that the precision be aggregated at the PQAO level quarterly, annually, and at the 3-year level. The data pair would only be considered valid if both concentrations are greater than or equal to the minimum values specified in section 4(c) of this appendix. For each collocated data pair, calculate ti, using equation 6 to this appendix:



Where Xi is the concentration from the primary sampler and Yi is the concentration value from the audit sampler. The coefficient of variation upper bound is calculated using equation 7 to this appendix:



Where k is the number of valid data pairs being aggregated, and X 20.1,k-1 is the 10th percentile of a chi-squared distribution with k-1 degrees of freedom. The factor of 2 in the denominator adjusts for the fact that each ti is calculated from two values with error.

4.2.2 One-Point Flow Rate Verification Bias Estimate for PM10, PM2.5and Pb. For each one-point flow rate verification, calculate the percent difference in volume using equation 1 of this appendix where meas is the value indicated by the sampler's volume measurement and audit is the actual volume indicated by the auditing flow meter. The absolute volume bias upper bound is then calculated using equation 3, where n is the number of flow rate audits being aggregated; t0.95,n-1 is the 95th quantile of a t-distribution with n-1 degrees of freedom, the quantity AB is the mean of the absolute values of the di′s and is calculated using equation 4 of this appendix, and the quantity AS in equation 3 of this appendix is the standard deviation of the absolute values if the di′s and is calculated using equation 5 of this appendix.

4.2.3 Semi-Annual Flow Rate Audit Bias Estimate for PM10, PM2.5and Pb. Use the same procedure described in section 4.2.2 for the evaluation of flow rate audits.

4.2.4 Performance Evaluation Programs Bias Estimate for Pb. The Pb bias estimate is calculated using the paired routine and the PEP monitor as described in section 3.4.5. Use the same procedures as described in section 4.1.3 of this appendix.

4.2.5 Performance Evaluation Programs Bias Estimate for PM2.5 . The bias estimate is calculated using the PEP audits described in section 3.2.4. of this appendix. The bias estimator is based on, s i , the absolute difference in concentrations divided by the square root of the PEP concentration.



4.2.6 Pb Analysis Audit Bias Estimate. The bias estimate is calculated using the analysis audit data described in section 3.4.4. Use the same bias estimate procedure as described in section 4.1.3 of this appendix.

5. Reporting Requirements

5.1. Quarterly Reports. For each quarter, each PSD PQAO shall report to the PSD reviewing authority (and AQS if required by the PSD reviewing authority) the results of all valid measurement quality checks it has carried out during the quarter. The quarterly reports must be submitted consistent with the data reporting requirements specified for air quality data as set forth in 40 CFR 58.16 and pertain to PSD monitoring.

6. References

(1) American National Standard Institute—Quality Management Systems For Environmental Information And Technology Programs—Requirements With Guidance For Use. ASQ/ANSI E4–2014. February 2014. Available from ANSI Webstore https://webstore.ansi.org/.

(2) EPA Requirements for Quality Management Plans. EPA QA/R-2. EPA/240/B-01/002. March 2001, Reissue May 2006. Office of Environmental Information, Washington, DC 20460. http://www.epa.gov/quality/agency-wide-quality-system-documents.

(3) EPA Requirements for Quality Assurance Project Plans for Environmental Data Operations. EPA QA/R-5. EPA/240/B-01/003. March 2001, Reissue May 2006. Office of Environmental Information, Washington, DC 20460. http://www.epa.gov/quality/agency-wide-quality-system-documents.

(4) EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards. EPA–600/R–12/531. May, 2012. Available from U.S. Environmental Protection Agency, National Risk Management Research Laboratory, Research Triangle Park NC 27711. https://www.epa.gov/nscep.

(5) Guidance for the Data Quality Objectives Process. EPA QA/G-4. EPA/240/B-06/001. February, 2006. Office of Environmental Information, Washington, DC 20460. http://www.epa.gov/quality/agency-wide-quality-system-documents.

(6) List of Designated Reference and Equivalent Methods. Available from U.S. Environmental Protection Agency, Center for Environmental Measurements and Modeling, Air Methods and Characterization Division, MD–D205–03, Research Triangle Park, NC 27711. https://www.epa.gov/amtic/air-monitoring-methods-criteria-pollutants.

(7) Transfer Standards for the Calibration of Ambient Air Monitoring Analyzers for Ozone. EPA–454/B–13–004 U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, October, 2013. https://www.epa.gov/sites/default/files/2020-09/documents/ozonetransferstandardguidance.pdf.

(8) Paur, R.J. and F.F. McElroy. Technical Assistance Document for the Calibration of Ambient Ozone Monitors. EPA-600/4-79-057. U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, September, 1979. http://www.epa.gov/ttn/amtic/cpreldoc.html.

(9) Quality Assurance Handbook for Air Pollution Measurement Systems, Volume 1—A Field Guide to Environmental Quality Assurance. EPA–600/R–94/038a. April 1994. Available from U.S. Environmental Protection Agency, ORD Publications Office, Center for Environmental Research Information (CERI), 26 W. Martin Luther King Drive, Cincinnati, OH 45268. https://www.epa.gov/amtic/ambient-air-monitoring-quality-assurance#documents.

(10) Quality Assurance Handbook for Air Pollution Measurement Systems, Volume II: Ambient Air Quality Monitoring Program Quality System Development. EPA–454/B–13–003. https://www.epa.gov/amtic/ambient-air-monitoring-quality-assurance#documents.

(11) National Performance Evaluation Program Standard Operating Procedures. https://www.epa.gov/amtic/ambient-air-monitoring-quality-assurance#npep.

Table B–1 to Section 6 of Appendix B- Minimum Data Assessment Requirements for NAAQS Related Criteria Pollutant PSD Monitors
MethodAssessment methodCoverageMinimum frequencyParameters reportedAQS Assessment type
1 Effective concentration for open path analyzers.
2 Corrected concentration, if applicable for open path analyzers.
3 NPAP, PM 2.5 , PEP, and Pb-PEP must be implemented if data is used for NAAQS decisions otherwise implementation is at PSD reviewing authority discretion.
4 Both primary and collocated sampler values are reported as raw data
5 A maximum number of days should be between these checks to ensure the checks are routinely conducted over time and to limit data impacts resulting from a failed check.
Gaseous Methods (CO, NO 2 , SO 2 , O 3):
One-Point QC for SO 2 , NO 2 , O 3 , COResponse check at concentration 0.005–0.08 ppm SO 2 , NO 2 , O 3 , & 0.5 and 5 ppm COEach analyzerOnce per 2 weeks 5Audit concentration 1 and measured concentration 2One-Point QC.
Quarterly performance evaluation for SO 2 , NO 2 , O 3 , COSee section 3.1.2 of this appendixEach analyzerOnce per quarter 5Audit concentration 1 and measured concentration 2 for each levelAnnual PE.
NPAP for SO 2 , NO 2 , O 3 , CO 3Independent AuditEach primary monitorOnce per yearAudit concentration 1 and measured concentration 2 for each levelNPAP.
Particulate Methods:
Collocated sampling PM 10 , PM 2.5 , PbCollocated samplers1 per PSD Network per pollutantEvery 6 days or every 3 days if daily monitoring requiredPrimary sampler concentration and duplicate sampler concentration 4No Transaction reported as raw data.
Flow rate verification PM 10 , PM 2.5 , PbCheck of sampler flow rateEach samplerOnce every month 5Audit flow rate and measured flow rate indicated by the samplerFlow Rate Verification.
Semi-annual flow rate audit PM 10 , PM 2.5 , PbCheck of sampler flow rate using independent standardEach samplerOnce every 6 months or beginning, middle and end of monitoring 5Audit flow rate and measured flow rate indicated by the samplerSemi Annual Flow Rate Audit.
Pb analysis audits Pb-TSP, Pb-PM 10Check of analytical system with Pb audit strips/filtersAnalyticalEach quarter 5Measured value and audit value (ug Pb/filter) using AQS unit code 077 for parameters: 14129—Pb (TSP) LC FRM/FEM 85129—Pb (TSP) LC Non-FRM/FEM.Pb Analysis Audits.
Performance Evaluation Program PM 2.53Collocated samplers(1) 5 valid audits for PQAOs with <= 5 sites. (2) 8 valid audits for PQAOs with > 5 sites. (3) All samplers in 6 yearsOver all 4 quarters 5Primary sampler concentration and performance evaluation sampler concentrationPEP.
Performance Evaluation Program Pb 3Collocated samplers(1) 1 valid audit and 4 collocated samples for PQAOs, with <=5 sites. (2) 2 valid audits and 6 collocated samples for PQAOs with >5 sites.Over all 4 quarters 5Primary sampler concentration and performance evaluation sampler concentration. Primary sampler concentration and duplicate sampler concentrationPEP.

Appendix C to Part 58—Ambient Air Quality Monitoring Methodology

* * * *

2.0 SLAMS Ambient Air Monitoring Network

2.1 Except as otherwise provided in this appendix, a criteria pollutant monitoring method used for making NAAQS decisions at a SLAMS site must be a reference or equivalent method as defined in §50.1 of this chapter.

2.1.1 Any NO2 FRM or FEM used for making primary NAAQS decisions must be capable of providing hourly averaged concentration data.

2.2 PM 10 , PM 2.5 , or PM 10–2.5 continuous FEMs with existing valid designations may be calibrated using network data from collocated FRM and continuous FEM data under the following provisions:

2.2.1 Data to demonstrate a calibration may include valid data from State, local, or Tribal air agencies or data collected by instrument manufacturers in accordance with 40 CFR 53.35 or other data approved by the Administrator.

2.2.2 A request to update a designated methods calibration may be initiated by the instrument manufacturer of record or the EPA Administrator. State, local, Tribal, and multijusistincional organizations of these entities may work with an instrument manufacture to update a designated method calibration.

2.2.3 Requests for approval of an updated PM 10 , PM 2.5 , or PM 10–2.5 continuous FEM calibration must meet the general submittal requirements of section 2.7 of this appendix.

2.2.4 Data included in the request should represent a subset of representative locations where the method is operational. For cases with a small number of collocated FRMs and continuous FEMs sites, an updated candidate calibration may be limited to the sites where both methods are in use.

2.2.5 Data included in a candidate method updated calibration may include a subset of sites where there is a large grouping of sites in one part of the country such that the updated calibration would be representative of the country as a whole.

2.2.6 Improvements should be national in scope and ideally implemented through a firmware change.

2.2.7 The goal of a change to a methods calibration is to increase the number of sites meeting measurements quality objectives of the method as identified in section 2.3.1.1 of appendix A to this part.

2.2.8 For meeting measurement quality objectives (MQOs), the primary objective is to meet the bias goal as this statistic will likely have the most influence on improving the resultant data collected.

2.2.9 Precision data are to be included, but so long as precision data are at least as good as existing network data or meet the MQO referenced in section 2.2.8 of this appendix, no further work is necessary with precision.

2.2.10 Data available to use may include routine primary and collocated data.

2.2.11 Audit data may be useful to confirm the performance of a candidate updated calibration but should not be used as the basis of the calibration to keep the independence of the audit data.

2.2.12 Data utilized as the basis of the updated calibration may be obtained by accessing EPA's AQS database or future analogous EPA database.

2.2.13 Years of data to use in a candidate method calibration should include two recent years where we are past the certification period for the previous year's data, which is May 1 of each year.

2.2.14 Data from additional years is to be used to test an updated calibration such that the calibration is independent of the test years of interest. Data from these additional years need to minimally demonstrate that a larger number of sites are expected to meet bias MQO especially at sites near the level of the NAAQS for the PM indicator of interest.

2.2.15 Outliers may be excluded using routine outlier tests.

2.2.16 The range of data used in a calibration may include all data available or alternatively use data in the range from the lowest measured data available up to 125% of the 24-hour NAAQS for the PM indicator of interest.

2.2.17 Other improvements to a PM continuous method may be included as part of a recommended update so long as appropriate testing is conducted with input from EPA's Office of Research and Development (ORD) Reference and Equivalent (R&E) Methods Designation program.

2.2.18 EPA encourages early communication by instrument manufacturers considering an update to a PM method. Instrument companies should initiate such dialogue by contacting EPA's ORD R&E Methods Designation program. The contact information for this can be found at 40 CFR 53.4.

2.2.19 Manufacturers interested in improving instrument's performance through an updated factory calibration must submit a written modification request to EPA with supporting rationale. Because the testing requirements and acceptance criteria of any field and/or lab tests can depend upon the nature and extent of the intended modification, applicants should contact EPA's R&E Methods Designation program for guidance prior to development of the modification request.

2.3 Any manual method or analyzer purchased prior to cancellation of its reference or equivalent method designation under §53.11 or §53.16 of this chapter may be used at a SLAMS site following cancellation for a reasonable period of time to be determined by the Administrator.

2.4 [Reserved]

2.4.1 [Reserved]

2.4.2 The monitoring agency wishing to use an ARM must develop and implement appropriate quality assurance procedures for the method. Additionally, the following procedures are required for the method:

2.4.2.1 The ARM must be consistently operated throughout the network. Exceptions to a consistent operation must be approved according to section 2.8 of this appendix;

2.4.2.2 The ARM must be operated on an hourly sampling frequency capable of providing data suitable for aggregation into daily 24-hour average measurements;

2.4.2.3 The ARM must use an inlet and separation device, as needed, that are already approved in either the reference method identified in appendix L to part 50 of this chapter or under part 53 of this chapter as approved for use on a PM 2.5 reference or equivalent method. The only exceptions to this requirement are those methods that by their inherent measurement principle may not need an inlet or separation device that segregates the aerosol; and

2.4.2.4 The ARM must be capable of providing for flow audits, unless by its inherent measurement principle, measured flow is not required. These flow audits are to be performed on the frequency identified in appendix A to this part.

2.4.2.5 If data transformations are used, they must be described in the monitoring agencies Quality Assurance Project plan (or addendum to QAPP). The QAPP shall describe how often (e.g., quarterly, yearly) and under what provisions the data transformation will be updated. For example, not meeting the data quality objectives for a site over a season or year may be cause for recalculating a data transformation, but by itself would not be cause for invalidating the data. Data transformations must be applied prospectively, i.e., in real-time or near real-time, to the data output from the PM 2.5 continuous method. See reference 7 of this appendix.

2.4.3 The monitoring agency wishing to use the method must develop and implement appropriate procedures for assessing and reporting the precision and accuracy of the method comparable to the procedures set forth in appendix A of this part for designated reference and equivalent methods.

2.4.4 Assessments of data quality shall follow the same frequencies and calculations as required under section 3 of appendix A to this part with the following exceptions:

2.4.4.1 Collocation of ARM with FRM/FEM samplers must be maintained at a minimum of 30 percent of the required SLAMS sites with a minimum of 1 per network;

2.4.4.2 All collocated FRM/FEM samplers must maintain a sample frequency of at least 1 in 6 sample days;

2.4.4.3 Collocated FRM/FEM samplers shall be located at the design value site, with the required FRM/FEM samplers deployed among the largest MSA/CSA in the network, until all required FRM/FEM are deployed; and

2.4.4.4 Data from collocated FRM/FEM are to be substituted for any calendar quarter that an ARM method has incomplete data.

2.4.4.5 Collocation with an ARM under this part for purposes of determining the coefficient of variation of the method shall be conducted at a minimum of 7.5 percent of the sites with a minimum of 1 per network. This is consistent with the requirements in appendix A to this part for one-half of the required collocation of FRM/FEM (15 percent) to be collocated with the same method.

2.4.4.6 Assessments of bias with an independent audit of the total measurement system shall be conducted with the same frequency as an FEM as identified in appendix A to this part.

2.4.5 Request for approval of a candidate ARM, that is not already approved in another agency's network under this section, must meet the general submittal requirements of section 2.7 of this appendix. Requests for approval under this section when an ARM is already approved in another agency's network are to be submitted to the EPA Regional Administrator. Requests for approval under section 2.4 of this appendix must include the following requirements:

2.4.5.1 A clear and unique description of the site(s) at which the candidate ARM will be used and tested, and a description of the nature or character of the site and the particulate matter that is expected to occur there.

2.4.5.2 A detailed description of the method and the nature of the sampler or analyzer upon which it is based.

2.4.5.3 A brief statement of the reason or rationale for requesting the approval.

2.4.5.4 A detailed description of the quality assurance procedures that have been developed and that will be implemented for the method.

2.4.5.5 A detailed description of the procedures for assessing the precision and accuracy of the method that will be implemented for reporting to AQS.

2.4.5.6 Test results from the comparability tests as required in section 2.4.1 through 2.4.1.4 of this appendix.

2.4.5.7 Such further supplemental information as may be necessary or helpful to support the required statements and test results.

2.4.6 Within 120 days after receiving a request for approval of the use of an ARM at a particular site or network of sites under section 2.4 of this appendix, the Administrator will approve or disapprove the method by letter to the person or agency requesting such approval. When appropriate for methods that are already approved in another SLAMS network, the EPA Regional Administrator has approval/disapproval authority. In either instance, additional information may be requested to assist with the decision.

2.5 [Reserved]

2.6 Use of Methods With Higher, Nonconforming Ranges in Certain Geographical Areas.

2.6.1 [Reserved]

2.6.2 An analyzer may be used (indefinitely) on a range which extends to concentrations higher than two times the upper limit specified in table B-1 of part 53 of this chapter if:

2.6.2.1 The analyzer has more than one selectable range and has been designated as a reference or equivalent method on at least one of its ranges, or has been approved for use under section 2.5 (which applies to analyzers purchased before February 18, 1975);

2.6.2.2 The pollutant intended to be measured with the analyzer is likely to occur in concentrations more than two times the upper range limit specified in table B-1 of part 53 of this chapter in the geographical area in which use of the analyzer is proposed; and

2.6.2.3 The Administrator determines that the resolution of the range or ranges for which approval is sought is adequate for its intended use. For purposes of this section (2.6), “resolution” means the ability of the analyzer to detect small changes in concentration.

2.6.3 Requests for approval under section 2.6.2 of this appendix must meet the submittal requirements of section 2.7. Except as provided in section 2.7.3 of this appendix, each request must contain the information specified in section 2.7.2 in addition to the following:

2.6.3.1 The range or ranges proposed to be used;

2.6.3.2 Test data, records, calculations, and test results as specified in section 2.7.2.2 of this appendix for each range proposed to be used;

2.6.3.3 An identification and description of the geographical area in which use of the analyzer is proposed;

2.6.3.4 Data or other information demonstrating that the pollutant intended to be measured with the analyzer is likely to occur in concentrations more than two times the upper range limit specified in table B-1 of part 53 of this chapter in the geographical area in which use of the analyzer is proposed; and

2.6.3.5 Test data or other information demonstrating the resolution of each proposed range that is broader than that permitted by section 2.5 of this appendix.

2.6.4 Any person who has obtained approval of a request under this section (2.6.2) shall assure that the analyzer for which approval was obtained is used only in the geographical area identified in the request and only while operated in the range or ranges specified in the request.

2.7 Requests for Approval; Withdrawal of Approval.

2.7.1 Requests for approval under sections 2.2, 2.4, 2.6.2, or 2.8 of this appendix must be submitted to: Director, Center for Environmental Measurement and Modeling, Reference and Equivalent Methods Designation Program (MD–D205–03), U.S. Environmental Protection Agency, P.O. Box 12055, Research Triangle Park, North Carolina 27711.

2.7.2 Except as provided in section 2.7.3 of this appendix, each request must contain:

2.7.2.1 A statement identifying the analyzer (e.g., by serial number) and the method of which the analyzer is representative (e.g., by manufacturer and model number); and

2.7.2.2 Test data, records, calculations, and test results for the analyzer (or the method of which the analyzer is representative) as specified in subpart B, subpart C, or both (as applicable) of part 53 of this chapter.

2.7.3 A request may concern more than one analyzer or geographical area and may incorporate by reference any data or other information known to EPA from one or more of the following:

2.7.3.1 An application for a reference or equivalent method determination submitted to EPA for the method of which the analyzer is representative, or testing conducted by the applicant or by EPA in connection with such an application;

2.7.3.2 Testing of the method of which the analyzer is representative at the initiative of the Administrator under §53.7 of this chapter; or

2.7.3.3 A previous or concurrent request for approval submitted to EPA under this section (2.7).

2.7.4 To the extent that such incorporation by reference provides data or information required by this section (2.7) or by sections 2.4, 2.5, or 2.6 of this appendix, independent data or duplicative information need not be submitted.

2.7.5 After receiving a request under this section (2.7), the Administrator may request such additional testing or information or conduct such tests as may be necessary in his judgment for a decision on the request.

2.7.6 If the Administrator determines, on the basis of any available information, that any of the determinations or statements on which approval of a request under this section was based are invalid or no longer valid, or that the requirements of section 2.4, 2.5, or 2.6, as applicable, have not been met, he/she may withdraw the approval after affording the person who obtained the approval an opportunity to submit information and arguments opposing such action.

2.8 Modifications of Methods by Users.

2.8.1 Except as otherwise provided in this section, no reference method, equivalent method, or ARM may be used in a SLAMS network if it has been modified in a manner that could significantly alter the performance characteristics of the method without prior approval by the Administrator. For purposes of this section, “alternative method” means an analyzer, the use of which has been approved under section 2.4, 2.5, or 2.6 of this appendix or some combination thereof.

2.8.2 Requests for approval under this section (2.8) must meet the submittal requirements of sections 2.7.1 and 2.7.2.1 of this appendix.

2.8.3 Each request submitted under this section (2.8) must include:

2.8.3.1 A description, in such detail as may be appropriate, of the desired modification;

2.8.3.2 A brief statement of the purpose(s) of the modification, including any reasons for considering it necessary or advantageous;

2.8.3.3 A brief statement of belief concerning the extent to which the modification will or may affect the performance characteristics of the method; and

2.8.3.4 Such further information as may be necessary to explain and support the statements required by sections 2.8.3.2 and 2.8.3.3.

2.8.4 The Administrator will approve or disapprove the modification by letter to the person or agency requesting such approval within 75 days after receiving a request for approval under this section and any further information that the applicant may be asked to provide.

2.8.5 A temporary modification that could alter the performance characteristics of a reference, equivalent, or ARM may be made without prior approval under this section if the method is not functioning or is malfunctioning, provided that parts necessary for repair in accordance with the applicable operation manual cannot be obtained within 45 days. Unless such temporary modification is later approved under section 2.8.4 of this appendix, the temporarily modified method shall be repaired in accordance with the applicable operation manual as quickly as practicable but in no event later than 4 months after the temporary modification was made, unless an extension of time is granted by the Administrator. Unless and until the temporary modification is approved, air quality data obtained with the method as temporarily modified must be clearly identified as such when submitted in accordance with §58.16 and must be accompanied by a report containing the information specified in section 2.8.3 of this appendix. A request that the Administrator approve a temporary modification may be submitted in accordance with sections 2.8.1 through 2.8.4 of this appendix. In such cases the request will be considered as if a request for prior approval had been made.

2.9 Use of IMPROVE Samplers at a SLAMS Site. “IMPROVE” samplers may be used in SLAMS for monitoring of regional background and regional transport concentrations of fine particulate matter. The IMPROVE samplers were developed for use in the Interagency Monitoring of Protected Visual Environments (IMPROVE) network to characterize all of the major components and many trace constituents of the particulate matter that impair visibility in Federal Class I Areas. Descriptions of the IMPROVE samplers and the data they collect are available in references 4, 5, and 6 of this appendix.

2.10 Use of Pb-PM10at SLAMS Sites.

2.10.1 The EPA Regional Administrator may approve the use of a Pb-PM 10 FRM or Pb-PM 10 FEM sampler in lieu of a Pb-TSP sampler as part of the network plan required under part 58.10(a)(4) in the following cases.

2.10.1.1 Pb-PM 10 samplers can be approved for use at the non-source-oriented sites required under paragraph 4.5(b) of Appendix D to part 58 if there is no existing monitoring data indicating that the maximum arithmetic 3-month mean Pb concentration (either Pb-TSP or Pb-PM 10) at the site was equal to or greater than 0.10 micrograms per cubic meter during the previous 3 years.

2.10.1.2 Pb-PM 10 samplers can be approved for use at source-oriented sites required under paragraph 4.5(a) if the monitoring agency can demonstrate (through modeling or historic monitoring data from the last 3 years) that Pb concentrations (either Pb-TSP or Pb-PM 10) will not equal or exceed 0.10 micrograms per cubic meter on an arithmetic 3-month mean and the source is expected to emit a substantial majority of its Pb in the fraction of PM with an aerodynamic diameter of less than or equal to 10 micrometers.

2.10.2 The approval of a Pb-PM 10 sampler in lieu of a Pb-TSP sampler as allowed for in paragraph 2.10.1 above will be revoked if measured Pb-PM 10 concentrations equal or exceed 0.10 micrograms per cubic meter on an arithmetic 3-month mean. Monitoring agencies will have up to 6 months from the end of the 3-month period in which the arithmetic 3-month Pb-PM 10 mean concentration equaled or exceeded 0.10 micrograms per cubic meter to install and begin operation of a Pb-TSP sampler at the site.

Appendix D to Part 58—Network Design Criteria for Ambient Air Quality Monitoring

1. Monitoring Objectives and Spatial Scales

The purpose of this appendix is to describe monitoring objectives and general criteria to be applied in establishing the required SLAMS ambient air quality monitoring stations and for choosing general locations for additional monitoring sites. This appendix also describes specific requirements for the number and location of FRM and FEM sites for specific pollutants, NCore multipollutant sites, PM 10 mass sites, PM 2.5 mass sites, chemically-speciated PM 2.5 sites, and O 3 precursor measurements sites (PAMS). These criteria will be used by EPA in evaluating the adequacy of the air pollutant monitoring networks.

1.1 (b) Support compliance with ambient air quality standards and emissions strategy development. Data from FRM and FEM monitors for NAAQS pollutants will be used for comparing an area's air pollution levels against the NAAQS. Data from monitors of various types can be used in the development of attainment and maintenance plans. SLAMS, and especially NCore station data, will be used to evaluate the regional air quality models used in developing emission strategies, and to track trends in air pollution abatement control measures' impact on improving air quality. In monitoring locations near major air pollution sources, source-oriented monitoring data can provide insight into how well industrial sources are controlling their pollutant emissions.

* * * * *

4.7.1 (a) State and where applicable, local, agencies must operate the minimum number of required PM 2.5 SLAMS sites listed in table D–5 to this appendix. The NCore sites are expected to complement the PM 2.5 data collection that takes place at non-NCore SLAMS sites, and both types of sites can be used to meet the minimum PM 2.5 network requirements. For many State and local networks, the total number of PM 2.5 sites needed to support the basic monitoring objectives of providing air pollution data to the general public in a timely manner, support compliance with ambient air quality standards and emission strategy development, and support for air pollution research studies will include more sites than the minimum numbers required in table D–5 to this appendix. Deviations from these PM 2.5 monitoring requirements must be approved by the EPA Regional Administrator.

* * * * *

(b)(3) For areas with additional required SLAMS, a monitoring station is to be sited in an at-risk community with poor air quality, particularly where there are anticipated effects from sources in the area (e.g., a major industrial area, point source(s), port, rail yard, airport, or other transportation facility or corridor).

* * * * *

4.7.2 Requirement for Continuous PM 2.5 Monitoring. The State, or where appropriate, local agencies must operate continuous PM 2.5 analyzers equal to at least one-half (round up) the minimum required sites listed in table D–5 to this appendix. At least one required continuous analyzer in each MSA must be collocated with one of the required FRM/FEM monitors, unless at least one of the required FRM/FEM monitors is itself a continuous FEM monitor in which case no collocation requirement applies. State and local air monitoring agencies must use methodologies and quality assurance/quality control (QA/QC) procedures approved by the EPA Regional Administrator for these required continuous analyzers.

Appendix E to Part 58—Probe and Monitoring Path Siting Criteria for Ambient Air Quality Monitoring

1. Introduction

2. Monitors and Samplers with Probe Inlets

3. Open Path Analyzers

4. Waiver Provisions

5. References

1. Introduction

1.1 Applicability

(a) This appendix contains specific location criteria applicable to ambient air quality monitoring probes, inlets, and optical paths of SLAMS, NCore, PAMS, and other monitor types whose data are intended to be used to determine compliance with the NAAQS. These specific location criteria are relevant after the general location has been selected based on the monitoring objectives and spatial scale of representation discussed in appendix D to this part. Monitor probe material and sample residence time requirements are also included in this appendix. Adherence to these siting criteria is necessary to ensure the uniform collection of compatible and comparable air quality data.

(b) The probe and monitoring path siting criteria discussed in this appendix must be followed to the maximum extent possible. It is recognized that there may be situations where some deviation from the siting criteria may be necessary. In any such case, the reasons must be thoroughly documented in a written request for a waiver that describes whether the resulting monitoring data will be representative of the monitoring area and how and why the proposed or existing siting must deviate from the criteria. This documentation should help to avoid later questions about the validity of the resulting monitoring data. Conditions under which the EPA would consider an application for waiver from these siting criteria are discussed in section 4 of this appendix.

(c) The pollutant-specific probe and monitoring path siting criteria generally apply to all spatial scales except where noted otherwise. Specific siting criteria that are phrased with “shall” or “must” are defined as requirements and exceptions must be granted through the waiver provisions. However, siting criteria that are phrased with “should” are defined as goals to meet for consistency but are not requirements.

2. Monitors and Samplers with Probe Inlets

2.1 Horizontal and Vertical Placement

(a) For O 3 and SO 2 monitoring, and for neighborhood or larger spatial scale Pb, PM 10 , PM 10–2.5 , PM 2.5 , NO 2 , and CO sites, the probe must be located greater than or equal to 2.0 meters and less than or equal to 15 meters above ground level.

(b) Middle scale CO and NO 2 monitors must have sampler inlets greater than or equal to 2.0 meters and less than or equal to 15 meters above ground level.

(c) Middle scale PM 10–2.5 sites are required to have sampler inlets greater than or equal to 2.0 meters and less than or equal to 7.0 meters above ground level.

(d) Microscale Pb, PM 10 , PM 10–2.5 , and PM 2.5 sites are required to have sampler inlets greater than or equal to 2.0 meters and less than or equal to 7.0 meters above ground level.

(e) Microscale near-road NO 2 monitoring sites are required to have sampler inlets greater than or equal to 2.0 meters and less than or equal to 7.0 meters above ground level.

(f) The probe inlets for microscale carbon monoxide monitors that are being used to measure concentrations near roadways must be greater than or equal to 2.0 meters and less than or equal to 7.0 meters above ground level. Those probe inlets for microscale carbon monoxide monitors measuring concentrations near roadways in downtown areas or urban street canyons must be greater than or equal to 2.5 meters and less than or equal to 3.5 meters above ground level. The probe must be at least 1.0 meter vertically or horizontally away from any supporting structure, walls, parapets, penthouses, etc ., and away from dusty or dirty areas. If the probe is located near the side of a building or wall, then it should be located on the windward side of the building relative to the prevailing wind direction during the season of highest concentration potential for the pollutant being measured.

2.2 Spacing From Minor Sources

(a) It is important to understand the monitoring objective for a particular site in order to interpret this requirement. Local minor sources of a primary pollutant, such as SO 2 , lead, or particles, can cause high concentrations of that particular pollutant at a monitoring site. If the objective for that monitoring site is to investigate these local primary pollutant emissions, then the site will likely be properly located nearby. This type of monitoring site would, in all likelihood, be a microscale-type of monitoring site. If a monitoring site is to be used to determine air quality over a much larger area, such as a neighborhood or city, a monitoring agency should avoid placing a monitor probe inlet near local, minor sources, because a plume from a local minor source should not be allowed to inappropriately impact the air quality data collected at a site. Particulate matter sites should not be located in an unpaved area unless there is vegetative ground cover year-round, so that the impact of windblown dusts will be kept to a minimum.

(b) Similarly, local sources of nitric oxide (NO) and ozone-reactive hydrocarbons can have a scavenging effect causing unrepresentatively low concentrations of O 3 in the vicinity of probes for O 3 . To minimize these potential interferences from nearby minor sources, the probe inlet should be placed at a distance from furnace or incineration flues or other minor sources of SO 2 or NO. The separation distance should take into account the heights of the flues, type of waste or fuel burned, and the sulfur content of the fuel.

2.3 Spacing From Obstructions

(a) Obstacles may scavenge SO 2 , O 3 , or NO 2 , and can act to restrict airflow for any pollutant. To avoid this interference, the probe inlet must have unrestricted airflow pursuant to paragraph (b) of this section and should be located at a distance from obstacles. The horizontal distance from the obstacle to the probe inlet must be at least twice the height that the obstacle protrudes above the probe inlet. An obstacle that does not meet the minimum distance requirement is considered an obstruction that restricts airflow to the probe inlet. The EPA does not generally consider objects or obstacles such as flag poles or site towers used for NOy convertors and meteorological sensors, etc. to be deemed obstructions.

(b) A probe inlet located near or along a vertical wall is undesirable because air moving along the wall may be subject to removal mechanisms. A probe inlet must have unrestricted airflow with no obstructions (as defined in paragraph (a) of this section) in a continuous arc of at least 270 degrees. An unobstructed continuous arc of 180 degrees is allowable when the applicable network design criteria specified in appendix D of this part require monitoring in street canyons and the probe is located on the side of a building. This arc must include the predominant wind direction for the season of greatest pollutant concentration potential. For particle sampling, there must be a minimum of 2.0 meters of horizontal separation from walls, parapets, and structures for rooftop site placement.

(c) A sampling station with a probe inlet located closer to an obstacle than required by the criteria in this section should be classified as middle scale or microscale, rather than neighborhood or urban scale, since the measurements from such a station would more closely represent these smaller scales.

(d) For near-road monitoring stations, the monitor probe shall have an unobstructed air flow, where no obstacles exist at or above the height of the monitor probe, between the monitor probe and the outside nearest edge of the traffic lanes of the target road segment.

2.4 Spacing From Trees

(a) Trees can provide surfaces for SO 2 , O 3 , or NO 2 adsorption or reactions and surfaces for particle deposition. Trees can also act as obstructions in locations where the trees are between the air pollutant sources or source areas and the monitoring site and where the trees are of a sufficient height and leaf canopy density to interfere with the normal airflow around the probe inlet. To reduce this possible interference/obstruction, the probe inlet should be 20 meters or more from the drip line of trees and must be at least 10 meters from the drip line of trees. If a tree or group of trees is an obstacle, the probe inlet must meet the distance requirements of section 2.3 of this appendix.

(b) The scavenging effect of trees is greater for O 3 than for other criteria pollutants. Monitoring agencies must take steps to consider the impact of trees on ozone monitoring sites and take steps to avoid this problem.

(c) Beginning January 1, 2024, microscale sites of any air pollutant shall have no trees or shrubs located at or above the line-of-sight fetch between the probe and the source under investigation, e.g., a roadway or a stationary source.

2.5 Spacing From Roadways

Table E–1 to Section 2.5 of Appendix E—Minimum Separation Distance Between Roadways and Probes for Monitoring Neighborhood and Urban Scale Ozone (O 3) and Oxides of Nitrogen (NO, NO 2 , NO X , NO y)
Roadway average daily traffic, vehicles per dayMinimum distance 1 3 (meters)Minimum distance 1 2 3 (meters)
1 Distance from the edge of the nearest traffic lane. The distance for intermediate traffic counts should be interpolated from the table values based on the actual traffic count./TNOTE>
2 Applicable for ozone monitors whose placement was not approved as of December 18, 2006.
3 All distances listed are expressed as having 2 significant figures. When rounding is performed to assess compliance with these siting requirements, the distance measurements will be rounded such as to retain at least two significant figures.
≤1,0001010
10,0001020
15,0002030
20,0003040
40,0005060
70,000100100
≥110,000250250

2.5.1 Spacing for Ozone Probes

In siting an O 3 monitor, it is important to minimize destructive interferences from sources of NO, since NO readily reacts with O 3 . Table E–1 of this appendix provides the required minimum separation distances between a roadway and a probe inlet for various ranges of daily roadway traffic. A sampling site with a monitor probe located closer to a roadway than allowed by the Table E–1 requirements should be classified as middle scale or microscale, rather than neighborhood or urban scale, since the measurements from such a site would more closely represent these smaller scales.

2.5.2 Spacing for Carbon Monoxide Probes

(a) Near-road microscale CO monitoring sites, including those located in downtown areas, urban street canyons, and other near-road locations such as those adjacent to highly trafficked roads, are intended to provide a measurement of the influence of the immediate source on the pollution exposure on the adjacent area.

(b) Microscale CO monitor probe inlets in downtown areas or urban street canyon locations shall be located a minimum distance of 2.0 meters and a maximum distance of 10 meters from the edge of the nearest traffic lane.

(c) Microscale CO monitor probe inlets in downtown areas or urban street canyon locations shall be located at least 10 meters from an intersection, preferably at a midblock location. Midblock locations are preferable to intersection locations because intersections represent a much smaller portion of downtown space than do the streets between them. Pedestrian exposure is probably also greater in street canyon/corridors than at intersections.

(d) Neighborhood scale CO monitor probe inlets in downtown areas or urban street canyon locations shall be located according to the requirements in Table E–2 of this appendix.

Table E–2 to Section 2.5.2 of Appendix E—Minimum Separation Distance Between Roadways and Probes for Monitoring Neighborhood Scale Carbon Monoxide
Roadway average daily traffic, vehicles per dayMinimum distance (meters)
Distance from the edge of the nearest traffic lane. The distance for intermediate traffic counts should be interpolated from the table values based on the actual traffic count.
All distances listed are expressed as having 2 significant figures. When rounding is performed to assess compliance with these siting requirements, the distance measurements will be rounded such as to retain at least two significant figures.
≤10,00010
15,00025
20,00045
30,00080
40,000115
50,000135
≥60,000150

2.5.3 Spacing for Particulate Matter (PM , PM , PM , Pb) Inlets

(a) Since emissions associated with the operation of motor vehicles contribute to urban area particulate matter ambient levels, spacing from roadway criteria are necessary for ensuring national consistency in PM sampler siting.

(b) The intent is to locate localized hot-spot sites in areas of highest concentrations, whether it be caused by mobile or multiple stationary sources. If the area is primarily affected by mobile sources and the maximum concentration area(s) is judged to be a traffic corridor or street canyon location, then the monitors should be located near roadways with the highest traffic volume and at separation distances most likely to produce the highest concentrations. For microscale traffic corridor sites, the location must be greater than or equal 5.0 meters and less than or equal to 15 meters from the major roadway. For the microscale street canyon site, the location must be greater than or equal 2.0 meters and less than or equal to 10 meters from the roadway. For the middle scale site, a range of acceptable distances from the roadway is shown in Figure E–1 of this appendix. This figure also includes separation distances between a roadway and neighborhood or larger scale sites by default. Any PM probe inlet at a site, 2.0 to 15 meters high, and further back than the middle scale requirements will generally be neighborhood, urban or regional scale. For example, according to Figure E–1 of this appendix, if a PM sampler is primarily influenced by roadway emissions and that sampler is set back 10 meters from a 30,000 ADT (average daily traffic) road, the site should be classified as microscale, if the sampler's inlet height is between 2.0 and 7.0 meters. If the sampler's inlet height is between 7.0 and 15 meters, the site should be classified as middle scale. If the sampler is 20 meters from the same road, it will be classified as middle scale; if 40 meters, neighborhood scale; and if 110 meters, an urban scale.



2.5.4 Spacing for Nitrogen Dioxide (NO) Probes

(a) In siting near-road NO 2 monitors as required in section 4.3.2 of appendix D of this part, the monitor probe shall be as near as practicable to the outside nearest edge of the traffic lanes of the target road segment but shall not be located at a distance greater than 50 meters, in the horizontal, from the outside nearest edge of the traffic lanes of the target road segment. Where possible, the near-road NO 2 monitor probe should be within 20 meters of the target road segment.

(b) In siting NO 2 monitors for neighborhood and larger scale monitoring, it is important to minimize near-road influences. Table E–1 of this appendix provides the required minimum separation distances between a roadway and a probe inlet for various ranges of daily roadway traffic. A site with a monitor probe located closer to a roadway than allowed by the Table E–1 requirements should be classified as microscale or middle scale rather than neighborhood or urban scale.

2.6 Probe Material and Pollutant Sampler Residence Time

(a) For the reactive gases (SO 2 , NO 2 , and O 3), approved probe materials must be used for monitors. Studies 25 34 have been conducted to determine the suitability of materials such as polypropylene, polyethylene, polyvinyl chloride, Tygon®, aluminum, brass, stainless steel, copper, borosilicate glass, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), perfluoroalkoxy (PFA), and fluorinated ethylene propylene (FEP) for use as intake sampling lines. Of the above materials, only borosilicate glass, PVDF, PTFE, PFA, and FEP have been found to be acceptable for use as intake sampling lines for all the reactive gaseous pollutants. Furthermore, the EPA 25 has specified borosilicate glass, FEP Teflon®, or their equivalents as the only acceptable probe materials for delivering test atmospheres in the determination of reference or equivalent methods. Therefore, borosilicate glass, PVDF, PTFE, PFA, FEP, or their equivalents must be the only material in the sampling train (from probe inlet to the back of the monitor) that can be in contact with the ambient air sample for reactive gas monitors. Nafion TM , which is composed primarily of PTFE, can be considered equivalent to PTFE; it has been shown in tests to exhibit virtually no loss of ozone at 20-second residence times. 35

(b) For volatile organic compound (VOC) monitoring at PAMS, FEP Teflon® is unacceptable as the probe material because of VOC adsorption and desorption reactions on the FEP Teflon®. Borosilicate glass, stainless steel, or their equivalents are the acceptable probe materials for VOC and carbonyl sampling. Care must be taken to ensure that the sample residence time is kept to 20 seconds or less.

(c) No matter how nonreactive the sampling probe material is initially, after a period of use, reactive particulate matter is deposited on the probe walls. Therefore, the time it takes the gas to transfer from the probe inlet to the sampling device is critical. Ozone in the presence of nitrogen oxide (NO) will show significant losses, even in the most inert probe material, when the residence time exceeds 20 seconds. 26 Other studies 27 28 indicate that a 10-second or less residence time is easily achievable. Therefore, sampling probes for all reactive gas monitors for SO 2 , NO 2 , and O 3 must have a sample residence time less than 20 seconds.

2.7 Summary

Table E–3 of this appendix presents a summary of the general requirements for probe siting criteria with respect to distances and heights. Table E–3 requires different elevation distances above the ground for the various pollutants. The discussion in this appendix for each of the pollutants describes reasons for elevating the monitor or probe inlet. The differences in the specified range of heights are based on the vertical concentration gradients. For source oriented and near-road monitors, the gradients in the vertical direction are very large for the microscale, so a small range of heights are used. The upper limit of 15 meters is specified for the consistency between pollutants and to allow the use of a single manifold for monitoring more than one pollutant.

Table E–3 to Section 2.7 of Appendix E—Summary of Probe Siting Criteria
PollutantScale 9Height from ground to probe 8 (meters)Horizontal or vertical distance from supporting structures 18 to probe inlet (meters)Distance from drip line of trees to probe 8 (meters)Distance from roadways to probe 8 (meters)
N/A—Not applicable.
1 When a probe is located on a rooftop, this separation distance is in reference to walls, parapets, or penthouses located on the roof.
2 Should be greater than 20 meters from the dripline of tree(s) and must be 10 meters from the dripline.
3 Distance from sampler or probe inlet to obstacle, such as a building, must be at least twice the height the obstacle protrudes above the sampler or probe inlet. Sites not meeting this criterion may be classified as microscale or middle scale (see paragraphs 2.3(a) and 2.3(c)).
4 Must have unrestricted airflow in a continuous arc of at least 270 degrees around the probe or sampler; 180 degrees if the probe is on the side of a building or a wall for street canyon monitoring.
5 The probe or sampler should be away from minor sources, such as furnace or incineration flues. The separation distance is dependent on the height of the minor source emission point(s), the type of fuel or waste burned, and the quality of the fuel (sulfur, ash, or lead content). This criterion is designed to avoid undue influences from minor sources.
6 For microscale CO monitoring sites, the probe must be ≥10 meters from a street intersection and preferably at a midblock location.
7 Collocated monitor inlets must be within 4.0 meters of each other and at least 2.0 meters apart for flow rates greater than 200 liters/min or at least 1.0 meter apart for samplers having flow rates less than 200 liters/min to preclude airflow interference, unless a waiver has been granted by the Regional Administrator pursuant to paragraph 3.3.4.2(c) of appendix A of part 58. For PM 2.5 , collocated monitor inlet heights should be within 1.0 meter of each other vertically.
8 All distances listed are expressed as having 2 significant figures. When rounding is performed to assess compliance with these siting requirements, the distance measurements will be rounded such as to retain at least two significant figures.
9 See section 1.2 of appendix D for definitions of monitoring scales.
SO 22 3 4 5Middle, Neighborhood, Urban, and Regional2.0–15≥1.0≥10N/A.
COMicro [downtown or street canyon sites]2.5–3.52.0–10 for downtown areas or street canyon microscale.
Micro [Near-Road sites]2.0–7.0≥1.0≥10≤50 for near-road microscale.
Middle and Neighborhood2.0–15See Table E–2 of this appendix for middle and neighborhood scales.
O 3Middle, Neighborhood, Urban, and Regional2.0–15≥1.0≥10See Table E–1.
Micro2.0–7.0≤50 for near-road micro-scale.
NO 2Middle, Neighborhood, Urban, and Regional2.0–15≥1.0≥10See Table E–1.
PAMS Ozone precursorsNeighborhood and Urban2.0–15≥1.0≥10See Table E–1.
PM, PbMicro2.0–7.0
Middle, Neighborhood, Urban and Regional2.0–15≥2.0 (horizontal distance only)≥10See Figure E–1.

3. Open Path Analyzers

3.1 Horizontal and Vertical Placement

(a) For all O 3 and SO 2 monitoring sites and for neighborhood or larger spatial scale NO 2 , and CO sites, at least 80 percent of the monitoring path must be located greater than or equal 2.0 meters and less than or equal to 15 meters above ground level.

(b) Middle scale CO and NO 2 sites must have monitoring paths greater than or equal 2.0 meters and less than or equal to 15 meters above ground level.

(c) Microscale near-road monitoring sites are required to have monitoring paths greater than or equal 2.0 meters and less than or equal to 7.0 meters above ground level.

(d) For microscale carbon monoxide monitors that are being used to measure concentrations near roadways, the monitoring path must be greater than or equal 2.0 meters and less than or equal to 7.0 meters above ground level. If the microscale carbon monoxide monitors measuring concentrations near roadways are in downtown areas or urban street canyons, the monitoring path must be greater than or equal 2.5 meters and less than or equal to 3.5 meters above ground level and at least 90 percent of the monitoring path must be at least 1.0 meter vertically or horizontally away from any supporting structure, walls, parapets, penthouses, etc., and away from dusty or dirty areas. If a significant portion of the monitoring path is located near the side of a building or wall, then it should be located on the windward side of the building relative to the prevailing wind direction during the season of highest concentration potential for the pollutant being measured.

3.2 Spacing From Minor Sources

(a) It is important to understand the monitoring objective for a particular site in order to interpret this requirement. Local minor sources of a primary pollutant, such as SO 2 can cause high concentrations of that particular pollutant at a monitoring site. If the objective for that monitoring site is to investigate these local primary pollutant emissions, then the site will likely be properly located nearby. This type of monitoring site would, in all likelihood, be a microscale type of monitoring site. If a monitoring site is to be used to determine air quality over a much larger area, such as a neighborhood or city, a monitoring agency should avoid placing a monitoring path near local, minor sources, because a plume from a local minor source should not be allowed to inappropriately impact the air quality data collected at a site.

(b) Similarly, local sources of nitric oxide (NO) and ozone-reactive hydrocarbons can have a scavenging effect causing unrepresentatively low concentrations of O 3 in the vicinity of monitoring paths for O 3 . To minimize these potential interferences from nearby minor sources, at least 90 percent of the monitoring path should be at a distance from furnace or incineration flues or other minor sources of SO 2 or NO. The separation distance should take into account the heights of the flues, type of waste or fuel burned, and the sulfur content of the fuel.

3.3 Spacing From Obstructions

(a) Obstacles may scavenge SO 2 , O 3 , or NO 2 , and can act to restrict airflow for any pollutant. To avoid this interference, at least 90 percent of the monitoring path must have unrestricted airflow and should be located at a distance from obstacles. The horizontal distance from the obstacle to the monitoring path must be at least twice the height that the obstacle protrudes above the monitoring path. An obstacle that does not meet the minimum distance requirement is considered an obstruction that restricts airflow to the monitoring path. The EPA does not generally consider objects or obstacles such as flag poles or site towers used for NOy convertors and meteorological sensors, etc. to be deemed obstructions.

(b) A monitoring path located near or along a vertical wall is undesirable because air moving along the wall may be subject to removal mechanisms. At least 90 percent of the monitoring path for open path analyzers must have unrestricted airflow with no obstructions (as defined in paragraph (a) of this section) in a continuous arc of at least 270 degrees. An unobstructed continuous arc of 180 degrees is allowable when the applicable network design criteria specified in appendix D of this part require monitoring in street canyons and the monitoring path is located on the side of a building. This arc must include the predominant wind direction for the season of greatest pollutant concentration potential.

(c) Special consideration must be given to the use of open path analyzers given their inherent potential sensitivity to certain types of interferences and optical obstructions. A monitoring path must be clear of all trees, brush, buildings, plumes, dust, or other optical obstructions, including potential obstructions that may move due to wind, human activity, growth of vegetation, etc. Temporary optical obstructions, such as rain, particles, fog, or snow, should be considered when siting an open path analyzer. Any of these temporary obstructions that are of sufficient density to obscure the light beam will negatively affect the ability of the open path analyzer to continuously measure pollutant concentrations. Transient, but significant obscuration of especially longer measurement paths, could occur as a result of certain meteorological conditions (e.g., heavy fog, rain, snow) and/or aerosol levels that are of a sufficient density to prevent the open path analyzer's light transmission. If certain compensating measures are not otherwise implemented at the onset of monitoring (e.g., shorter path lengths, higher light source intensity), data recovery during periods of greatest primary pollutant potential could be compromised. For instance, if heavy fog or high particulate levels are coincident with periods of projected NAAQS-threatening pollutant potential, the representativeness of the resulting data record in reflecting maximum pollution concentrations may be substantially impaired despite the fact that the site may otherwise exhibit an acceptable, even exceedingly high, overall valid data capture rate.

(d) A sampling station with a monitoring path located closer to an obstacle than required by the criteria in this section should be classified as middle scale or microscale, rather than neighborhood or urban scale, since the measurements from such a station would more closely represent these smaller scales.

(e) For near-road monitoring stations, the monitoring path shall have an unobstructed air flow, where no obstacles exist at or above the height of the monitoring path, between the monitoring path and the outside nearest edge of the traffic lanes of the target road segment.

3.4 Spacing From Trees

(a) Trees can provide surfaces for SO 2 , O 3 , or NO 2 adsorption or reactions. Trees can also act as obstructions in locations where the trees are located between the air pollutant sources or source areas and the monitoring site, and where the trees are of a sufficient height and leaf canopy density to interfere with the normal airflow around the monitoring path. To reduce this possible interference/obstruction, at least 90 percent of the monitoring path should be 20 meters or more from the drip line of trees and must be at least 10 meters from the drip line of trees. If a tree or group of trees could be considered an obstacle, the monitoring path must meet the distance requirements of section 3.3 of this appendix.

(b) The scavenging effect of trees is greater for O 3 than for other criteria pollutants. Monitoring agencies must take steps to consider the impact of trees on ozone monitoring sites and take steps to avoid this problem.

(c) Beginning January 1, 2024, microscale sites of any air pollutant shall have no trees or shrubs located at or above the line-of-sight fetch between the monitoring path and the source under investigation, e.g., a roadway or a stationary source.

3.5 Spacing from Roadways

Table E–4 of Section 3.5 of Appendix E—Minimum Separation Distance Between Roadways and Monitoring Paths for Monitoring Neighborhood and Urban Scale Ozone (O) and Oxides of Nitrogen (NO, NO , NO , NO)
Roadway average daily traffic, vehicles per dayMinimum distance 1 3 (meters)Minimum distance 1 2 3 (meters)
1 Distance from the edge of the nearest traffic lane. The distance for intermediate traffic counts should be interpolated from the table values based on the actual traffic count.
2 Applicable for ozone open path monitors whose placement was not approved as of December 18, 2006.
3 All distances listed are expressed as having 2 significant figures. When rounding is performed to assess compliance with these siting requirements, the distance measurements will be rounded such as to retain at least two significant figures.
≤1,0001010
10,0001020
15,0002030
20,0003040
40,0005060
70,000100100
≥110,000250250

3.5.1 Spacing for Ozone Monitoring Paths

In siting an O 3 open path analyzer, it is important to minimize destructive interferences form sources of NO, since NO readily reacts with O 3 . Table E–4 of this appendix provides the required minimum separation distances between a roadway and at least 90 percent of a monitoring path for various ranges of daily roadway traffic. A monitoring site with a monitoring path located closer to a roadway than allowed by the Table E–4 requirements should be classified as microscale or middle scale, rather than neighborhood or urban scale, since the measurements from such a site would more closely represent these smaller scales. The monitoring path(s) must not cross over a roadway with an average daily traffic count of 10,000 vehicles per day or more. For locations where a monitoring path crosses a roadway with fewer than 10,000 vehicles per day, monitoring agencies must consider the entire segment of the monitoring path in the area of potential atmospheric interference from automobile emissions. Therefore, this calculation must include the length of the monitoring path over the roadway plus any segments of the monitoring path that lie in the area between the roadway and minimum separation distance, as determined from Table E–4 of this appendix. The sum of these distances must not be greater than 10 percent of the total monitoring path length.

3.5.2 Spacing for Carbon Monoxide Monitoring Paths

(a) Near-road microscale CO monitoring sites, including those located in downtown areas, urban street canyons, and other near-road locations such as those adjacent to highly trafficked roads, are intended to provide a measurement of the influence of the immediate source on the pollution exposure on the adjacent area.

(b) Microscale CO monitoring paths in downtown areas or urban street canyon locations shall be located a minimum distance of 2.0 meters and a maximum distance of 10 meters from the edge of the nearest traffic lane.

(c) Microscale CO monitoring paths in downtown areas or urban street canyon locations shall be located at least 10 meters from an intersection, preferably at a midblock location. Midblock locations are preferable to intersection locations because intersections represent a much smaller portion of downtown space than do the streets between them. Pedestrian exposure is probably also greater in street canyon/corridors than at intersections.

(d) Neighborhood scale CO monitoring paths in downtown areas or urban street canyon locations shall be located according to the requirements in Table E–5 of this appendix.

Table E–5 Section 3.5.2 of Appendix E—Minimum Separation Distance Between Roadways and Monitoring Paths for Monitoring Neighborhood Scale Carbon Monoxide
Roadway average daily traffic, vehicles per dayMinimum distance 1 2 (meters)
1 Distance from the edge of the nearest traffic lane. The distance for intermediate traffic counts should be interpolated from the table values based on the actual traffic count.
2 All distances listed are expressed as having 2 significant figures. When rounding is performed to assess compliance with these siting requirements, the distance measurements will be rounded such as to retain at least two significant figures.
≤10,00010
15,00025
20,00045
30,00080
40,000115
50,000135
≥60,000150

3.5.3 Spacing for Nitrogen Dioxide (NO 2) Monitoring Paths

(a) In siting near-road NO 2 monitors as required in section 4.3.2 of appendix D of this part, the monitoring path shall be as near as practicable to the outside nearest edge of the traffic lanes of the target road segment but shall not be located at a distance greater than 50 meters, in the horizontal, from the outside nearest edge of the traffic lanes of the target road segment.

(b) In siting NO 2 open path monitors for neighborhood and larger scale monitoring, it is important to minimize near-road influences. Table E–5 of this appendix provides the required minimum separation distances between a roadway and at least 90 percent of a monitoring path for various ranges of daily roadway traffic. A site with a monitoring path located closer to a roadway than allowed by the Table E–4 requirements should be classified as microscale or middle scale rather than neighborhood or urban scale. The monitoring path(s) must not cross over a roadway with an average daily traffic count of 10,000 vehicles per day or more. For locations where a monitoring path crosses a roadway with fewer than 10,000 vehicles per day, monitoring agencies must consider the entire segment of the monitoring path in the area of potential atmospheric interference form automobile emissions. Therefore, this calculation must include the length of the monitoring path over the roadway plus any segments of the monitoring path that lie in the area between the roadway and minimum separation distance, as determined from Table E–5 of this appendix. The sum of these distances must not be greater than 10 percent of the total monitoring path length.

3.6 Cumulative Interferences on a Monitoring Path

The cumulative length or portion of a monitoring path that is affected by minor sources, trees, or roadways must not exceed 10 percent of the total monitoring path length.

3.7 Maximum Monitoring Path Length

The monitoring path length must not exceed 1.0 kilometer for open path analyzers in neighborhood, urban, or regional scale. For middle scale monitoring sites, the monitoring path length must not exceed 300 meters. In areas subject to frequent periods of dust, fog, rain, or snow, consideration should be given to a shortened monitoring path length to minimize loss of monitoring data due to these temporary optical obstructions. For certain ambient air monitoring scenarios using open path analyzers, shorter path lengths may be needed in order to ensure that the monitoring site meets the objectives and spatial scales defined in appendix D to this part. The Regional Administrator may require shorter path lengths, as needed on an individual basis, to ensure that the SLAMS sites meet the appendix D requirements. Likewise, the Administrator may specify the maximum path length used at NCore monitoring sites.

3.8 Summary

Table E–6 of this appendix presents a summary of the general requirements for monitoring path siting criteria with respect to distances and heights. Table E–6 requires different elevation distances above the ground for the various pollutants. The discussion in this appendix for each of the pollutants describes reasons for elevating the monitoring path. The differences in the specified range of heights are based on the vertical concentration gradients. For source oriented and near-road monitors, the gradients in the vertical direction are very large for the microscale, so a small range of heights are used. The upper limit of 15 meters is specified for the consistency between pollutants and to allow the use of a monitoring path for monitoring more than one pollutant.

Table E–6 Section 3.8 of Appendix E—Summary of Monitoring Path Siting Criteria
PollutantMaximum monitoring path lengthHeight from ground to 80% of monitoring path (meters)Horizontal or vertical distance from supporting structures to 90% of monitoring path (meters)Distance from trees to 90% of monitoring path (meters)Distance from roadways to monitoring path (meters)
N/A—Not applicable.
1 Monitoring path for open path analyzers is applicable only to middle or neighborhood scale CO monitoring, middle, neighborhood, urban, and regional scale NO 2 monitoring, and all applicable scales for monitoring SO 2 , O 3 , and O 3 precursors.
2 When the monitoring path is located on a rooftop, this separation distance is in reference to walls, parapets, or penthouses located on roof.
3 At least 90 percent of the monitoring path should be greater than 20 meters from the dripline of tree(s) and must be 10-meters from the dripline.
4 Distance from 90 percent of monitoring path to obstacle, such as a building, must be at least twice the height the obstacle protrudes above the monitoring path. Sites not meeting this criterion may be classified as microscale or middle scale (see text).
5 Must have unrestricted airflow 270 degrees around at least 90 percent of the monitoring path; 180 degrees if the monitoring path is adjacent to the side of a building or a wall for street canyon monitoring.
6 The monitoring path should be away from minor sources, such as furnace or incineration flues. The separation distance is dependent on the height of the minor source's emission point (such as a flue), the type of fuel or waste burned, and the quality of the fuel (sulfur, ash, or lead content). This criterion is designed to avoid undue influences from minor sources.
7 For microscale CO monitoring sites, the monitoring path must be ≥10. meters from a street intersection and preferably at a midblock location.
8 All distances listed are expressed as having 2 significant figures. When rounding is performed to assess compliance with these siting requirements, the distance measurements will be rounded such as to retain at least two significant figures.
9 See section 1.2 of appendix D for definitions of monitoring scales.
10 See section 3.7 of this appendix.
SO 2 3456<= 300 m for Middle <= 1.0 km for Neighborhood, Urban, and Regional2.0–15≥1.0≥10N/A.
CO457<= 300 m for Micro [downtown or street canyon sites]2.5–3.5≥1.0≥102.0–10 for downtown areas or street canyon microscale.
<= 300 m for Micro [Near-Road sites]2.0–7.0≤50 for near-road microscale.
<= 300 m for Middle2.0–15See Table E–5 of this appendix for middle and neighborhood scales.
<= 1.0 km for Neighborhood
O 3345<= 300 m for Middle
<= 1.0 km for Neighborhood, Urban, and Regional2.0–15≥1.0≥10See Table E–4.
NO 2345Between 50 m–300 m for Micro (Near-Road)2.0–7.0≤50 for near-road micro-scale.
<= 300 m for Middle≥1.0≥10
<= 1.0 km for Neighborhood, Urban, and Regional2.0–15See Table E–4.
PAMS Ozone precursors 345<= 1.0 km for Neighborhood and Urban2.0–15≥1.0≥10See Table E–4.

4. Waiver Provisions

Most sampling probes or monitors can be located so that they meet the requirements of this appendix. New sites, with rare exceptions, can be located within the limits of this appendix. However, some existing sites may not meet these requirements and may still produce useful data for some purposes. The EPA will consider a written request from the State, or where applicable local, agency to waive one or more siting criteria for some monitoring sites providing that the State or their designee can adequately demonstrate the need (purpose) for monitoring or establishing a monitoring site at that location.

4.1 For a proposed new site, a waiver may be granted only if both the following criteria are met:

4.1.1 The proposed new site can be demonstrated to be as representative of the monitoring area as it would be if the siting criteria were being met.

4.1.2 The monitor or probe cannot reasonably be located so as to meet the siting criteria because of physical constraints (e.g., inability to locate the required type of site the necessary distance from roadways or obstructions).

4.2 For an existing site, a waiver may be granted if either the criterion in section 4.1.1 or the criterion in 4.1.2 of this appendix is met.

4.3 Cost benefits, historical trends, and other factors may be used to add support to the criteria in sections 4.1.1 and 4.1.2 of this appendix; however, by themselves, they will not be acceptable reasons for the EPA to grant a waiver. Written requests for waivers must be submitted to the Regional Administrator. Granted waivers must be renewed minimally every 5 years and ideally as part of the network assessment as defined in §58.10(d). The approval date of the waiver must be documented in the annual monitoring network plan to support the requirements of §58.10(a)(1) and 58.10(b)(10).

5. References

1. Bryan, R.J., R.J. Gordon, and H. Menck. Comparison of High Volume Air Filter Samples at Varying Distances from Los Angeles Freeway. University of Southern California, School of Medicine, Los Angeles, CA. (Presented at 66th Annual Meeting of Air Pollution Control Association. Chicago, IL. June 24–28, 1973. APCA 73–158.)

2. Teer, E.H. Atmospheric Lead Concentration Above an Urban Street. Master of Science Thesis, Washington University, St. Louis, MO. January 1971.

3. Bradway, R.M., F.A. Record, and W.E. Belanger. Monitoring and Modeling of Resuspended Roadway Dust Near Urban Arterials. GCA Technology Division, Bedford, MA. (Presented at 1978 Annual Meeting of Transportation Research Board, Washington, DC. January 1978.)

4. Pace, T.G., W.P. Freas, and E.M. Afify. Quantification of Relationship Between Monitor Height and Measured Particulate Levels in Seven U.S. Urban Areas. U.S. Environmental Protection Agency, Research Triangle Park, NC. (Presented at 70th Annual Meeting of Air Pollution Control Association, Toronto, Canada. June 20–24, 1977. APCA 77–13.4.)

5. Harrison, P.R. Considerations for Siting Air Quality Monitors in Urban Areas. City of Chicago, Department of Environmental Control, Chicago, IL. (Presented at 66th Annual Meeting of Air Pollution Control Association, Chicago, IL. June 24–28, 1973. APCA 73–161.)

6. Study of Suspended Particulate Measurements at Varying Heights Above Ground. Texas State Department of Health, Air Control Section, Austin, TX. 1970. p.7.

7. Rodes, C.E. and G.F. Evans. Summary of LACS Integrated Pollutant Data. In: Los Angeles Catalyst Study Symposium. U.S. Environmental Protection Agency, Research Triangle Park, NC. EPA Publication No. EPA–600/4–77–034. June 1977.

8. Lynn, D.A. et al. National Assessment of the Urban Particulate Problem: Volume 1, National Assessment. GCA Technology Division, Bedford, MA. U.S. Environmental Protection Agency, Research Triangle Park, NC. EPA Publication No. EPA–450/3–75–024. June 1976.

9. Pace, T.G. Impact of Vehicle-Related Particulates on TSP Concentrations and Rationale for Siting Hi-Vols in the Vicinity of Roadways. OAQPS, U.S. Environmental Protection Agency, Research Triangle Park, NC. April 1978.

10. Ludwig, F.L., J.H. Kealoha, and E. Shelar. Selecting Sites for Monitoring Total Suspended Particulates. Stanford Research Institute, Menlo Park, CA. Prepared for U.S. Environmental Protection Agency, Research Triangle Park, NC. EPA Publication No. EPA–450/3–77–018. June 1977, revised December 1977.

11. Ball, R.J. and G.E. Anderson. Optimum Site Exposure Criteria for SO 2 Monitoring. The Center for the Environment and Man, Inc., Hartford, CT. Prepared for U.S. Environmental Protection Agency, Research Triangle Park, NC. EPA Publication No. EPA–450/3–77–013. April 1977.

12. Ludwig, F.L. and J.H.S. Kealoha. Selecting Sites for Carbon Monoxide Monitoring. Stanford Research Institute, Menlo Park, CA. Prepared for U.S. Environmental Protection Agency, Research Triangle Park, NC. EPA Publication No. EPA–450/3–75–077. September 1975.

13. Ludwig, F.L. and E. Shelar. Site Selection for the Monitoring of Photochemical Air Pollutants. Stanford Research Institute, Menlo Park, CA. Prepared for U.S. Environmental Protection Agency, Research Triangle Park, NC. EPA Publication No. EPA–450/3–78–013. April 1978.

14. Lead Analysis for Kansas City and Cincinnati, PEDCo Environmental, Inc., Cincinnati, OH. Prepared for U.S. Environmental Protection Agency, Research Triangle Park, NC. EPA Contract No. 66–02–2515, June 1977.

15. Barltrap, D. and C.D. Strelow. Westway Nursery Testing Project. Report to the Greater London Council. August 1976.

16. Daines, R. H., H. Moto, and D. M. Chilko. Atmospheric Lead: Its Relationship to Traffic Volume and Proximity to Highways. Environ. Sci. and Technol., 4:318, 1970.

17. Johnson, D. E., et al. Epidemiologic Study of the Effects of Automobile Traffic on Blood Lead Levels, Southwest Research Institute, Houston, TX. Prepared for U.S. Environmental Protection Agency, Research Triangle Park, NC. EPA–600/1–78–055, August 1978.

18. Air Quality Criteria for Lead. Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC EPA–600/8–83–028 aF–dF, 1986, and supplements EPA–600/8–89/049F, August 1990. (NTIS document numbers PB87–142378 and PB91–138420.)

19. Lyman, D. R. The Atmospheric Diffusion of Carbon Monoxide and Lead from an Expressway, Ph.D. Dissertation, University of Cincinnati, Cincinnati, OH. 1972.

20. Wechter, S.G. Preparation of Stable Pollutant Gas Standards Using Treated Aluminum Cylinders. ASTM STP. 598:40–54, 1976.

21. Wohlers, H.C., H. Newstein and D. Daunis. Carbon Monoxide and Sulfur Dioxide Adsorption On and Description From Glass, Plastic and Metal Tubings. J. Air Poll. Con. Assoc. 17:753, 1976.

22. Elfers, L.A. Field Operating Guide for Automated Air Monitoring Equipment. U.S. NTIS. p. 202, 249, 1971.

23. Hughes, E.E. Development of Standard Reference Material for Air Quality Measurement. ISA Transactions, 14:281–291, 1975.

24. Altshuller, A.D. and A.G. Wartburg. The Interaction of Ozone with Plastic and Metallic Materials in a Dynamic Flow System. Intern. Jour. Air and Water Poll., 4:70–78, 1961.

25. Code of Federal Regulations. 40 CFR 53.22, July 1976.

26. Butcher, S.S. and R.E. Ruff. Effect of Inlet Residence Time on Analysis of Atmospheric Nitrogen Oxides and Ozone, Anal. Chem., 43:1890, 1971.

27. Slowik, A.A. and E.B. Sansone. Diffusion Losses of Sulfur Dioxide in Sampling Manifolds. J. Air. Poll. Con. Assoc., 24:245, 1974.

28. Yamada, V.M. and R.J. Charlson. Proper Sizing of the Sampling Inlet Line for a Continuous Air Monitoring Station. Environ. Sci. and Technol., 3:483, 1969.

29. Koch, R.C. and H.E. Rector. Optimum Network Design and Site Exposure Criteria for Particulate Matter, GEOMET Technologies, Inc., Rockville, MD. Prepared for U.S. Environmental Protection Agency, Research Triangle Park, NC. EPA Contract No. 68–02–3584. EPA 450/4–87–009. May 1987.

30. Burton, R.M. and J.C. Suggs. Philadelphia Roadway Study. Environmental Monitoring Systems Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, N.C. EPA–600/4–84–070 September 1984.

31. Technical Assistance Document for Sampling and Analysis of Ozone Precursors. Atmospheric Research and Exposure Assessment Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711. EPA 600/8–91–215. October 1991.

32. Quality Assurance Handbook for Air Pollution Measurement Systems: Volume IV. Meteorological Measurements. Atmospheric Research and Exposure Assessment Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711. EPA 600/4–90–0003. August 1989.

33. On-Site Meteorological Program Guidance for Regulatory Modeling Applications. Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711. EPA 450/4–87–013. June 1987F.

34. Johnson, C., A. Whitehill, R. Long, and R. Vanderpool. Investigation of Gaseous Criteria Pollutant Transport Efficiency as a Function of Tubing Material. U.S. Environmental Protection Agency, Research Triangle Park, NC 27711. EPA/600/R–22/212. August 2022.

35. Hannah Halliday, Cortina Johnson, Tad Kleindienst, Russell Long, Robert Vanderpool, and Andrew Whitehill. Recommendations for Nationwide Approval of Nafion TM Dryers Upstream of UV-Absorption Ozone Analyzers. U.S. Environmental Protection Agency, Research Triangle Park, NC 27711. EPA/600/R–20/390. November 2020.

Appendix G to Part 58—Uniform Air Quality Index (AQI) and Daily Reporting

1. General Information

2. Reporting Requirements

3. Data Handling

1. General Information

1.1 AQI Overview. The AQI is a tool that simplifies reporting air quality to the public in a nationally uniform and easy to understand manner. The AQI converts concentrations of pollutants, for which the EPA has established a national ambient air quality standard (NAAQS), into a uniform scale from 0–500. These pollutants are ozone (O 3), particulate matter (PM 2.5 , PM 10), carbon monoxide (CO), sulfur dioxide (SO 2), and nitrogen dioxide (NO 2). The scale of the index is divided into general categories that are associated with health messages.

2. Reporting Requirements

2.1 Applicability. The AQI must be reported daily for a metropolitan statistical area (MSA) with a population over 350,000. When it is useful and possible, it is recommended, but not required for an area to report a sub-daily AQI as well.

2.2 Contents of AQI Report.

2.2.1 Content of AQI Report Requirements. An AQI report must contain the following:

a. The reporting area(s) (the MSA or subdivision of the MSA).

b. The reporting period (the day for which the AQI is reported).

c. The main pollutant (the pollutant with the highest index value).

d. The AQI (the highest index value).

e. The category descriptor and index value associated with the AQI and, if choosing to report in a color format, the associated color. Use only the following descriptors and colors for the six AQI categories:

Table 1 to Section 2 of Appendix G—AQI Categories
For this AQIUse this descriptorAnd this color 1
1 Specific color definitions can be found in the most recent reporting guidance (Technical Assistance Document for the Reporting of Daily Air Quality), which can be found at https://www.airnow.gov/publications/air-quality-index/technical-assistance-document-for-reporting-the-daily-aqi/.
0 to 50“Good”Green.
51 to 100“Moderate”Yellow.
101 to 150“Unhealthy for Sensitive Groups”Orange.
151 to 200“Unhealthy”Red.
201 to 300“Very Unhealthy”Purple.
301 and above“Hazardous”Maroon 1 .

f. The pollutant specific sensitive groups for any reported index value greater than 100. The sensitive groups for each pollutant are identified as part of the periodic review of the air quality criteria and the NAAQS. For convenience, the EPA lists the relevant groups for each pollutant in the most recent reporting guidance (Technical Assistance Document for the Reporting of Daily Air Quality), which can be found at https://www.airnow.gov/publications/air-quality-index/technical-assistance-document-for-reporting-the-daily-aqi/.

2.2.2 Contents of AQI Report When Applicable. When appropriate, the AQI report may also contain the following, but such information is not required:

a. Appropriate health and cautionary statements.

b. The name and index value for other pollutants, particularly those with an index value greater than 100.

c. The index values for sub-areas of your MSA.

d. Causes for unusually high AQI values.

e. Pollutant concentrations.

f. Generally, the AQI report applies to an area's MSA only. However, if a significant air quality problem exists (AQI greater than 100) in areas significantly impacted by the MSA but not in it (for example, O 3 concentrations are often highest downwind and outside an urban area), the report should identify these areas and report the AQI for these areas as well.

2.3. Communication, Timing, and Frequency of AQI Report. The daily AQI must be reported 7 days per week and made available via website or other means of public access. The daily AQI report represents the air quality for the previous day. Exceptions to this requirement are in section 2.4 of this appendix.

a. Reporting the AQI sub-daily is recommended, but not required, to provide more timely air quality information to the public for making health-protective decisions.

b. Submitting hourly data in real-time to the EPA's AirNow (or future analogous) system is recommended, but not required, and assists the EPA in providing timely air quality information to the public for making health-protective decisions.

c. Submitting hourly data for appropriate monitors (referenced in section 3.2 of this appendix) satisfies the daily AQI reporting requirement because the AirNow system makes daily and sub-daily AQI reports widely available through its website and other communication tools.

d. Forecasting the daily AQI provides timely air quality information to the public and is recommended but not required. Sub-daily forecasts are also recommended, especially when air quality is expected to vary substantially throughout the day, like during wildfires. Long-term (multi-day) forecasts can also be made available when useful.

2.4. Exceptions to Reporting Requirements.

a. If the index value for a particular pollutant remains below 50 for a season or year, then it may be excluded from the calculation of the AQI in section 3 of this appendix.

b. If all index values remain below 50 for a year, then the AQI may be reported at the discretion of the reporting agency. In subsequent years, if pollutant levels rise to where the AQI would be above 50, then the AQI must be reported as required in section 2 of this appendix.

c. As previously mentioned in section 2.3 of this appendix, submitting hourly data in real-time from appropriate monitors (referenced in section 3.2 of this appendix) to the EPA's AirNow (or future analogous) system satisfies the daily AQI reporting requirement.

3. Data Handling.

3.1 Relationship of AQI and pollutant concentrations. For each pollutant, the AQI transforms ambient concentrations to a scale from 0 to 500. As appropriate, the AQI is associated with the NAAQS for each pollutant. In most cases, the index value of 100 is associated with the numerical level of the short-term standard (i.e., averaging time of 24-hours or less) for each pollutant. The index value of 50 is associated with the numerical level of the annual standard for a pollutant, if there is one, at one-half the level of the short-term standard for the pollutant or at the level at which it is appropriate to begin to provide guidance on cautionary language. Higher categories of the index are based on the potential for increasingly serious health effects to occur following exposure and increasing proportions of the population that are likely to be affected. The reported AQI corresponds to the pollutant with the highest calculated AQI. For the purposes of reporting the AQI, the sub-indexes for PM 10 and PM 2.5 are to be considered separately. The pollutant responsible for the highest index value (the reported AQI) is called the “main” pollutant for that day.

3.2 Monitors Used for AQI Reporting. Concentration data from State/Local Air Monitoring Station (SLAMS) or parts of the SLAMS required by 40 CFR 58.10 must be used for each pollutant except PM. For PM, calculate and report the AQI on days for which air quality data has been measured (e.g., from continuous PM 2.5 monitors required in appendix D to this part). PM measurements may be used from monitors that are not reference or equivalent methods (for example, continuous PM 10 or PM 2.5 monitors). Detailed guidance for relating non-approved measurements to approved methods by statistical linear regression is referenced here:

Reference for relating non-approved PM measurements to approved methods (Eberly, S., T. Fitz-Simons, T. Hanley, L. Weinstock., T. Tamanini, G. Denniston, B. Lambeth, E. Michel, S. Bortnick. Data Quality Objectives (DQOs) For Relating Federal Reference Method (FRM) and Continuous PM 2.5 Measurements to Report an Air Quality Index (AQI). U.S. Environmental Protection Agency, Research Triangle Park, NC. EPA–454/B–02–002, November 2002).

3.3 AQI Forecast. The AQI can be forecasted at least 24-hours in advance using the most accurate and reasonable procedures considering meteorology, topography, availability of data, and forecasting expertise. The guidance document, “Guidelines for Developing an Air Quality (Ozone and PM 2.5) Forecasting Program,” can be found at https://www.airnow.gov/publications/weathercasters/guidelines-developing-air-quality-forecasting-program/.

3.4 Calculation and Equations.

a. The AQI is the highest value calculated for each pollutant as follows:

i. Identify the highest concentration among all of the monitors within each reporting area and truncate as follows:

(A) Ozone—truncate to 3 decimal places

PM 2.5 —truncate to 1 decimal place

PM 10 —truncate to integer

CO—truncate to 1 decimal place

SO 2 —truncate to integer

NO 2 —truncate to integer

(B) [Reserved]

ii. Using table 2 to this appendix, find the two breakpoints that contain the concentration.

iii. Using equation 1 to this appendix, calculate the index.

iv. Round the index to the nearest integer.

Table 2 to Section 3.4 of Appendix G—Breakpoints for the AQI
These breakpointsEqual these AQI's
O 3 (ppm) 8-hourO 3 (ppm) 1-hour 1PM 2.5 (µg/m 3) 24-hourPM 10 (µg/m 3) 24-hourCO (ppm) 8-hourSO 2 (ppb) 1-hourNO 2 (ppb) 1-hourAQICategory
1 Areas are generally required to report the AQI based on 8-hour ozone values. However, there are a small number of areas where an AQI based on 1-hour ozone values would be more precautionary. In these cases, in addition to calculating the 8-hour ozone index value, the 1-hour ozone index value may be calculated, and the maximum of the two values reported.
2 8-hour O 3 concentrations do not define higher AQI values (>301). AQI values > 301 are calculated with 1-hour O 3 concentrations.
3 1-hr SO 2 concentrations do not define higher AQI values (≥200). AQI values of 200 or greater are calculated with 24-hour SO 2 concentration.
4 AQI values between breakpoints are calculated using equation 1 to this appendix. For AQI values in the hazardous category, AQI values greater than 500 should be calculated using equation 1 and the concentration specified for the AQI value of 500. The AQI value of 500 are as follows: O 3 1-hour—0.604 ppm; PM 2.5 24-hour—325.4 µg/m 3 ; PM 10 24-hour—604 µg/m 3 ; CO ppm—50.4 ppm; SO 2 1-hour—1004 ppb; and NO 2 1-hour—2049 ppb.
0.000–0.0540.0–9.00–540.0–4.40–350–530–50Good.
0.055–0.0709.1–35.455–1544.5–9.436–7554–10051–100Moderate.
0.071–0.0850.125–0.16435.5–55.4155–2549.5–12.476–185101–360101–150Unhealthy for Sensitive Groups.
0.086–0.1050.165–0.20455.5–125.4255–35412.5–15.43 186–304361–649151–200Unhealthy.
0.106–0.2000.205–0.404125.5—225.4355–42415.5–30.43 305–604650–1249201–300Very Unhealthy.
0.201−(2)0.405+225.5+425+30.5+3 605+1250+301+4 Hazardous.

b. If the concentration is equal to a breakpoint, then the index is equal to the corresponding index value in table 2 to this appendix. However, equation 1 to this appendix can still be used. The results will be equal. If the concentration is between two breakpoints, then calculate the index of that pollutant with equation 1. It should also be noted that in some areas, the AQI based on 1-hour O 3 will be more precautionary than using 8-hour values (see footnote 1 to table 2). In these cases, the 1-hour values as well as 8-hour values may be used to calculate index values and then use the maximum index value as the AQI for O 3.



Where:

I p = the index value for pollutant p .

C p = the truncated concentration of pollutant p .

BP Hi = the breakpoint that is greater than or equal to C p .

BP Lo = the breakpoint that is less than or equal to C p .

I Hi = the AQI value corresponding to BP Hi .

I lo = the AQI value corresponding to BP Lo .

c. If the concentration is larger than the highest breakpoint in table 2 to this appendix then the last two breakpoints in table 2 may be used when equation 1 to this appendix is applied.

Example:

d. Using table 2 and equation 1 to this appendix, calculate the index value for each of the pollutants measured and select the one that produces the highest index value for the AQI. For example, if a PM 10 value of 210 µg/m 3 is observed, a 1-hour O 3 value of 0.156 ppm, and an 8-hour O 3 value of 0.130 ppm, then do this:

i. Find the breakpoints for PM 10 at 210 µg/m 3 as 155 µg/m 3 and 254 µg/m 3 , corresponding to index values 101 and 150;

ii. Find the breakpoints for 1-hour O 3 at 0.156 ppm as 0.125 ppm and 0.164 ppm, corresponding to index values 101 and 150;

iii. Find the breakpoints for 8-hour O 3 at 0.130 ppm as 0.116 ppm and 0.374 ppm, corresponding to index values 201 and 300;

iv. Apply equation 21 to this appendix for 210 µg/m 3 , PM 10 :



v. Apply equation 3 to this appendix for 0.156 ppm, 1-hour O 3 :



vi. Apply equation 4 to this appendix for 0.130 ppm, 8-hour O 3 :



vii. Find the maximum, 206. This is the AQI. A minimal AQI report could read: “Today, the AQI for my city is 206, which is Very Unhealthy, due to ozone.” It would then reference the associated sensitive groups.

Specialized Industries

Go beyond the regulations! Visit the Institute for in-depth guidance on a wide range of compliance subjects in safety and health, transportation, environment, and human resources.

J. J. Keller® COMPLIANCE NETWORK is a premier online safety and compliance community, offering members exclusive access to timely regulatory content in workplace safety (OSHA), transportation (DOT), environment (EPA), and human resources (DOL).

Interact With Our Compliance Experts

Puzzled by a regulatory question or issue? Let our renowned experts provide the answers and get your business on track to full compliance!

Upcoming Events

Reference the Compliance Network Safety Calendar to keep track of upcoming safety and compliance events. Browse by industry or search by keyword to see relevant dates and observances, including national safety months, compliance deadlines, and more.

SAFETY & COMPLIANCE NEWS

Keep up to date on the latest developments affecting OSHA, DOT, EPA, and DOL regulatory compliance.

RegSense®Regulatory Reference

Explore a comprehensive database of word-for-word regulations and best practices on a wide range of topics.

THE J. J. KELLER INSTITUTE

The J. J. Keller INSTITUTE is your destination for in-depth content on hundreds of topics. Browse by subject to gain foundational knowledge and confirm best practices on the topics that matter to you. You'll find articles, videos, and interactive exercises that help you become an expert and apply key concepts in practical scenarios. There are almost 130 subjects covering 100s of topics.

Add Premium Hazmat & Environmental Resources

Unlock premium content offering expert insight into hazmat and environmental regulations with a COMPLIANCE NETWORK EDGE membership.

INTERACT WITH A COMPLIANCE EXPERT

In search of an answer? Try our FAQ Library or engage with an Expert for help!

Upcoming Events

Reference the Compliance Network Safety Calendar to keep track of upcoming safety and compliance events. Browse by industry or search by keyword to see relevant dates and observances, including national safety months, compliance deadlines, and more.

Most Recent Highlights In Environmental

2024-04-25T05:00:00Z

EPA Final Rule: Revisions and Confidentiality Determinations for Data Elements Under the Greenhouse Gas Reporting Rule

The EPA is amending specific provisions in the Greenhouse Gas Reporting Rule to improve data quality and consistency. This action updates the General Provisions to reflect revised global warming potentials; expands reporting to additional sectors; improves the calculation, recordkeeping, and reporting requirements by updating existing methodologies; improves data verifications; and provides for collection of additional data to better inform and be relevant to a wide variety of Clean Air Act provisions that the EPA carries out. This action adds greenhouse gas monitoring and reporting for five source categories including coke calcining; ceramics manufacturing; calcium carbide production; caprolactam, glyoxal, and glyoxylic acid production; and facilities conducting geologic sequestration of carbon dioxide with enhanced oil recovery. These revisions also include changes that will improve implementation of the rule such as updates to applicability estimation methodologies, simplifying calculation and monitoring methodologies, streamlining recordkeeping and reporting, and other minor technical corrections or clarifications. This action also establishes and amends confidentiality determinations for the reporting of certain data elements to be added or substantially revised in these amendments.

DATES: This rule is effective January 1, 2025, published in the Federal Register April 25, 2024, page 31802.

View final rule.

EHS Monthly Round Up - March 2024

EHS Monthly Round Up - March 2024

In this monthly roundup video, we’ll review the most impactful environmental, safety, and health news.

Hi everyone! Welcome to the monthly news roundup video, where we’ll go over the most impactful environmental, health, and safety news. Please view the content links in the transcript for more information about the topics I’ll be covering today. Let’s get started! The Office of Management and Budget completed its review of OSHA’s worker walkaround final rule on March 20. The next step is publication in the Federal Register. The rule expands the criteria for who employees can authorize to act as their representative during an OSHA inspection.

Stand Up 4 Grain Safety Week was held the week of March 25. This annual event brings attention to hazards in the grain handling and storage industry and encourages employers to focus on safe work practices.

Over 100 people die in ladder-related deaths each year, and thousands more suffer disabling injuries. During Ladder Safety Month, which is held each March, the American Ladder Institute promotes ladder safety to decrease the number of injuries and fatalities.

Between 2010 and 2023, 11 miners drowned in incidents involving submerged mobile equipment. In response, the Mine Safety and Health Administration issued a safety alert. It recommends measures miners should take when operating equipment near water.

And finally, turning to environmental news, EPA finalized amendments to its Risk Management Program in an effort to improve safety at facilities that use and distribute hazardous chemicals. The rule seeks to improve chemical process safety; assist in planning for, preparing for, and responding to accidents; and increase public awareness of chemical hazards at regulated sites.

Thanks for tuning in to the monthly news roundup. We’ll see you next month!

2024-04-22T05:00:00Z

EPA Final Rule: Greenhouse Gas Emissions Standards for Heavy-Duty Vehicles—Phase 3

The Environmental Protection Agency (EPA) is promulgating new greenhouse gas (GHG) emissions standards for model year (MY) 2032 and later heavy-duty highway vehicles that phase in starting as early MY 2027 for certain vehicle categories. The phase in revises certain MY 2027 GHG standards that were established previously under EPA's Greenhouse Gas Emissions and Fuel Efficiency Standards for Medium- and Heavy-Duty Engines and Vehicles—Phase 2 rule (“HD GHG Phase 2”). This document also updates discrete elements of the Averaging Banking and Trading program, including providing additional flexibilities for manufacturers to support the implementation of the Phase 3 program balanced by limiting the availability of certain advanced technology credits initially established under the HD GHG Phase 2 rule. EPA is also adding warranty requirements for batteries and other components of zero-emission vehicles and requiring customer-facing battery state-of-health monitors for plug-in hybrid and battery electric vehicles. In this action, we are also finalizing additional revisions, including clarifying and editorial amendments to certain highway heavy-duty vehicle provisions and certain test procedures for heavy-duty engines.

DATES: This final rule is effective on June 21, 2024, published in the Federal Register April 22, 2024, page 29440.

View final rule.

EPA designates 2 PFAS as CERCLA hazardous substances
2024-04-19T05:00:00Z

EPA designates 2 PFAS as CERCLA hazardous substances

The Environmental Protection Agency (EPA) finalized a rule to designate two widely used PFAS — perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), including their salts and structural isomers — as hazardous substances under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA).

The rule requires entities to immediately report releases of PFOA and PFOS that meet or exceed the reportable quantity (1 pound) to the:

  • National Response Center,
  • State/tribal emergency response commission, and
  • Local/tribal emergency planning committee.

Further, it gives EPA the authority to hold polluters responsible for paying for or conducting investigations and cleanup of PFOA and PFOS releases. In a memorandum, EPA clarified that it will focus enforcement efforts on significant contributors to PFAS releases.

Additionally:

  • Federal entities that transfer or sell property must give notification about the storage, release, or disposal of PFOA and PFAS on the property and include in the deed a commitment that either:
    • Warrants it has cleaned up any contamination, or
    • If needed, it will do so in the future.
  • Section 306 of CERCLA requires the Department of Transportation to list and regulate PFOA and PFAS as hazardous substances under the Hazardous Materials Transportation Act.

The rule takes effect 60 days after it’s published in the Federal Register.

Key to remember: EPA has designated PFOA and PFOS as CERCLA hazardous substances, requiring immediate release notifications for the two PFAS and expanding the agency’s authority to hold parties responsible for contamination accountable.

Chemical Data Reporting: 5 tips for a winning report
2024-04-19T05:00:00Z

Chemical Data Reporting: 5 tips for a winning report

It’s time for that special event that happens once every four years, often testing the endurance of the participants who’ve spent the prior years preparing for this very moment. No, it’s not the Summer Olympics, though that’s a great guess. It’s the Chemical Data Report!

Under the Toxic Substances Control ACT (TSCA), the Environmental Protection Agency’s (EPA’s) Chemical Data Reporting (CDR) rule requires manufacturers (including importers) to report information on the production and use of chemicals in commerce if they meet certain production volume thresholds at any one site. The submission period for the 2024 report runs from June 1 to September 30, 2024.

Use these tips to help you complete a Chemical Data Report worthy of a gold medal.

Tip #1: Verify that your facility is covered.

The TSCA Chemical Substance Inventory (TSCA Inventory) lists the covered chemical substances. Generally, the production volume threshold is 25,000 pounds or more of a chemical substance at a site. However, a reduced reporting threshold (2,500 pounds) applies to chemical substances subject to:

  • A rule proposed or promulgated under TSCA Sections 5(a)(2), 5(b)(4), or 6;
  • An order issued under TSCA Sections 4, 5(e), or 5(f); or
  • A relief granted under a civil action under TSCA Sections 5 or 7.

Further, certain full and partial exemptions apply to facilities based on the:

  • Chemical substances,
  • Size of the business, and/or
  • Activities conducted.

To confirm whether your facility must report:

  • Check the most recent nonconfidential TSCA Inventory, which you can download from EPA’s website or access through its electronic CDR reporting tool (e-CDRweb);
  • Search the Substance Registry Services (SRS), accessible through e-CDRweb, to determine if any of the facility’s chemical substances are subject to TSCA actions;
  • Search the SRS for chemical substances on the confidential portion of the inventory (by TSCA Accession Numbers or generic chemical names); and
  • Examine the regulations at 40 CFR Part 711 to determine whether your facility qualifies for any reporting exemptions.

Tip #2: If a chemical substance is reportable for one year, you must report its production volume for all years.

The CDR rule requires facilities to report the total annual production volume of covered chemical substances for each calendar year since the last principal reporting year.

In other words, if a chemical substance at your facility meets or exceeds the corresponding reporting threshold during any calendar year covered by the report, you must include the total annual production volume of that chemical for every covered calendar year.

For example, you must list on the 2024 report the production volumes of every reportable chemical substance for 2020, 2021, 2022, and 2023.

Tip #3: The CDR form is site-specific, not chemical-specific.

All CDR data must be reported electronically on Form U (EPA Form 7740-8) through e-CDRweb on EPA’s Central Data Exchange (CDX) system. Reporting is site-specific, so if your organization has multiple sites with reportable chemicals, you must submit a Form U for each site.

Keep in mind that you submit only one form per site, so all reportable chemical substances at a specific site are listed on the same Form U. You may have to submit multiple forms only if you have more than one site covered by the CDR rule.

Tip #4: Register for the right CDX user role.

To submit a Chemical Data Report, you must first register with the CDX system and be approved by EPA. Plus, you must register the name of the organization on whose behalf you’re submitting a Form U. If you’re already registered on CDX, you can add the CDR reporting flow to your current registration.

Because each type of user role has varying permissions, it’s essential to register for the right one. User roles include:

  • Primary Authorized Officials,
  • Secondary Authorized Officials,
  • Primary Support,
  • Secondary Support,
  • Primary Agent/Consultant, and
  • Secondary Agent/Consultant.

Only Primary Authorized Officials may submit initial Chemical Data Reports. So, if you’re the one who will submit Form U, confirm that you’re registered as a Primary Authorized Official.

Tip #5: You’re not done when you submit the report.

The CDR rule requires organizations to keep records of all CDR information reported on Form U to EPA for at least five years (711.25). The five-year timeline begins on the last day of the submission period.

Additionally, you may have to amend Form U after submitting the initial report. This can apply if:

  • You find errors or omissions during a self-audit of the Chemical Data Report,
  • You receive newly available information,
  • You believe the organization may have violated reporting requirements, or
  • EPA finds errors or omissions (in which case, the agency will likely send a letter requiring you to make corrections within a specific time frame).

Key to remember: The Chemical Data Report can be a major undertaking, but with these tips, you can cross the finish line with a report worthy of a gold medal.

See More

Most Recent Highlights In Transportation

2024-04-18T05:00:00Z

EPA Final Rule: Emissions Standards for 2027 and Later Light Duty and Medium-Duty Vehicles

Under the Clean Air Act, the Environmental Protection Agency (EPA) is establishing new, more protective emissions standards for criteria pollutants and greenhouse gases (GHG) for light-duty vehicles and Class 2b and 3 (‘‘medium-duty’’) vehicles that will phase-in over model years 2027 through 2032. In addition, EPA is finalizing GHG program revisions in several areas, including off-cycle and air conditioning credits, the treatment of upstream emissions associated with zero-emission vehicles and plug-in hybrid electric vehicles in compliance calculations, medium-duty vehicle incentive multipliers, and vehicle certification and compliance. EPA is also establishing new standards to control refueling emissions from incomplete medium-duty vehicles, and battery durability and warranty requirements for light-duty and medium-duty electric and plug-in hybrid electric vehicles. EPA is also finalizing minor amendments to update program requirements related to aftermarket fuel conversions, importing vehicles and engines, evaporative emission test procedures, and test fuel specifications for measuring fuel economy.

DATES: This final rule is effective on June 17, 2024, published in the Federal Register April 18, 2024, page 27842.

View final rule.

2024-04-17T05:00:00Z

EPA Final Rule: Other Solid Waste Incinerators; Air Curtain Incinerators Title V Permitting Provisionss

On August 31, 2020, in accordance with requirements under the Clean Air Act (CAA), the U.S. Environmental Protection Agency (EPA) performed a 5-year review of the Standards of Performance for New Stationary Sources and Emissions Guidelines for Existing Sources: Other Solid Waste Incineration (OSWI) Units, which includes certain very small municipal waste combustion (VSMWC) and institutional waste incineration (IWI) units. In the same action, the EPA proposed to remove the title V permitting requirements for air curtain incinerators (ACI) that burn only wood waste, clean lumber, yard waste, or a mixture of these three types of waste. In response to supportive comments received on the August 2020 proposal, this action is finalizing, as proposed, to remove the title V permitting requirements for ACIs that only burn wood waste, clean lumber, yard waste, or a mixture of those, and are not located at title V major sources or subject to title V for other reasons. The EPA is finalizing this proposed action now to simplify the compliance obligations for owners and operators of these types of units.

DATES: The effective date of this rule is April 17, 2024, published in the Federal Register April 17, 2024, page 27392.

View final rule.

§60.2966 Am I required to apply for and obtain a title V operating permit for my unit?
Entire sectionRevisedView text
§60.2967 When must I submit a title V permit application for my new unit?
Entire sectionRevisedView text
§60.2969 What are the requirements for temporary-use incinerators and air curtain incinerators used in disaster recovery?
Entire sectionRemoved and reservedView text
§60.2974 Am I required to apply for and obtain a title V operating permit for my air curtain incinerator that burns only wood waste, clean lumber, and yard waste?
Entire sectionRemoved and reservedView text
Subpart FFFF - Emission Guidelines and Compliance Times for Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004
HeadingRevisedView text
§60.3059 Am I required to apply for and obtain a title V operating permit for my unit?
Entire sectionRevisedView text
§60.3060 When must I submit a title V permit application for my existing unit?
Entire sectionRemoved and reservedView text

Previous Text

§60.2966 Am I required to apply for and obtain a title V operating permit for my unit?

Yes, if you are subject to this subpart, you are required to apply for and obtain a title V operating permit unless you meet the relevant requirements for an exemption specified in §60.2887.

§60.2967 When must I submit a title V permit application for my new unit?

(a) If your new unit subject to this subpart is not subject to an earlier permit application deadline, a complete title V permit application must be submitted on or before one of the dates specified in paragraphs (a)(1) or (2) of this section. (See section 503(c) of the Clean Air Act and 40 CFR 70.5(a)(1)(i) and 40 CFR 71.5(a)(1)(i).)

(1) For a unit that commenced operation as a new source as of December 16, 2005, then a complete title V permit application must be submitted not later than December 18, 2006.

(2) For a unit that does not commence operation as a new source until after December 16, 2005, then a complete title V permit application must be submitted not later than 12 months after the date the unit commences operation as a new source.

(b) If your new unit subject to this subpart is subject to title V as a result of some triggering requirement(s) other than this subpart (for example, a unit subject to this subpart may be a major source or part of a major source), then your unit may be required to apply for a title V permit prior to the deadlines specified in paragraph (a) of this section. If more than one requirement triggers a source's obligation to apply for a title V permit, the 12-month timeframe for filing a title V permit application is triggered by the requirement that first causes the source to be subject to title V. (See section 503(c) of the Clean Air Act and 40 CFR 70.3(a) and (b), 40 CFR 70.5(a)(1)(i), 40 CFR 71.3(a) and (b), and 40 CFR 71.5(a)(1)(i).)

(c) A “complete” title V permit application is one that has been determined or deemed complete by the relevant permitting authority under section 503(d) of the Clean Air Act and 40 CFR 70.5(a)(2) or 40 CFR 71.5(a)(2). You must submit a complete permit application by the relevant application deadline in order to operate after this date in compliance with Federal law. (See sections 503(d) and 502(a) of the Clean Air Act and 40 CFR 70.7(b) and 40 CFR 71.7(b).)

Subpart FFFF - Emission Guidelines and Compliance Times for Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004

§60.3059 Am I required to apply for and obtain a title V operating permit for my unit?

Yes, if you are subject to an applicable EPA-approved and effective Clean Air Act section 111(d)/129 State or Tribal plan or an applicable and effective Federal plan, you are required to apply for and obtain a title V operating permit unless you meet the relevant requirements for an exemption specified in §60.2993.

2024-04-16T05:00:00Z

EPA Final Rule: Clean Water Act Methods Update Rule for the Analysis of Effluent

The U.S. Environmental Protection Agency (EPA) is finalizing changes to its test procedures required to be used by industries and municipalities when analyzing the chemical, physical, and biological properties of wastewater and other samples for reporting under the EPA's National Pollutant Discharge Elimination System permit program. The Clean Water Act requires the EPA to promulgate these test procedures (analytical methods) for analysis of pollutants. The EPA anticipates that these changes will provide increased flexibility for the regulated community in meeting monitoring requirements while improving data quality. In addition, this update to the CWA methods will incorporate technological advances in analytical technology and make a series of minor changes and corrections to existing approved methods. As such, the EPA expects that these changes will not result in any negative economic impacts.

DATES: This final rule is effective on June 17, 2024, published in the Federal Register April 16, 2024, page 27288.

View final rule.

§136.3 Identification of test procedures.
(a), tables IA, IB, IC, ID, and IHRevisedView text
(b)RevisedView text
(e), table II, Footnote “5”RevisedView text

New Text

§136.3 Identification of test procedures.

(a)

* * * *

Table IA—List of Approved Biological Methods for Wastewater and Sewage Sludge
Parameter and unitsMethod 1EPAStandard methodsAOAC, ASTM, USGSOther
Table IA notes:
1 The method must be specified when results are reported.
2 A 0.45-µm membrane filter (MF) or other pore size certified by the manufacturer to fully retain organisms to be cultivated and to be free of extractables which could interfere with their growth.
3 Microbiological Methods for Monitoring the Environment, Water and Wastes, EPA/600/8-78/017. 1978. US EPA.
4 U.S. Geological Survey Techniques of Water-Resource Investigations, Book 5, Laboratory Analysis, Chapter A4, Methods for Collection and Analysis of Aquatic Biological and Microbiological Samples. 1989. USGS.
5 Because the MF technique usually yields low and variable recovery from chlorinated wastewaters, the Most Probable Number method will be required to resolve any controversies.
6 Tests must be conducted to provide organism enumeration (density). Select the appropriate configuration of tubes/filtrations and dilutions/volumes to account for the quality, character, consistency, and anticipated organism density of the water sample.
7 When the MF method has been used previously to test waters with high turbidity, large numbers of noncoliform bacteria, or samples that may contain organisms stressed by chlorine, a parallel test should be conducted with a multiple-tube technique to demonstrate applicability and comparability of results.
8 To assess the comparability of results obtained with individual methods, it is suggested that side-by-side tests be conducted across seasons of the year with the water samples routinely tested in accordance with the most current Standard Methods for the Examination of Water and Wastewater or EPA alternate test procedure (ATP) guidelines.
9 Annual Book of ASTM Standards—Water and Environmental Technology, Section 11.02. 2000, 1999, 1996. ASTM International.
10 Official Methods of Analysis of AOAC International. 16th Edition, 4th Revision, 1998. AOAC International.
11 Recommended for enumeration of target organism in sewage sludge.
12 The multiple-tube fermentation test is used in 9221B.2-2014. Lactose broth may be used in lieu of lauryl tryptose broth (LTB), if at least 25 parallel tests are conducted between this broth and LTB using the water samples normally tested, and this comparison demonstrates that the false-positive rate and false-negative rate for total coliform using lactose broth is less than 10 percent. No requirement exists to run the completed phase on 10 percent of all total coliform-positive tubes on a seasonal basis.
13 These tests are collectively known as defined enzyme substrate tests.
14 After prior enrichment in a presumptive medium for total coliform using 9221B.2-2014, all presumptive tubes or bottles showing any amount of gas, growth or acidity within 48 h ± 3 h of incubation shall be submitted to 9221F-2014. Commercially available EC-MUG media or EC media supplemented in the laboratory with 50 µg/mL of MUG may be used.
15 Method 1680: Fecal Coliforms in Sewage Sludge (Biosolids) by Multiple-Tube Fermentation Using Lauryl-Tryptose Broth (LTB) and EC Medium, EPA-821-R-14-009. September 2014. U.S. EPA.
16 Samples shall be enumerated by the multiple-tube or multiple-well procedure. Using multiple-tube procedures, employ an appropriate tube and dilution configuration of the sample as needed and report the Most Probable Number (MPN). Samples tested with Colilert® may be enumerated with the multiple-well procedures, Quanti-Tray® or Quanti-Tray®/2000 and the MPN calculated from the table provided by the manufacturer.
17 Colilert-18® is an optimized formulation of the Colilert® for the determination of total coliforms and E. coli that provides results within 18 h of incubation at 35°C rather than the 24 h required for the Colilert® test and is recommended for marine water samples.
18 Descriptions of the Colilert®, Colilert-18®, Quanti-Tray®, and Quanti-Tray®/2000 may be obtained from IDEXX Laboratories, Inc.
19 A description of the mColiBlue24® test is available from Hach Company.
20 Method 1681: Fecal Coliforms in Sewage Sludge (Biosolids) by Multiple-Tube Fermentation Using A-1 Medium, EPA-821-R-06-013. July 2006. U.S. EPA.
21 Method 1603.1: Escherichia coli ( E. coli) in Water by Membrane Filtration Using Modified membrane-Thermotolerant Escherichia coli Agar (Modified mTEC), EPA-821-R-23-008. September 2023. U.S. EPA.
22 Method 1682: Salmonella in Sewage Sludge (Biosolids) by Modified Semisolid Rappaport-Vassiliadis (MSRV) Medium, EPA-821-R-14-012. September 2014. U.S. EPA.
23 A description of the Enterolert® test may be obtained from IDEXX Laboratories Inc.
24 Method 1600.1: Enterococci in Water by Membrane Filtration Using Membrane-Enterococcus Indoxyl-β-D-Glucoside Agar (mEI), EPA-821-R-23-006. September 2023. U.S. EPA.
25 Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, EPA-821-R-02-012. Fifth Edition, October 2002. U.S. EPA; and U.S. EPA Whole Effluent Toxicity Methods Errata Sheet, EPA 821-R-02-012-ES. December 2016.
26 Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, EPA-821-R-02-013. Fourth Edition, October 2002. U.S. EPA; and U.S. EPA Whole Effluent Toxicity Methods Errata Sheet, EPA 821-R-02-012-ES. December 2016.
27 Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Marine and Estuarine Organisms, EPA-821-R-02-014. Third Edition, October 2002. U.S. EPA; and U.S. EPA Whole Effluent Toxicity Methods Errata Sheet, EPA 821-R-02-012-ES. December 2016.
28 To use Colilert-18® to assay for fecal coliforms, the incubation temperature is 44.5 ± 0.2 °C, and a water bath incubator is used.
29 On a monthly basis, at least ten blue colonies from positive samples must be verified using Lauryl Tryptose Broth and EC broth, followed by count adjustment based on these results; and representative non-blue colonies should be verified using Lauryl Tryptose Broth. Where possible, verifications should be done from randomized sample sources.
30 On a monthly basis, at least ten sheen colonies from positive samples must be verified using lauryl tryptose broth and brilliant green lactose bile broth, followed by count adjustment based on these results; and representative non-sheen colonies should be verified using lauryl tryptose broth. Where possible, verifications should be done from randomized sample sources.
31 Subject coliform positive samples determined by 9222 B-2015 or other membrane filter procedure to 9222 I-2015 using NA-MUG media.
32 Verification of colonies by incubation of BHI agar at 10 ± 0.5 °C for 48 ± 3 h is optional. As per the Errata to the 23rd Edition of Standard Methods for the Examination of Water and Wastewater “Growth on a BHI agar plate incubated at 10 ± 0.5 °C for 48 ± 3 h is further verification that the colony belongs to the genus Enterococcus.”
33 9221F. 2-2014 allows for simultaneous detection of E. coli and thermotolerant fecal coliforms by adding inverted vials to EC-MUG; the inverted vials collect gas produced by thermotolerant fecal coliforms.
Bacteria
1. Coliform (fecal), number per gram dry weightMost Probable Number (MPN), 5 tube, 3 dilution, orp. 132, 3 1680, 1115 1681 11209221 E-2014.
Membrane filter (MF), 25 single stepp. 124 39222 D-2015. 29
2. Coliform (fecal), number per 100 mLMPN, 5 tube, 3 dilution, orp. 132 39221 E-2014, 9221 F-2014. 33
Multiple tube/multiple well, orColilert-18®. 131828
MF, 25 single step 5p. 124 39222 D-2015 29B-0050-85. 4
3. Coliform (total), number per 100 mLMPN, 5 tube, 3 dilution, orp. 114 39221 B-2014.
MF, 25 single step orp. 108 39222 B-2015 30B-0025-85. 4
MF, 25 two step with enrichmentp. 111 39222 B-2015. 30
4. E. coli, number per 100 mLMPN 6816 multiple tube, or9221 B2014/9221 F-2014. 121433
multiple tube/multiple well, or9223 B-2016 13991.15 10Colilert®. 1318 Colilert-18®. 131718
MF, 25678 two step, or9222 B-2015/9222 I-2015. 31
Single step1603.1 21m-ColiBlue24®. 19
5. Fecal streptococci, number per 100 mLMPN, 5 tube, 3 dilution, orp. 139 39230 B-2013.
MF, 2 orp. 136 39230 C-2013 32B-0055-85. 4
Plate countp. 143. 3
6. Enterococci, number per 100 mLMPN, 5 tube, 3 dilution, orp. 139 39230 B-2013.
MPN, 68 multiple tube/multiple well, or9230 D-2013D6503-99 9Enterolert®. 1323
MF 25678 single step or1600.1 249230 C-2013. 32
Plate countp. 143. 3
7. Salmonella , number per gram dry weight 11MPN multiple tube1682. 22
Aquatic Toxicity
8. Toxicity, acute, fresh water organisms, LC 50 , percent effluentWater flea, Cladoceran, Ceriodaphnia dubia acute2002.0. 25
Water flea, Cladocerans, Daphnia pulex and Daphnia magna acute2021.0. 25
Fish, Fathead minnow, Pimephales promelas, and Bannerfin shiner, Cyprinella leedsi, acute2000.0. 25
Fish, Rainbow trout, Oncorhynchus mykiss, and brook trout, Salvelinus fontinalis, acute2019.0. 25
9. Toxicity, acute, estuarine and marine organisms of the Atlantic Ocean and Gulf of Mexico, LC 50 , percent effluentMysid, Mysidopsis bahia, acute2007.0. 25
Fish, Sheepshead minnow, Cyprinodon variegatus, acute2004.0. 25
Fish, Silverside, Menidia beryllina, Menidia menidia, and Menidia peninsulae, acute2006.0. 25
10. Toxicity, chronic, fresh water organisms, NOEC or IC 25 , percent effluentFish, Fathead minnow, Pimephales promelas, larval survival and growth1000.0. 26
Fish, Fathead minnow, Pimephales promelas, embryo-larval survival and teratogenicity1001.0. 26
Water flea, Cladoceran, Ceriodaphnia dubia, survival and reproduction1002.0. 26
Green alga, Selenastrum capricornutum, growth1003.0. 26
11. Toxicity, chronic, estuarine and marine organisms of the Atlantic Ocean and Gulf of Mexico, NOEC or IC 25 , percent effluentFish, Sheepshead minnow, Cyprinodon variegatus, larval survival and growth.1004.0. 27
Fish, Sheepshead minnow, Cyprinodon variegatus, embryo-larval survival and teratogenicity1005.0. 27
Fish, Inland silverside, Menidia beryllina, larval survival and growth1006.0. 27
Mysid, Mysidopsis bahia, survival, growth, and fecundity1007.0. 27
Sea urchin, Arbacia punctulata, fertilization1008.0. 27

Table IB—List of Approved Inorganic Test Procedures
ParameterMethodology 58EPA 52Standard methods 84ASTMUSGS/AOAC/Other
Table IB Notes:
1 Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020. Revised March 1983 and 1979, where applicable. U.S. EPA.
2 Methods for Analysis of Inorganic Substances in Water and Fluvial Sediments, Techniques of Water-Resource Investigations of the U.S. Geological Survey, Book 5, Chapter A1., unless otherwise stated. 1989. USGS.
3 Official Methods of Analysis of the Association of Official Analytical Chemists, Methods Manual, Sixteenth Edition, 4th Revision, 1998. AOAC International.
4 For the determination of total metals (which are equivalent to total recoverable metals) the sample is not filtered before processing. A digestion procedure is required to solubilize analytes in suspended material and to break down organic-metal complexes (to convert the analyte to a detectable form for colorimetric analysis). For non-platform graphite furnace atomic absorption determinations, a digestion using nitric acid (as specified in Section 4.1.3 of Methods for Chemical Analysis of Water and Wastes) is required prior to analysis. The procedure used should subject the sample to gentle acid refluxing, and at no time should the sample be taken to dryness. For direct aspiration flame atomic absorption (FLAA) determinations, a combination acid (nitric and hydrochloric acids) digestion is preferred, prior to analysis. The approved total recoverable digestion is described as Method 200.2 in Supplement I of “Methods for the Determination of Metals in Environmental Samples” EPA/600R-94/111, May 1994, and is reproduced in EPA Methods 200.7, 200.8, and 200.9 from the same Supplement. However, when using the gaseous hydride technique or for the determination of certain elements such as antimony, arsenic, selenium, silver, and tin by non-EPA graphite furnace atomic absorption methods, mercury by cold vapor atomic absorption, the noble metals and titanium by FLAA, a specific or modified sample digestion procedure may be required, and, in all cases the referenced method write-up should be consulted for specific instruction and/or cautions. For analyses using inductively coupled plasma-atomic emission spectrometry (ICP-AES), the direct current plasma (DCP) technique or EPA spectrochemical techniques (platform furnace AA, ICP-AES, and ICP-MS), use EPA Method 200.2 or an approved alternate procedure ( e.g., CEM microwave digestion, which may be used with certain analytes as indicated in this table IB); the total recoverable digestion procedures in EPA Methods 200.7, 200.8, and 200.9 may be used for those respective methods. Regardless of the digestion procedure, the results of the analysis after digestion procedure are reported as “total” metals.
5 Copper sulfate or other catalysts that have been found suitable may be used in place of mercuric sulfate.
6 Manual distillation is not required if comparability data on representative effluent samples are on file to show that this preliminary distillation step is not necessary; however, manual distillation will be required to resolve any controversies. In general, the analytical method should be consulted regarding the need for distillation. If the method is not clear, the laboratory may compare a minimum of 9 different sample matrices to evaluate the need for distillation. For each matrix, a matrix spike and matrix spike duplicate are analyzed both with and without the distillation step (for a total of 36 samples, assuming 9 matrices). If results are comparable, the laboratory may dispense with the distillation step for future analysis. Comparable is defined as <20% RPD for all tested matrices). Alternatively, the two populations of spike recovery percentages may be compared using a recognized statistical test.
7 Industrial Method Number 379-75 WE Ammonia, Automated Electrode Method, Technicon Auto Analyzer II. February 19, 1976. Bran & Luebbe Analyzing Technologies Inc.
8 The approved method is that cited in Methods for Determination of Inorganic Substances in Water and Fluvial Sediments, Techniques of Water-Resources Investigations of the U.S. Geological Survey, Book 5, Chapter A1. 1979. USGS.
9 American National Standard on Photographic Processing Effluents. April 2, 1975. American National Standards Institute.
10 In-Situ Method 1003-8-2009, Biochemical Oxygen Demand (BOD) Measurement by Optical Probe. 2009. In-Situ Incorporated.
11 The use of normal and differential pulse voltage ramps to increase sensitivity and resolution is acceptable.
12 Carbonaceous biochemical oxygen demand (CBOD 5) must not be confused with the traditional BOD 5 test method which measures “total 5-day BOD.” The addition of the nitrification inhibitor is not a procedural option but must be included to report the CBOD 5 parameter. A discharger whose permit requires reporting the traditional BOD 5 may not use a nitrification inhibitor in the procedure for reporting the results. Only when a discharger's permit specifically states CBOD 5 is required can the permittee report data using a nitrification inhibitor.
13 OIC Chemical Oxygen Demand Method. 1978. Oceanography International Corporation.
14 Method 8000, Chemical Oxygen Demand, Hach Handbook of Water Analysis, 1979. Hach Company.
15 The back-titration method will be used to resolve controversy.
16 Orion Research Instruction Manual, Residual Chlorine Electrode Model 97-70. 1977. Orion Research Incorporated. The calibration graph for the Orion residual chlorine method must be derived using a reagent blank and three standard solutions, containing 0.2, 1.0, and 5.0 mL 0.00281 N potassium iodate/100 mL solution, respectively.
17 Method 245.7, Mercury in Water by Cold Vapor Atomic Fluorescence Spectrometry, EPA-821-R-05-001. Revision 2.0, February 2005. US EPA.
18 National Council of the Paper Industry for Air and Stream Improvement (NCASI) Technical Bulletin 253 (1971) and Technical Bulletin 803, May 2000.
19 Method 8506, Bicinchoninate Method for Copper, Hach Handbook of Water Analysis. 1979. Hach Company.
20 When using a method with block digestion, this treatment is not required.
21 Industrial Method Number 378-75WA, Hydrogen ion (pH) Automated Electrode Method, Bran & Luebbe (Technicon) Autoanalyzer II. October 1976. Bran & Luebbe Analyzing Technologies.
22 Method 8008, 1,10-Phenanthroline Method using FerroVer Iron Reagent for Water. 1980. Hach Company.
23 Method 8034, Periodate Oxidation Method for Manganese, Hach Handbook of Wastewater Analysis. 1979. Hach Company.
24 Methods for Analysis of Organic Substances in Water and Fluvial Sediments, Techniques of Water-Resources Investigations of the U.S. Geological Survey, Book 5, Chapter A3, (1972 Revised 1987). 1987. USGS.
25 Method 8507, Nitrogen, Nitrite-Low Range, Diazotization Method for Water and Wastewater. 1979. Hach Company.
26 Just prior to distillation, adjust the sulfuric-acid-preserved sample to pH 4 with 1 + 9 NaOH.
27 The colorimetric reaction must be conducted at a pH of 10.0 ± 0.2.
28 Addison, R.F., and R.G. Ackman. 1970. Direct Determination of Elemental Phosphorus by Gas-Liquid Chromatography, Journal of Chromatograph y, 47(3):421-426.
29 Approved methods for the analysis of silver in industrial wastewaters at concentrations of 1 mg/L and above are inadequate where silver exists as an inorganic halide. Silver halides such as the bromide and chloride are relatively insoluble in reagents such as nitric acid but are readily soluble in an aqueous buffer of sodium thiosulfate and sodium hydroxide to pH of 12. Therefore, for levels of silver above 1 mg/L, 20 mL of sample should be diluted to 100 mL by adding 40 mL each of 2 M Na 2 S 2 O 3 and NaOH. Standards should be prepared in the same manner. For levels of silver below 1 mg/L the approved method is satisfactory.
30 The use of EDTA decreases method sensitivity. Analysts may omit EDTA or replace with another suitable complexing reagent provided that all method-specified quality control acceptance criteria are met.
31 For samples known or suspected to contain high levels of silver ( e.g., in excess of 4 mg/L), cyanogen iodide should be used to keep the silver in solution for analysis. Prepare a cyanogen iodide solution by adding 4.0 mL of concentrated NH 4 OH, 6.5 g of KCN, and 5.0 mL of a 1.0 N solution of I 2 to 50 mL of reagent water in a volumetric flask and dilute to 100.0 mL. After digestion of the sample, adjust the pH of the digestate to <7 to prevent the formation of HCN under acidic conditions. Add 1 mL of the cyanogen iodide solution to the sample digestate and adjust the volume to 100 mL with reagent water (NOT acid). If cyanogen iodide is added to sample digestates, then silver standards must be prepared that contain cyanogen iodide as well. Prepare working standards by diluting a small volume of a silver stock solution with water and adjusting the pH>7 with NH 4 OH. Add 1 mL of the cyanogen iodide solution and let stand 1 hour. Transfer to a 100-mL volumetric flask and dilute to volume with water.
32 “Water Temperature-Influential Factors, Field Measurement and Data Presentation,” Techniques of Water-Resources Investigations of the U.S. Geological Survey, Book 1, Chapter D1. 1975. USGS.
33 Method 8009, Zincon Method for Zinc, Hach Handbook of Water Analysis, 1979. Hach Company.
34 Method AES0029, Direct Current Plasma (DCP) Optical Emission Spectrometric Method for Trace Elemental Analysis of Water and Wastes. 1986—Revised 1991. Thermo Jarrell Ash Corporation.
35 In-Situ Method 1004-8-2009, Carbonaceous Biochemical Oxygen Demand (CBOD) Measurement by Optical Probe. 2009. In-Situ Incorporated.
36 Microwave-assisted digestion may be employed for this metal, when analyzed by this methodology. Closed Vessel Microwave Digestion of Wastewater Samples for Determination of Metals. April 16, 1992. CEM Corporation.
37 When determining boron and silica, only plastic, PTFE, or quartz laboratory ware may be used from start until completion of analysis.
38 Only use n -hexane ( n -Hexane—85% minimum purity, 99.0% min. saturated C6 isomers, residue less than 1 mg/L) extraction solvent when determining Oil and Grease parameters—Hexane Extractable Material (HEM), or Silica Gel Treated HEM (analogous to EPA Methods 1664 Rev. A and 1664 Rev. B). Use of other extraction solvents is prohibited.
39 Method PAI-DK01, Nitrogen, Total Kjeldahl, Block Digestion, Steam Distillation, Titrimetric Detection. Revised December 22, 1994. OI Analytical.
40 Method PAI-DK02, Nitrogen, Total Kjeldahl, Block Digestion, Steam Distillation, Colorimetric Detection. Revised December 22, 1994. OI Analytical.
41 Method PAI-DK03, Nitrogen, Total Kjeldahl, Block Digestion, Automated FIA Gas Diffusion. Revised December 22, 1994. OI Analytical.
42 Method 1664 Rev. B is the revised version of EPA Method 1664 Rev. A. U.S. EPA. February 1999, Revision A. Method 1664, n -Hexane Extractable Material (HEM; Oil and Grease) and Silica Gel Treated n -Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry. EPA-821-R-98-002. U.S. EPA. February 2010, Revision B. Method 1664, n -Hexane Extractable Material (HEM; Oil and Grease) and Silica Gel Treated n -Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry. EPA-821-R-10-001.
43 Method 1631, Revision E, Mercury in Water by Oxidation, Purge and Trap, and Cold Vapor Atomic Fluorescence Spectrometry, EPA-821-R-02-019. Revision E. August 2002, U.S. EPA. The application of clean techniques described in EPA's Method 1669: Sampling Ambient Water for Trace Metals at EPA Water Quality Criteria Levels, EPA-821-R-96-011, are recommended to preclude contamination at low-level, trace metal determinations.
44 Method OIA-1677-09, Available Cyanide by Ligand Exchange and Flow Injection Analysis (FIA). 2010. OI Analytical.
45 Open File Report 00-170, Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of Ammonium Plus Organic Nitrogen by a Kjeldahl Digestion Method and an Automated Photometric Finish that Includes Digest Cleanup by Gas Diffusion. 2000. USGS.
46 Open File Report 93-449, Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of Chromium in Water by Graphite Furnace Atomic Absorption Spectrophotometry. 1993. USGS.
47 Open File Report 97-198, Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of Molybdenum by Graphite Furnace Atomic Absorption Spectrophotometry. 1997. USGS.
48 Open File Report 92-146, Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of Total Phosphorus by Kjeldahl Digestion Method and an Automated Colorimetric Finish That Includes Dialysis. 1992. USGS.
49 Open File Report 98-639, Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of Arsenic and Selenium in Water and Sediment by Graphite Furnace-Atomic Absorption Spectrometry. 1999. USGS.
50 Open File Report 98-165, Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of Elements in Whole-water Digests Using Inductively Coupled Plasma-Optical Emission Spectrometry and Inductively Coupled Plasma-Mass Spectrometry. 1998. USGS.
51 Open File Report 93-125, Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of Inorganic and Organic Constituents in Water and Fluvial Sediments. 1993. USGS.
52 Unless otherwise indicated, all EPA methods, excluding EPA Method 300.1, are published in U.S. EPA. May 1994. Methods for the Determination of Metals in Environmental Samples, Supplement I, EPA/600/R-94/111; or U.S. EPA. August 1993. Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100. EPA Method 300.1 is U.S. EPA. Revision 1.0, 1997, including errata cover sheet April 27, 1999. Determination of Inorganic Ions in Drinking Water by Ion Chromatography.
53 Styrene divinyl benzene beads ( e.g., AMCO-AEPA-1 or equivalent) and stabilized formazin ( e.g., Hach StablCal TM or equivalent) are acceptable substitutes for formazin.
54 Waters Corp. Now included in ASTM D6508-15, Test Method for Determination of Dissolved Inorganic Anions in Aqueous Matrices Using Capillary Ion Electrophoresis and Chromate Electrolyte. 2015.
55 Kelada-01, Kelada Automated Test Methods for Total Cyanide, Acid Dissociable Cyanide, and Thiocyanate, EPA 821-B-01-009, Revision 1.2, August 2001. US EPA. Note: A 450-W UV lamp may be used in this method instead of the 550-W lamp specified if it provides performance within the quality control (QC) acceptance criteria of the method in a given instrument. Similarly, modified flow cell configurations and flow conditions may be used in the method, provided that the QC acceptance criteria are met.
56 QuikChem Method 10-204-00-1-X, Digestion and Distillation of Total Cyanide in Drinking and Wastewaters using MICRO DIST and Determination of Cyanide by Flow Injection Analysis. Revision 2.2, March 2005. Lachat Instruments.
57 When using sulfide removal test procedures described in EPA Method 335.4, reconstitute particulate that is filtered with the sample prior to distillation.
58 Unless otherwise stated, if the language of this table specifies a sample digestion and/or distillation “followed by” analysis with a method, approved digestion and/or distillation are required prior to analysis.
59 Samples analyzed for available cyanide using OI Analytical method OIA-1677-09 or ASTM method D6888-16 that contain particulate matter may be filtered only after the ligand exchange reagents have been added to the samples, because the ligand exchange process converts complexes containing available cyanide to free cyanide, which is not removed by filtration. Analysts are further cautioned to limit the time between the addition of the ligand exchange reagents and sample filtration to no more than 30 minutes to preclude settling of materials in samples.
60 Analysts should be aware that pH optima and chromophore absorption maxima might differ when phenol is replaced by a substituted phenol as the color reagent in Berthelot Reaction (“phenol-hypochlorite reaction”) colorimetric ammonium determination methods. For example, when phenol is used as the color reagent, pH optimum and wavelength of maximum absorbance are about 11.5 and 635 nm, respectively—see, Patton, C.J. and S.R. Crouch. March 1977. Anal. Chem. 49:464-469. These reaction parameters increase to pH > 12.6 and 665 nm when salicylate is used as the color reagent—see, Krom, M.D. April 1980. The Analyst 105:305-316.
61 If atomic absorption or ICP instrumentation is not available, the aluminon colorimetric method detailed in the 19th Edition of Standard Methods for the Examination of Water and Wastewater may be used. This method has poorer precision and bias than the methods of choice.
62 Easy (1-Reagent) Nitrate Method, Revision November 12, 2011. Craig Chinchilla.
63 Hach Method 10360, Luminescence Measurement of Dissolved Oxygen in Water and Wastewater and for Use in the Determination of BOD 5 and CBOD 5 . Revision 1.2, October 2011. Hach Company. This method may be used to measure dissolved oxygen when performing the methods approved in this table IB for measurement of biochemical oxygen demand (BOD) and carbonaceous biochemical oxygen demand (CBOD).
64 In-Situ Method 1002-8-2009, Dissolved Oxygen (DO) Measurement by Optical Probe. 2009. In-Situ Incorporated.
65 Mitchell Method M5331, Determination of Turbidity by Nephelometry. Revision 1.0, July 31, 2008. Leck Mitchell.
66 Mitchell Method M5271, Determination of Turbidity by Nephelometry. Revision 1.0, July 31, 2008. Leck Mitchell.
67 Orion Method AQ4500, Determination of Turbidity by Nephelometry. Revision 5, March 12, 2009. Thermo Scientific.
68 EPA Method 200.5, Determination of Trace Elements in Drinking Water by Axially Viewed Inductively Coupled Plasma-Atomic Emission Spectrometry, EPA/600/R-06/115. Revision 4.2, October 2003. US EPA.
69 Method 1627, Kinetic Test Method for the Prediction of Mine Drainage Quality, EPA-821-R-09-002. December 2011. US EPA.
70 Techniques and Methods Book 5-B1, Determination of Elements in Natural-Water, Biota, Sediment and Soil Samples Using Collision/Reaction Cell Inductively Coupled Plasma-Mass Spectrometry, Chapter 1, Section B, Methods of the National Water Quality Laboratory, Book 5, Laboratory Analysis, 2006. USGS.
71 Water-Resources Investigations Report 01-4132, Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of Organic Plus Inorganic Mercury in Filtered and Unfiltered Natural Water with Cold Vapor-Atomic Fluorescence Spectrometry, 2001. USGS.
72 USGS Techniques and Methods 5-B8, Chapter 8, Section B, Methods of the National Water Quality Laboratory Book 5, Laboratory Analysis, 2011 USGS.
73 NECi Method N07-0003, “Nitrate Reductase Nitrate-Nitrogen Analysis,” Revision 9.0, March 2014, The Nitrate Elimination Co., Inc.
74 Timberline Instruments, LLC Method Ammonia-001, “Determination of Inorganic Ammonia by Continuous Flow Gas Diffusion and Conductivity Cell Analysis,” June 2011, Timberline Instruments, LLC.
75 Hach Company Method 10206, “Spectrophotometric Measurement of Nitrate in Water and Wastewater,” Revision 2.1, January 2013, Hach Company.
76 Hach Company Method 10242, “Simplified Spectrophotometric Measurement of Total Kjeldahl Nitrogen in Water and Wastewater,” Revision 1.1, January 2013, Hach Company.
77 National Council for Air and Stream Improvement (NCASI) Method TNTP-W10900, “Total (Kjeldahl) Nitrogen and Total Phosphorus in Pulp and Paper Biologically Treated Effluent by Alkaline Persulfate Digestion,” June 2011, National Council for Air and Stream Improvement, Inc.
78 The pH adjusted sample is to be adjusted to 7.6 for NPDES reporting purposes.
79 I-2057-85 in U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chap. A1, Methods for Determination of Inorganic Substances in Water and Fluvial Sediments, 1989.
80 Methods I-2522-90, I-2540-90, and I-2601-90 in U.S. Geological Survey Open-File Report 93-125, Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of Inorganic and Organic Constituents in Water and Fluvial Sediments, 1993.
81 Method I-4472-97 in U.S. Geological Survey Open-File Report 98-165, Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of Inorganic and Organic Constituents in Water and Fluvial Sediments, 1998.
82 FIAlab 100, “Determination of Inorganic Ammonia by Continuous Flow Gas Diffusion and Fluorescence Detector Analysis”, April 4, 2018, FIAlab Instruments, Inc.
83 MACHEREY-NAGEL GmbH and Co. Method 036/038 NANOCOLOR® COD LR/HR, “Spectrophotometric Measurement of Chemical Oxygen Demand in Water and Wastewater”, Revision 1.5, May 2018, MACHEREY-NAGEL GmbH and Co. KG.
84 Please refer to the following applicable Quality Control Sections: Part 2000 Methods, Physical and Aggregate Properties 2020 (2021); Part 3000 Methods, Metals, 3020 (2021); Part 4000 Methods, Inorganic Nonmetallic Constituents, 4020 (2022); Part 5000 Methods, and Aggregate Organic Constituents, 5020 (2022). These Quality Control Standards are available for download at www.standardmethods.org at no charge.
85 Each laboratory may establish its own control limits by performing at least 25 glucose-glutamic acid (GGA) checks over several weeks or months and calculating the mean and standard deviation. The laboratory may then use the mean ± 3 standard deviations as the control limit for future GGA checks. However, GGA acceptance criteria can be no wider than 198 ± 30.5 mg/L for BOD 5 . GGA acceptance criteria for CBOD must be either 198 ± 30.5 mg/L, or the lab may develop control charts under the following conditions: dissolved oxygen uptake from the seed contribution is between 0.6-1.0 mg/L; control charts are performed on at least 25 GGA checks with three standard deviations from the derived mean; the RSD must not exceed 7.5%; and any single GGA value cannot be less than 150 mg/L or higher than 250 mg/L.
86 The approved method is that cited in Standard Methods for the Examination of Water and Wastewater, 14th Edition, 1976.
1. Acidity (as CaCO 3), mg/LElectrometric endpoint or phenolphthalein endpoint2310 B-2020D1067-16I-1020-85. 2
2. Alkalinity (as CaCO 3), mg/LElectrometric or Colorimetric titration to pH 4.5, Manual2320 B-2021D1067-16973.43, 3 I-1030-85. 2
Automatic310.2 (Rev. 1974) 1I-2030-85. 2
3. Aluminum—Total, 4 mg/LDigestion, 4 followed by any of the following:
AA direct aspiration 363111 D-2019 or 3111 E-2019I-3051-85. 2
AA furnace3113 B-2020.
STGFAA200.9 Rev. 2.2 (1994).
ICP/AES 36200.5 Rev 4.2 (2003), 68 200.7 Rev. 4.4 (1994)3120 B-2020D1976-20I-4471-97. 50
ICP/MS200.8, Rev. 5.4 (1994)3125 B-2020D5673-16993.14, 3 I-4472-97, 81
Direct Current Plasma (DCP) 36D4190-15See footnote. 34
Colorimetric (Eriochrome cyanine R)3500-Al B-2020.
4. Ammonia (as N), mg/LManual distillation 6 or gas diffusion (pH > 11), followed by any of the following:350.1 Rev. 2.0 (1993)4500-NH 3 B-2021973.49. 3
NesslerizationD1426-15 (A)973.49, 3 I-3520-85. 2
Titration4500-NH 3 C-2021.
Electrode4500-NH 3 D-2021 or E-2021D1426-15 (B)
Manual phenate, salicylate, or other substituted phenols in Berthelot reaction-based methods4500-NH 3 F-2021See footnote. 60
Automated phenate, salicylate, or other substituted phenols in Berthelot reaction-based methods350.1, 30 Rev. 2.0 (1993)4500-NH 3 G-2021, 4500-NH 3 H-2021I-4523-85, 2 I-2522-90. 80
Automated electrodeSee footnote. 7
Ion ChromatographyD6919-17.
Automated gas diffusion, followed by conductivity cell analysisTimberline Ammonia-001. 74
Automated gas diffusion followed by fluorescence detector analysisFIAlab100. 82
5. Antimony—Total, 4 mg/LDigestion, 4 followed by any of the following:
AA direct aspiration 363111 B-2019.
AA furnace3113 B-2020.
STGFAA200.9 Rev. 2.2 (1994).
ICP/AES 36200.5 Rev 4.2 (2003), 68 200.7 Rev. 4.4 (1994)3120 B-2020D1976-20.
ICP/MS200.8, Rev. 5.4 (1994)3125 B-2020D5673-16993.14, 3 I-4472-97. 81
6. Arsenic—Total, 4 mg/LDigestion, 4 followed by any of the following:206.5 (Issued 1978). 1
AA gaseous hydride3114 B-2020 or 3114 C-2020D2972-15 (B)I-3062-85. 2
AA furnace3113 B-2020D2972-15 (C)I-4063-98. 49
STGFAA200.9 Rev. 2.2 (1994).
ICP/AES 36200.5, Rev 4.2 (2003), 68 200.7 Rev. 4.4 (1994)3120 B-2020D1976-20.
ICP/MS200.8, Rev. 5.4 (1994)3125 B-2020D5673-16993.14, 3 I-4020-05. 70
Colorimetric (SDDC)3500-As B-2020D2972-15 (A)I-3060-85. 2
7. Barium—Total, 4 mg/LDigestion, 4 followed by any of the following:
AA direct aspiration 363111 D-2019I-3084-85. 2
AA furnace3113 B-2020D4382-18.
ICP/AES 36200.5, Rev 4.2 (2003), 68 200.7 Rev. 4.4 (1994)3120 B-2020I-4471-97. 50
ICP/MS200.8 Rev. 5.4 (1994)3125 B-2020D5673-16993.14, 3 I-4472-97. 81
DCP 36See footnote. 34
8. Beryllium—Total, 4 mg/LDigestion, 4 followed by any of the following:
AA direct aspiration3111 D-2019 or 3111 E-2019D3645-15 (A)I-3095-85. 2
AA furnace3113 B-2020D3645-15 (B).
STGFAA200.9, Rev. 2.2 (1994).
ICP/AES200.5 Rev 4.2 (2003), 68 200.7 Rev. 4.4 (1994)3120 B-2020D1976-20I-4471-97. 50
ICP/MS200.8 Rev. 5.4 (1994)3125 B-2020D5673-16993.14, 3 I-4472-97. 81
DCPD4190-15See footnote. 34
Colorimetric (aluminon)See footnote 61
9. Biochemical oxygen demand (BOD 5), mg/LDissolved Oxygen Depletion5210 B-2016 85973.44 3 p. 17, 9 I-1578-78, 8 see footnote. 1063
10. Boron—Total, 37 mg/LColorimetric (curcumin)4500-B B-2011I-3112-85. 2
ICP/AES200.5 Rev 4.2 (2003), 68 200.7 Rev. 4.4 (1994)3120 B-2020D1976-20I-4471-97. 50
ICP/MS200.8 Rev. 5.4 (1994)3125 B-2020D5673-16993.14. 3
DCPD4190-15See footnote. 34
11. Bromide, mg/LElectrodeD1246-16I-1125-85. 2
Ion Chromatography300.0 Rev 2.1 (1993), and 300.1 Rev 1.0 (1997)4110 B-2020, C-2020 or D-2020D4327-17993.30, 3 I-2057-85. 79
CIE/UV4140 B-2020D6508-15D6508 Rev. 2. 54
12. Cadmium—Total, 4 mg/LDigestion, 4 followed by any of the following:
AA direct aspiration 363111 B-2019 or 3111 C-2019D3557-17 (A or B)974.27 3 p. 37, 9 I-3135-85 2 or I-3136-85. 2
AA furnace3113 B-2020D3557-17 (D)I-4138-89. 51
STGFAA200.9 Rev. 2.2 (1994).
ICP/AES 36200.5 Rev 4.2 (2003), 68 200.7 Rev. 4.4 (1994)3120 B-2020D1976-20I-1472-85 2 or I-4471-97. 50
ICP/MS200.8, Rev. 5.4 (1994)3125 B-2020D5673-16993.14, 3 I-4472-97. 81
DCP 36D4190-15See footnote. 34
Voltammetry 11D3557-17 (C).
Colorimetric (Dithizone)3500-Cd D-1990.
13. Calcium—Total, 4 mg/LDigestion 4 followed by any of the following:
AA direct aspiration3111 B-2019 or 3111 D-2019D511-14 (B)I-3152-85. 2
ICP/MS200.8, Rev. 5.4 (1994)3125 B-2020D5673-16993.14. 3
DCPSee footnote. 34
Titrimetric (EDTA)3500-Ca B-2020D511-14 (A).
Ion ChromatographyD6919-17.
14. Carbonaceous biochemical oxygen demand (CBOD 5), mg/L 12Dissolved Oxygen Depletion with nitrification inhibitor5210 B-2016 85See footnotes. 35 63
15. Chemical oxygen demand (COD), mg/LTitrimetric410.3 (Rev. 1978) 15220 B-2011 or C-2011D1252-06(12) (A)973.46 3 p. 17, 9 I-3560-85. 2
Spectrophotometric, manual or automatic410.4 Rev. 2.0 (1993)5220 D-2011D1252-06(12) (B)See footnotes, 131483 I-3561-85. 2
16. Chloride, mg/LTitrimetric: (silver nitrate)4500-Cl B-2021D512-12 (B)I-1183-85. 2
(Mercuric nitrate)4500-Cl C-2021D512-12 (A)973.51, 3 I-1184-85. 2
Colorimetric: manualI-1187-85. 2
Automated (ferricyanide)4500-Cl E-2021I-2187-85. 2
Potentiometric Titration4500-Cl D-2021.
Ion Selective ElectrodeD512-12 (C).
Ion Chromatography300.0 Rev 2.1 (1993), and 300.1 Rev 1.0 (1997)4110 B-2020 or 4110 C-2020D4327-17993.30, 3 I-2057-90. 51
CIE/UV4140 B-2020D6508-15D6508, Rev. 2. 54
17. Chlorine—Total residual, mg/LAmperometric direct4500-Cl D-2011D1253-14.
Amperometric direct (low level)4500-Cl E-2011.
Iodometric direct4500-Cl B-2011.
Back titration ether end-point 154500-Cl C-2011.
DPD-FAS4500-Cl F-2011.
Spectrophotometric, DPD4500-Cl G-2011.
ElectrodeSee footnote. 16
17A. Chlorine—Free Available, mg/LAmperometric direct4500-Cl D-2011D1253-14.
Amperometric direct (low level)4500-Cl E-2011.
DPD-FAS4500-Cl F-2011.
Spectrophotometric, DPD4500-Cl G-2011.
18. Chromium VI dissolved, mg/L0.45-micron filtration followed by any of the following:
AA chelation-extraction3111 C-2019I-1232-85. 2
Colorimetric (diphenyl-carbazide)3500-Cr B-2020D1687-17 (A)I-1230-85. 2
19. Chromium—Total, 4 mg/LDigestion, 4 followed by any of the following:
AA direct aspiration 363111 B-2019D1687-17 (B)974.27, 3 I-3236-85. 2
AA chelation-extraction3111 C-2019.
AA furnace3113 B-2020D1687-17 (C)I-3233-93. 46
STGFAA200.9 Rev. 2.2 (1994).
ICP/AES 36200.5 Rev 4.2 (2003), 68 200.7 Rev. 4.4 (1994)3120 B-2020D1976-20.
ICP/MS200.8 Rev. 5.4 (1994)3125 B-2020D5673-16993.14, 3 I-4020-05 70 I-4472-97. 81
DCP 36D4190-15See footnote. 34
Colorimetric (diphenyl-carbazide)3500-Cr B-2020.
20. Cobalt—Total, 4 mg/LDigestion, 4 followed by any of the following:
AA direct aspiration3111 B-2019 or 3111 C-2019D3558-15 (A or B)p. 37, 9 I-323985. 2
AA furnace3113 B-2020D3558-15 (C)I-4243-89. 51
STGFAA200.9 Rev. 2.2 (1994).
ICP/AES200.7 Rev. 4.4 (1994)3120 B-2020D1976-20I-4471-97. 50
ICP/MS200.8 Rev. 5.4 (1994)3125 B-2020D5673-16993.14, 3 I-4020-05 70 I-4472-97. 81
DCPD4190-15See footnote. 34
21. Color, platinum cobalt units or dominant wavelength, hue, luminance purityColorimetric (ADMI)2120 F-2021. 78
Platinum cobalt visual comparison2120 B-2021I-1250-85. 2
SpectrophotometricSee footnote. 18
22. Copper—Total, 4 mg/LDigestion, 4 followed by any of the following:
AA direct aspiration 363111 B-2019 or 3111 C-2019D1688-17 (A or B)974.27, 3 p. 37, 9 I-3270-85 2 or I-3271-85. 2
AA furnace3113 B-2020D1688-17 (C)I-4274-89. 51
STGFAA200.9 Rev. 2.2 (1994).
ICP/AES 36200.5 Rev 4.2 (2003), 68 200.7 Rev. 4.4 (1994)3120 B-2020D1976-20I-4471-97. 50
ICP/MS200.8 Rev. 5.4 (1994)3125 B-2020D5673-16993.14, 3 I-4020-05, 70 I-4472-97. 81
DCP 36D4190-15See footnote. 34
Colorimetric (Neocuproine)3500-Cu B-2020.
Colorimetric (Bathocuproine)3500-Cu C-2020See footnote. 19
23. Cyanide—Total, mg/LAutomated UV digestion/distillation and ColorimetryKelada-01. 55
Segmented Flow Injection, In-Line Ultraviolet Digestion, followed by gas diffusion amperometry4500-CN P-2021D7511-12 (17).
Manual distillation with MgCl 2 , followed by any of the following:335.4 Rev. 1.0 (1993) 574500-CN B-2021 and C-2021D2036-09(15)(A), D7284-2010-204-00-1-X. 56
Flow Injection, gas diffusion amperometryD2036-09(15)(A) D7284-20.
Titrimetric4500-CN D-2021D2036-09(15)(A)See footnote 9 p. 22.
Spectrophotometric, manual4500-CN E-2021D2036-09(15)(A)I-3300-85. 2
Semi-Automated 20335.4 Rev. 1.0 (1993) 574500-CN N-202110-204-00-1-X, 56 I-4302-85. 2
Ion ChromatographyD2036-09(15)(A).
Ion Selective Electrode4500-CN F-2021D2036-09(15)(A).
24. Cyanide—Available, mg/LCyanide Amenable to Chlorination (CATC); Manual distillation with MgCl 2 , followed by Titrimetric or Spectrophotometric4500-CN G-2021D2036-09(15)(B).
Flow injection and ligand exchange, followed by gas diffusion amperometry 594500-CN Q-2021D6888-16OIA-1677-09. 44
Automated Distillation and Colorimetry (no UV digestion)Kelada-01. 55
24A. Cyanide—Free, mg/LFlow Injection, followed by gas diffusion amperometry4500-CN R-2021D7237-18 (A)OIA-1677-09. 44
Manual micro-diffusion and colorimetryD4282-15.
25. Fluoride—Total, mg/LManual distillation, 6 followed by any of the following:4500-F B-2021D1179-16 (A).
Electrode, manual4500-F C-2021D1179-16 (B).
Electrode, automated4500-F G-2021I-4327-85. 2
Colorimetric, (SPADNS)4500-F D-2021.
Automated complexone4500-F E-2021.
Ion Chromatography300.0 Rev 2.1 (1993) and 300.1 Rev 1.0 (1997)4110 B-2020 or C-2020D4327-17993.30. 3
CIE/UV4140 B-2020D6508-15D6508, Rev. 2. 54
26. Gold—Total, 4 mg/LDigestion, 4 followed by any of the following:
AA direct aspiration3111 B-2019.
AA furnace231.2 (Issued 1978) 13113 B-2020.
ICP/MS200.8, Rev. 5.4 (1994)3125 B-2020D5673-16993.14. 3
DCPSee footnote. 34
27. Hardness—Total (as CaCO (3) , mg/LAutomated colorimetric130.1 (Issued 1971). 1
Titrimetric (EDTA)2340 C-2021D1126-17973.52B, 3 I-1338-85. 2
Ca plus Mg as their carbonates, by any approved method for Ca and Mg (See Parameters 13 and 33), provided that the sum of the lowest point of quantitation for Ca and Mg is below the NPDES permit requirement for Hardness.2340 B-2021.
28. Hydrogen ion (pH), pH unitsElectrometric measurement4500-H + B-2021D1293-18 (A or B)973.41, 3 I-1586-85. 2
Automated electrode150.2 (Dec. 1982) 1See footnote 21 I-2587-85. 2
29. Iridium—Total, 4 mg/LDigestion, 4 followed by any of the following:
AA direct aspiration3111 B-2019.
AA furnace235.2 (Issued 1978). 1
ICP/MS3125 B-2020.
30. Iron—Total, 4 mg/LDigestion, 4 followed by any of the following:
AA direct aspiration 363111 B-2019 or 3111 C-2019D1068-15 (A)974.27, 3 I-3381-85. 2
AA furnace3113 B-2020D1068-15 (B).
STGFAA200.9, Rev. 2.2 (1994).
ICP/AES 36200.5 Rev. 4.2 (2003), 68 200.7 Rev. 4.4 (1994)3120 B-2020D1976-20I-4471-97. 50
ICP/MS200.8, Rev. 5.4 (1994)3125 B-2020D5673-16993.14. 3
DCP 36D4190-15See footnote. 34
Colorimetric (Phenanthroline)3500-Fe B-2011D1068-15 (C)See footnote. 22
31. Kjeldahl Nitrogen 5 —Total (as N), mg/LManual digestion 20 and distillation or gas diffusion, followed by any of the following:4500-N org B-2021 or C-2021 and 4500-NH 3 B-2021D3590-17 (A)I-4515-91. 45
Titration4500-NH 3 C-2021973.48. 3
NesslerizationD1426-15 (A).
Electrode4500-NH 3 D-2021 or E-2021D1426-15 (B).
Semi-automated phenate350.1 Rev. 2.0 (1993)4500-NH 3 G-2021 or 4500-NH 3 H-2021.
Manual phenate, salicylate, or other substituted phenols in Berthelot reaction based methods4500-NH 3 F-2021See footnote. 60
Automated gas diffusion, followed by conductivity cell analysisTimberline Ammonia-001. 74
Automated gas diffusion followed by fluorescence detector analysisFIAlab 100. 82
Automated Methods for TKN that do not require manual distillation.
Automated phenate, salicylate, or other substituted phenols in Berthelot reaction-based methods colorimetric (auto digestion and distillation)351.1 (Rev. 1978) 1I-4551-78. 8
Semi-automated block digestor colorimetric (distillation not required)351.2 Rev. 2.0 (1993)4500-N org D-2021D3590-17 (B)I-4515-91. 45
Block digester, followed by Auto distillation and TitrationSee footnote. 39
Block digester, followed by Auto distillation and NesslerizationSee footnote. 40
Block Digester, followed by Flow injection gas diffusion (distillation not required)See footnote. 41
Digestion with peroxdisulfate, followed by Spectrophotometric (2,6-dimethyl phenol)Hach 10242. 76
Digestion with persulfate, followed by ColorimetricNCASI TNTP W10900. 77
32. Lead—Total, 4 mg/LDigestion, 4 followed by any of the following:
AA direct aspiration 363111 B-2019 or 3111 C-2019D3559-15 (A or B)974.27, 3 I-3399-85. 2
AA furnace3113 B-2020D3559-15 (D)I-4403-89. 51
STGFAA200.9 Rev. 2.2 (1994).
ICP/AES 36200.5 Rev. 4.2 (2003), 68 200.7 Rev. 4.4 (1994)3120 B-2020D1976-20I-4471-97. 50
ICP/MS200.8 Rev. 5.4 (1994)3125 B-2020D5673-16993.14, 3 I-4472-97. 81
DCP 36D4190-15See footnote. 34
Voltammetry 11D3559-15 (C).
Colorimetric (Dithizone)3500-Pb B-2020.
33. Magnesium—Total, 4 mg/LDigestion, 4 followed by any of the following:
AA direct aspiration3111 B-2019D511-14 (B)974.27, 3 I-3447-85. 2
ICP/AES200.5 Rev. 4.2 (2003), 68 200.7 Rev. 4.4 (1994)3120 B-2020D1976-20I-4471-97. 50
ICP/MS200.8 Rev. 5.4 (1994)3125 B-2020D5673-16993.14. 3
DCPSee footnote. 34
Ion ChromatographyD6919-17.
34. Manganese—Total, 4 mg/LDigestion, 4 followed by any of the following:
AA direct aspiration 363111 B-2019 or 3111 C-2019D858-17 (A or B)974.27, 3 I-3454-85. 2
AA furnace3113 B-2020D858-17 (C).
STGFAA200.9 Rev. 2.2 (1994).
ICP/AES 36200.5, Rev. 4.2 (2003); 68 200.7, Rev. 4.4 (1994)3120 B-2020D1976-20I-4471-97. 50
ICP/MS200.8 Rev. 5.4 (1994)3125 B-2020D5673-16993.14, 3 I-4472-97. 81
DCP 36D4190-15See footnote. 34
Colorimetric (Persulfate)3500-Mn B-2020920.203. 3
Colorimetric (Periodate)See footnote. 23
35. Mercury—Total, mg/LCold vapor, Manual245.1 Rev. 3.0 (1994)3112 B-2020D3223-17977.22, 3 I-3462-85. 2
Cold vapor, Automated245.2 (Issued 1974). 1
Cold vapor atomic fluorescence spectrometry (CVAFS)245.7 Rev. 2.0 (2005) 17I-4464-01. 71
Purge and Trap CVAFS1631E. 43
36. Molybdenum—Total, 4 mg/LDigestion, 4 followed by any of the following:
AA direct aspiration3111 D-2019I-3490-85. 2
AA furnace3113 B-2020I-3492-96. 47
ICP/AES200.7 Rev. 4.4 (1994)3120 B-2020D1976-20I-4471-97. 50
ICP/MS200.8 Rev. 5.4 (1994)3125 B-2020D5673-16993.14, 3 I-4472-97. 81
DCPSee footnote. 34
37. Nickel—Total, 4 mg/LDigestion, 4 followed by any of the following:
AA direct aspiration 363111 B-2019 or 3111 C-2019D1886-14 (A or B)I-3499-85. 2
AA furnace3113 B-2020D1886-14 (C)I-4503-89. 51
STGFAA200.9 Rev. 2.2 (1994).
ICP/AES 36200.5 Rev. 4.2 (2003), 68 200.7 Rev. 4.4 (1994)3120 B-2020D1976-20I-4471-97. 50
ICP/MS200.8, Rev. 5.4 (1994)3125 B-2020D5673-16993.14, 3 I-4020-05, 70 I-4472-97. 81
DCP 36D4190-15See footnote. 34
38. Nitrate (as N), mg/LIon Chromatography300.0 Rev. 2.1 (1993) and 300.1 Rev. 1.0 (1997)4110 B-2020 or C-2020D4327-17993.30. 3
CIE/UV4140 B-2020D6508-15D6508, Rev. 2. 54
Ion Selective Electrode4500-NO 3 D-2019.
Colorimetric (Brucine sulfate)352.1 (Issued 1971) 1973.50, 3 419D, 86 p. 28. 9
Spectrophotometric (2,6-dimethylphenol)Hach 10206. 75
Nitrate-nitrite N minus Nitrite N (see parameters 39 and 40).
39. Nitrate-nitrite (as N), mg/LCadmium reduction, Manual4500-NO 3 E-2019D3867-16 (B).
Cadmium reduction, Automated353.2 Rev. 2.0 (1993)4500-NO 3 F-2019 or 4500-NO 3 I-2019D3867-16 (A)I-2545-90. 51
Automated hydrazine4500-NO 3 H-2019.
Reduction/ColorimetricSee footnote. 62
Ion Chromatography300.0 Rev. 2.1 (1993) and 300.1 Rev. 1.0 (1997)4110 B-2020 or C-2020D4327-17993.30. 3
CIE/UV4140 B-2020D6508-15D6508, Rev. 2. 54
Enzymatic reduction, followed by automated colorimetric determinationD7781-14I-2547-11, 72 I-2548-11, 72 N07-0003. 73
Enzymatic reduction, followed by manual colorimetric determination4500-NO 3 J-2018.
Spectrophotometric (2,6-dimethylphenol)Hach 10206. 75
40. Nitrite (as N), mg/LSpectrophotometric: Manual4500-NO 2 B-2021See footnote. 25
Automated (Diazotization)I-4540-85 2 see footnote, 62 I-2540-90. 80
Automated (*bypass cadmium reduction)353.2 Rev. 2.0 (1993)4500-NO 3 F-2019, 4500-NO 3 I-2019D3867-16 (A)I-4545-85. 2
Manual (*bypass cadmium or enzymatic reduction)4500-NO 3 E-2019, 4500-NO 3 J-2018D3867-16 (B).
Ion Chromatography300.0 Rev. 2.1 (1993) and 300.1 Rev. 1.0 (1997)4110 B-2020 or C-2020D4327-17993.30. 3
CIE/UV4140 B-2020D6508-15D6508, Rev. 2. 54
Automated (*bypass Enzymatic reduction)D7781-14I-2547-11, 72 I-2548-11, 72 N07-0003. 73
41. Oil and grease—Total recoverable, mg/LHexane extractable material (HEM): n -Hexane extraction and gravimetry1664 Rev. A 1664 Rev. B 425520 B or G-2021. 38
Silica gel treated HEM (SGT-HEM): Silica gel treatment and gravimetry1664 Rev. A, 1664 Rev. B 425520 B or G-2021 38 and 5520 F-2021. 38
42. Organic carbon—Total (TOC), mg/LCombustion5310 B-2014D7573-18a e1973.47, 3 p. 14. 24
Heated persulfate or UV persulfate oxidation5310 C-2014, 5310 D-2011D4839-03(17)973.47, 3, p. 14. 24
43. Organic nitrogen (as N), mg/LTotal Kjeldahl N (Parameter 31) minus ammonia N (Parameter 4).
44. Ortho-phosphate (as P), mg/LAscorbic acid method:
Automated365.1 Rev. 2.0 (1993)4500-P F-2021 or G-2021973.56, 3 I-4601-85, 2 I-2601-90. 80
Manual, single-reagent4500-P E-2021D515-88 (A)973.55. 3
Manual, two-reagent365.3 (Issued 1978). 1
Ion Chromatography300.0 Rev. 2.1 (1993) and 300.1 Rev. 1.0 (1997)4110 B-2020 or C-2020D4327-17993.30. 3
CIE/UV4140 B-2020D6508-15D6508, Rev. 2. 54
45. Osmium—Total 4 , mg/LDigestion, 4 followed by any of the following:
AA direct aspiration3111 D-2019.
AA furnace252.2 (Issued 1978). 1
46. Oxygen, dissolved, mg/LWinkler (Azide modification)4500-O (B-F)-2021D888-18 (A)973.45B, 3 I-1575-78. 8
Electrode4500-O G-2021D888-18 (B)I-1576-78. 8
Luminescence-Based Sensor4500-O H-2021D888-18 (C)See footnotes.
47. Palladium—Total, 4 mg/LDigestion, 4 followed by any of the following:
AA direct aspiration3111 B-2019.
AA furnace253.2 (Issued 1978). 1
ICP/MS3125 B-2020.
DCPSee footnote. 34
48. Phenols, mg/LManual distillation, 26 followed by any of the following:420.1 (Rev. 1978) 15530 B-2021D1783-01(12)
Colorimetric (4AAP) manual420.1 (Rev. 1978) 15530 D-2021 27D1783-01(12) (A or B).
Automated colorimetric (4AAP)420.4 Rev. 1.0 (1993).
49. Phosphorus (elemental), mg/LGas-liquid chromatographySee footnote. 28
50. Phosphorus—Total, mg/LDigestion, 20 followed by any of the following:4500-P B (5)-2021973.55. 3
Manual365.3 (Issued 1978) 14500-P E-2021D515-88 (A).
Automated ascorbic acid reduction365.1 Rev. 2.0 (1993)4500-P (F-H)-2021973.56, 3 I-4600-85. 2
ICP/AES 436200.7Rev. 4.4 (1994)3120 B-2020I-4471-97. 50
Semi-automated block digestor (TKP digestion)365.4 (Issued 1974) 1D515-88 (B)I-4610-91. 48
Digestion with persulfate, followed by ColorimetricNCASI TNTP W10900. 77
51. Platinum—Total, 4 mg/LDigestion, 4 followed by any of the following:
AA direct aspiration3111 B-2019.
AA furnace255.2 (Issued 1978). 1
ICP/MS3125 B-2020.
DCPSee footnote. 34
52. Potassium—Total, 4 mg/LDigestion, 4 followed by any of the following:
AA direct aspiration3111 B-2019973.5, 3 I-3630-85. 2
ICP/AES200.7 Rev. 4.4 (1994)3120 B-2020.
ICP/MS200.8, Rev. 5.4 (1994)3125 B-2020D5673-16993.14. 3
Flame photometric3500-K B-2020.
Electrode3500-K C-2020.
Ion ChromatographyD6919-17.
53. Residue—Total, mg/LGravimetric, 103-105°2540 B-2020I-3750-85. 2
54. Residue—filterable, mg/LGravimetric, 180°2540 C-2020D5907-18 (B)I-1750-85. 2
55. Residue—non-filterable (TSS), mg/LGravimetric, 103-105° post-washing of residue2540 D-2020D5907-18 (A)I-3765-85. 2
56. Residue—settleable, mg/LVolumetric (Imhoff cone), or gravimetric2540 F-2020.
57. Residue—Volatile, mg/LGravimetric, 550°160.4 (Issued 1971) 12540 E-2020I-3753-85. 2
58. Rhodium—Total, 4 mg/LDigestion, 4 followed by any of the following:
AA direct aspiration, or3111 B-2019.
AA furnace265.2 (Issued 1978). 1
ICP/MS3125 B-2020.
59. Ruthenium—Total, 4 mg/LDigestion, 4 followed by any of the following:
AA direct aspiration, or3111 B-2019.
AA furnace267.2. 1
ICP/MS3125 B-2020.
60. Selenium—Total, 4 mg/LDigestion, 4 followed by any of the following:
AA furnace3113 B-2020D3859-15 (B)I-4668-98. 49
STGFAA200.9 Rev. 2.2 (1994).
ICP/AES 36200.5 Rev 4.2 (2003), 68 200.7 Rev. 4.4 (1994)3120 B-2020D1976-20.
ICP/MS200.8 Rev. 5.4 (1994)3125 B-2020D5673-16993.14, 3 I-4020-05 70 I-4472-97. 81
AA gaseous hydride3114 B-2020, or 3114 C-2020D3859-15 (A)I-3667-85. 2
61. Silica—Dissolved, 37 mg/L0.45-micron filtration followed by any of the following:
Colorimetric, Manual4500-SiO 2 C-2021D859-16I-1700-85. 2
Automated (Molybdosilicate)4500-SiO 2 E-2021 or F-2021I-2700-85. 2
ICP/AES200.5 Rev. 4.2 (2003), 68 200.7 Rev. 4.4 (1994)3120 B-2020I-4471-97. 50
ICP/MS200.8 Rev. 5.4 (1994)3125 B-2020D5673-16993.14. 3
62. Silver—Total, 4 31 mg/LDigestion, 4 29 followed by any of the following:
AA direct aspiration3111 B-2019 or 3111 C-2019974.27, 3 p. 37, 9 I-3720-85. 2
AA furnace3113 B-2020I-4724-89. 51
STGFAA200.9 Rev. 2.2 (1994).
ICP/AES200.5 Rev. 4.2 (2003), 68 200.7 Rev. 4.4 (1994)3120 B-2020D1976-20I-4471-97. 50
ICP/MS200.8 Rev. 5.4 (1994)3125 B-2020D5673-16993.14, 3 I-4472-97. 81
DCPSee footnote. 34
63. Sodium—Total, 4 mg/LDigestion, 4 followed by any of the following:
AA direct aspiration3111 B-2019973.54, 3 I-3735-85. 2
ICP/AES200.5 Rev. 4.2 (2003), 68 200.7 Rev. 4.4 (1994)3120 B-2020I-4471-97. 50
ICP/MS200.8 Rev. 5.4 (1994)3125 B-2020D5673-16993.14. 3
DCPSee footnote. 34
Flame photometric3500-Na B-2020.
Ion ChromatographyD6919-17.
64. Specific conductance, micromhos/cm at 25 °CWheatstone bridge120.1 (Rev. 1982) 12510 B-2021D1125-95(99) (A)973.40, 3 I-2781-85. 2
65. Sulfate (as SO 4), mg/LAutomated colorimetric375.2 Rev. 2.0 (1993)4500-SO 42 F-2021 or G-2021.
Gravimetric4500-SO 42 C-2021 or D-2021925.54. 3
Turbidimetric4500-SO 42 E-2021D516-16.
Ion Chromatography300.0 Rev. 2.1 (1993) and 300.1 Rev. 1.0 (1997)4110 B-2020 or C-2020D4327-17993.30, 3 I-4020-05. 70
CIE/UV4140 B-2020D6508-15D6508 Rev. 2. 54
66. Sulfide (as S), mg/LSample Pretreatment4500-S 2 B, C-2021.
Titrimetric (iodine)4500-S 2 F-2021I-3840-85. 2
Colorimetric (methylene blue)4500-S 2 D-2021.
Ion Selective Electrode4500-S 2 G-2021D4658-15.
67. Sulfite (as SO 3), mg/LTitrimetric (iodine-iodate)4500-SO 32 B-2021.
68. Surfactants, mg/LColorimetric (methylene blue)5540 C-2021D2330-20.
69. Temperature, °CThermometric2550 B-2010See footnote. 32
70. Thallium-Total, 4 mg/LDigestion, 4 followed by any of the following:
AA direct aspiration3111 B-2019.
AA furnace279.2 (Issued 1978) 13113 B-2020.
STGFAA200.9 Rev. 2.2 (1994).
ICP/AES200.7 Rev. 4.4 (1994)3120 B-2020D1976-20.
ICP/MS200.8, Rev. 5.4 (1994)3125 B-2020D5673-16993.14, 3 I-4471-97 50 I-4472-97. 81
71. Tin—Total, 4 mg/LDigestion, 4 followed by any of the following:
AA direct aspiration3111 B-2019I-3850-78. 8
AA furnace3113 B-2020.
STGFAA200.9 Rev. 2.2 (1994).
ICP/AES200.5 Rev. 4.2 (2003), 68 200.7 Rev. 4.4 (1994).
ICP/MS200.8 Rev. 5.4 (1994)3125 B-2020D5673-16993.14. 3
72. Titanium—Total, 4 mg/LDigestion, 4 followed by any of the following:
AA direct aspiration3111 D-2019.
AA furnace283.2 (Issued 1978). 1
ICP/AES200.7 Rev. 4.4 (1994).
ICP/MS200.8 Rev. 5.4 (1994)3125 B-2020D5673-16993.14. 3
DCPSee footnote. 34
73. Turbidity, NTU 53Nephelometric180.1, Rev. 2.0 (1993)2130 B-2020D1889-00I-3860-85, 2 see footnotes. 656667
74. Vanadium—Total, 4 mg/LDigestion, 4 followed by any of the following:
AA direct aspiration3111 D-2019.
AA furnace3113 B-2020D3373-17.
ICP/AES200.5 Rev. 4.2 (2003), 68 200.7 Rev. 4.4 (1994)3120 B-2020D1976-20I-4471-97. 50
ICP/MS200.8 Rev. 5.4 (1994)3125 B-2020D5673-16993.14, 3 I-4020-05. 70
DCPD4190-15See footnote. 34
Colorimetric (Gallic Acid)3500-V B-2011.
75. Zinc—Total, 4 mg/LDigestion, 4 followed by any of the following:
AA direct aspiration 363111 B-2019 or 3111 C-2019D1691-17 (A or B)974.27 3 p. 37, 9 I-3900-85. 2
AA furnace289.2 (Issued 1978). 1
ICP/AES 36200.5 Rev. 4.2 (2003), 68 200.7, Rev. 4.4 (1994)3120 B-2020D1976-20I-4471-97. 50
ICP/MS200.8 Rev. 5.4 (1994)3125 B-2020D5673-16993.14, 3 I-4020-05, 70 I-4472-97. 81
DCP 36D4190-15See footnote. 34
Colorimetric (Zincon)3500 Zn B-2020See footnote. 33
76. Acid Mine Drainage1627. 69

Table IC—List of Approved Test Procedures for Non-Pesticide Organic Compounds
Parameter 1MethodEPA 27Standard methods 17ASTMOther
1. AcenaphtheneGC610
GC/MS625.1, 1625B6410 B-2020See footnote 9 p. 27.
HPLC6106440 B-2021D4657-92 (98).
2. AcenaphthyleneGC610
GC/MS625.1, 1625B6410 B-2020See footnote 9 p. 27.
HPLC6106440 B-2021D4657-92 (98).
3. AcroleinGC603
GC/MS624.1 4 , 1624B.
4. AcrylonitrileGC603
GC/MS624.1 4 , 1624BO-4127-96. 13
5. AnthraceneGC610
GC/MS625.1, 1625B6410 B-2020See footnote 9 p. 27.
HPLC6106440 B-2021D4657-92 (98).
6. BenzeneGC6026200 C-2020.
GC/MS624.1, 1624B6200 B-2020O-4127-96 13 , O-4436-16. 14
7. BenzidineSpectro-photometricSee footnote 3 p.1.
GC/MS625.1 5 , 1625B6410 B-2020.
HPLC605
8. Benzo(a)anthraceneGC610
GC/MS625.1, 1625B6410 B-2020See footnote 9 p. 27.
HPLC6106440 B-2021D4657-92 (98).
9. Benzo(a)pyreneGC610
GC/MS625.1, 1625B6410 B-2020See footnote 9 p. 27.
HPLC6106440 B-2021D4657-92 (98).
10. Benzo(b)fluorantheneGC610
GC/MS625.1, 1625B6410 B-2020See footnote 9 p. 27.
HPLC6106440 B-2021D4657-92 (98).
11. Benzo(g,h,i)peryleneGC610
GC/MS625.1, 1625B6410 B-2020See footnote 9 p. 27.
HPLC6106440 B-2021D4657-92 (98).
12. Benzo(k)fluorantheneGC610
GC/MS625.1, 1625B6410 B-2020See footnote 9 p. 27.
HPLC6106440 B-2021D4657-92 (98).
13. Benzyl chlorideGCSee footnote 3 p. 130.
GC/MSSee footnote 6 p. S102.
14. Butyl benzyl phthalateGC606
GC/MS625.1, 1625B6410 B-2020See footnote 9 p. 27.
15. bis(2-Chloroethoxy) methaneGC611
GC/MS625.1, 1625B6410 B-2020See footnote 9 p. 27.
16. bis(2-Chloroethyl) etherGC611
GC/MS625.1, 1625B6410 B-2020See footnote 9 p. 27.
17. bis(2-Ethylhexyl) phthalateGC606
GC/MS625.1, 1625B6410 B-2020See footnote 9 p. 27.
18. BromodichloromethaneGC6016200 C-2020.
GC/MS624.1, 1624B6200 B-2020O-4127-96 13 , O-4436-16. 14
19. BromoformGC6016200 C-2020.
GC/MS624.1, 1624B6200 B-2020O-4127-96 13 , O-4436-16. 14
20. BromomethaneGC6016200 C-2020.
GC/MS624.1, 1624B6200 B-2020O-4127-96 13 , O-4436-16. 14
21. 4-Bromophenyl phenyl etherGC611
GC/MS625.1, 1625B6410 B-2020See footnote 9 p. 27.
22. Carbon tetrachlorideGC6016200 C-2020See footnote 3 p. 130.
GC/MS624.1, 1624B6200 B-2020O-4127-96 13 , O-4436-16. 14
23. 4-Chloro-3-methyl phenolGC6046420 B-2021.
GC/MS625.1, 1625B6410 B-2020See footnote 9 p. 27.
24. ChlorobenzeneGC601, 6026200 C-2020See footnote 3 p. 130.
GC/MS624.1, 1624B6200 B-2020O-4127-96 13 O-4436-16. 14
25. ChloroethaneGC6016200 C-2020.
GC/MS624.1, 1624B6200 B-2020O-4127-96. 13
26. 2-Chloroethylvinyl etherGC601
GC/MS624.1, 1624B.
27. ChloroformGC6016200 C-2020See footnote 3 p. 130.
GC/MS624.1, 1624B6200 B-2020O-4127-96 13 , O-4436-16. 14
28. ChloromethaneGC6016200 C-2020.
GC/MS624.1, 1624B6200 B-2020O-4127-96 13 , O-4436-16. 14
29. 2-ChloronaphthaleneGC612
GC/MS625.1, 1625B6410 B-2020See footnote 9 p. 27.
30. 2-ChlorophenolGC6046420 B-2021.
GC/MS625.1, 1625B6410 B-2020See footnote 9 p. 27.
31. 4-Chlorophenyl phenyl etherGC611
GC/MS625.1, 1625B6410 B-2020See footnote 9 p. 27.
32. ChryseneGC610
GC/MS625.1, 1625B6410 B-2020See footnote 9 p. 27.
HPLC6106440 B-2021D4657-92 (98).
33. Dibenzo(a,h)anthraceneGC610
GC/MS625.1, 1625B6410 B-2020See footnote 9 p. 27.
HPLC6106440 B-2021D4657-92 (98).
34. DibromochloromethaneGC6016200 C-2020.
GC/MS624.1, 1624B6200 B-2020O-4127-96 13 , O-4436-16. 14
35. 1,2-DichlorobenzeneGC601, 6026200 C-2020.
GC/MS624.1, 1625B6200 B-2020See footnote 9 p. 27, O-4127-96 13 , O-4436-16. 14
36. 1,3-DichlorobenzeneGC601, 6026200 C-2020.
GC/MS624.1, 1625B6200 B-2020See footnote 9 p. 27, O-4127-96. 13
37. 1,4-DichlorobenzeneGC601, 6026200 C-2020.
GC/MS624.1, 1625B6200 B-2020See footnote 9 p. 27, O-4127-96 13 , O-4436-16. 14
38. 3,3′-DichlorobenzidineGC/MS625.1, 1625B6410 B-2020.
HPLC605.
39. DichlorodifluoromethaneGC601.
GC/MS6200 B-2020O-4127-96 13 , O-4436-16. 14
40. 1,1-DichloroethaneGC6016200 C-2020.
GC/MS624.1, 1624B6200 B-2020O-4127-96 13 , O-4436-16. 14
41. 1,2-DichloroethaneGC6016200 C-2020.
GC/MS624.1, 1624B6200 B-2020O-4127-96 13 , O-4436-16. 14
42. 1,1-DichloroetheneGC6016200 C-2020.
GC/MS624.1, 1624B6200 B-2020O-4127-96 13 , O-4436-16. 14
43. trans -1,2-DichloroetheneGC6016200 C-2020.
GC/MS624.1, 1624B6200 B-2020O-4127-96 13 , O-4436-16. 14
44. 2,4-DichlorophenolGC6046420 B-2021.
GC/MS625.1, 1625B6410 B-2020See footnote 9 p. 27.
45. 1,2-DichloropropaneGC6016200 C-2020.
GC/MS624.1, 1624B6200 B-2020O-4127-96 13 O-4436-16. 14
46. cis -1,3-DichloropropeneGC6016200 C-2020.
GC/MS624.1, 1624B6200 B-2020O-4127-96 13 , O-4436-16. 14
47. trans -1,3-DichloropropeneGC6016200 C-2020.
GC/MS624.1, 1624B6200 B-2020O-4127-96 13 , O-4436-16. 14
48. Diethyl phthalateGC606.
GC/MS625.1, 1625B6410 B-2020See footnote 9 p. 27.
49. 2,4-DimethylphenolGC6046420 B-2021.
GC/MS625.1, 1625B6410 B-2020See footnote 9 p. 27.
50. Dimethyl phthalateGC606.
GC/MS625.1, 1625B6410 B-2020See footnote 9 p. 27.
51. Di- n -butyl phthalateGC606.
GC/MS625.1, 1625B6410 B-2020See footnote 9 p. 27.
52. Di- n -octyl phthalateGC606.
GC/MS625.1, 1625B6410 B-2020See footnote 9 p. 27.
53. 2, 4-DinitrophenolGC6046420 B-2021See footnote 9 p. 27.
GC/MS625.1, 1625B6410 B-2020.
54. 2,4-DinitrotolueneGC609.
GC/MS625.1, 1625B6410 B-2020See footnote 9 p. 27.
55. 2,6-DinitrotolueneGC609.
GC/MS625.1, 1625B6410 B-2020See footnote 9 p. 27.
56. EpichlorohydrinGCSee footnote 3 p. 130.
GC/MSSee footnote 6 p. S102.
57. EthylbenzeneGC6026200 C-2020.
GC/MS624.1, 1624B6200 B-2020O-4127-96 13 , O-4436-16. 14
58. FluorantheneGC610.
GC/MS625.1, 1625B6410 B-2020See footnote 9 p. 27.
HPLC6106440 B-2021D4657-92 (98).
59. FluoreneGC610.
GC/MS625.1, 1625B6410 B-2020See footnote 9 p. 27.
HPLC6106440 B-2021D4657-92 (98).
60. 1,2,3,4,6,7,8-Heptachloro-dibenzofuranGC/MS1613B 10SGS AXYS 16130 15 , PAM 16130-SSI. 16
61. 1,2,3,4,7,8,9-Heptachloro-dibenzofuranGC/MS1613B 10SGS AXYS 16130 15 , PAM 16130-SSI. 16
62. 1,2,3,4,6,7,8- Heptachloro-dibenzo- p -dioxinGC/MS1613B 10SGS AXYS 16130 15 , PAM 16130-SSI. 16
63. HexachlorobenzeneGC612.
GC/MS625.1, 1625B6410 B-2020See footnote 9 p. 27.
64. HexachlorobutadieneGC612.
GC/MS625.1, 1625B6410 B-2020See footnote 9 p. 27, O-4127-96. 13
65. HexachlorocyclopentadieneGC612.
GC/MS625.1 5 , 1625B6410 B-2020See footnote 9 , p. 27, O-4127-96. 13
66. 1,2,3,4,7,8-Hexachloro-dibenzofuranGC/MS1613B 10SGS AXYS 16130 15 , PAM 16130-SSI. 16
67. 1,2,3,6,7,8-Hexachloro-dibenzofuranGC/MS1613B 10SGS AXYS 16130 15 , PAM 16130-SSI. 16
68. 1,2,3,7,8,9-Hexachloro-dibenzofuranGC/MS1613B 10SGS AXYS 16130 15 , PAM 16130-SSI. 16
69. 2,3,4,6,7,8-Hexachloro-dibenzofuranGC/MS1613B 10SGS AXYS 16130 15 , PAM 16130-SSI. 16
70. 1,2,3,4,7,8-Hexachloro-dibenzo- p -dioxinGC/MS1613B 10SGS AXYS 16130 15 , PAM 16130-SSI. 16
71. 1,2,3,6,7,8-Hexachloro-dibenzo- p -dioxinGC/MS1613B 10SGS AXYS 16130 15 , PAM 16130-SSI. 16
72. 1,2,3,7,8,9-Hexachloro-dibenzo- p -dioxinGC/MS1613B 10SGS AXYS 16130 15 , PAM 16130-SSI. 16
73. HexachloroethaneGC612.
GC/MS625.1, 1625B6410 B-2020See footnote 9 p. 27, O-4127-96. 13
74. Indeno(1,2,3-c,d) pyreneGC610.
GC/MS625.1, 1625B6410 B-2020See footnote 9 p. 27.
HPLC6106440 B-2021D4657-92 (98).
75. IsophoroneGC609.
GC/MS625.1, 1625B6410 B-2020See footnote 9 p. 27.
76. Methylene chlorideGC6016200 C-2020See footnote 3 p. 130.
GC/MS624.1, 1624B6200 B-2020O-4127-96 13 , O-4436-16. 14
77. 2-Methyl-4,6-dinitrophenolGC6046420 B-2021.
GC/MS625.1, 1625B6410 B-2020See footnote 9 p. 27.
78. NaphthaleneGC610.
GC/MS625.1, 1625B6410 B-2020See footnote 9 p. 27.
HPLC6106440 B-2021.
79. NitrobenzeneGC609.
GC/MS625.1, 1625B6410 B-2020See footnote 9 p. 27.
HPLCD4657-92 (98).
80. 2-NitrophenolGC6046420 B-2021.
GC/MS625.1, 1625B6410 B-2020See footnote 9 p. 27.
81. 4-NitrophenolGC6046420 B-2021.
GC/MS625.1, 1625B6410 B-2020See footnote 9 p. 27.
82. N-NitrosodimethylamineGC607.
GC/MS625.1 5 , 1625B6410 B-2020See footnote 9 p. 27.
83. N-Nitrosodi- n -propylamineGC607.
GC/MS625.1 5 , 1625B6410 B-2020See footnote 9 p. 27.
84. N-NitrosodiphenylamineGC607.
GC/MS625.1 5 , 1625B6410 B-2020See footnote 9 p. 27.
85. OctachlorodibenzofuranGC/MS1613B 10SGS AXYS 16130 15 , PAM 16130-SSI. 16
86. Octachlorodibenzo- p -dioxinGC/MS1613B 10SGS AXYS 16130 15 , PAM 16130-SSI. 16
87. 2,2′-oxybis(1-chloropropane) 12 [also known as bis(2-Chloro-1-methylethyl) ether]GC611.
GC/MS625.1, 1625B6410 B-2020See footnote 9 p. 27.
88. PCB-1016GC608.3See footnote 3 p. 43, see footnote. 8
GC/MS625.16410 B-2020.
89. PCB-1221GC608.3See footnote 3 p. 43, see footnote. 8
GC/MS625.16410 B-2020.
90. PCB-1232GC608.3See footnote 3 p. 43, see footnote. 8
GC/MS625.16410 B-2020.
91. PCB-1242GC608.3See footnote 3 p. 43, see footnote. 8
GC/MS625.16410 B-2020.
92. PCB-1248GC608.3See footnote 3 p. 43, see footnote. 8
GC/MS625.16410 B-2020.
93. PCB-1254GC608.3See footnote 3 p. 43, see footnote. 8
GC/MS625.16410 B-2020.
94. PCB-1260GC608.3See footnote 3 p. 43, see footnote. 8
GC/MS625.16410 B-2020.
95. 1,2,3,7,8-Pentachloro-dibenzofuranGC/MS1613B 10SGS AXYS 16130 15 , PAM 16130-SSI. 16
96. 2,3,4,7,8-Pentachloro-dibenzofuranGC/MS1613B 10SGS AXYS 16130 15 , PAM 16130-SSI. 16
97. 1,2,3,7,8-Pentachloro-dibenzo- p -dioxinGC/MS1613B 10SGS AXYS 16130 15 , PAM 16130-SSI. 16
98. PentachlorophenolGC6046420 B-2021See footnote 3 p. 140.
GC/MS625.1, 1625B6410 B-2020See footnote 9 p. 27.
99. PhenanthreneGC610.
GC/MS625.1, 1625B6410 B-2020See footnote 9 p. 27.
HPLC6106440 B-2021D4657-92 (98).
100. PhenolGC6046420 B-2021.
GC/MS625.1, 1625B6410 B-2020See footnote 9 p. 27.
101. PyreneGC610.
GC/MS625.1, 1625B6410 B-2020See footnote 9 p. 27.
HPLC6106440 B-2021D4657-92 (98).
102. 2,3,7,8-Tetrachloro-dibenzofuranGC/MS1613B 10SGS AXYS 16130 15 , PAM 16130-SSI. 16
103. 2,3,7,8-Tetrachloro-dibenzo- p -dioxinGC/MS613, 625.1 5 , 1613BSGS AXYS 16130 15 , PAM 16130-SSI. 16
104. 1,1,2,2-TetrachloroethaneGC6016200 C-2020See footnote 3 p. 130.
GC/MS624.1, 1624B6200 B-2020O-4127-96. 13
105. TetrachloroetheneGC6016200 C-2020See footnote 3 p. 130.
GC/MS624.1, 1624B6200 B-2020O-4127-96 13 , O-4436-16. 14
106. TolueneGC6026200 C-2020.
GC/MS624.1, 1624B6200 B-2020O-4127-96 13 , O-4436-16. 14
107. 1,2,4-TrichlorobenzeneGC612See footnote 3 p. 130.
GC/MS625.1, 1625B6410 B-2020See footnote 9 p. 27, O-4127-96 13 , O-4436-16. 14
108. 1,1,1-TrichloroethaneGC6016200 C-2020.
GC/MS624.1, 1624B6200 B-2020O-4127-96 13 , O-4436-16. 14
109. 1,1,2-TrichloroethaneGC6016200 C-2020See footnote 3 p. 130.
GC/MS624.1, 1624B6200 B-2020O-4127-96 13 , O-4436-16. 14
110. TrichloroetheneGC6016200 C-2020.
GC/MS624.1, 1624B6200 B-2020O-4127-96 13 , O-4436-16. 14
111. TrichlorofluoromethaneGC6016200 C-2020.
GC/MS624.16200 B-2020O-4127-96. 13
112. 2,4,6-TrichlorophenolGC6046420 B-2021.
GC/MS625.1, 1625B6410 B-2020See footnote 9 p. 27.
113. Vinyl chlorideGC6016200 C-2020.
GC/MS624.1, 1624B6200 B-2020O-4127-96 13 , O-4436-16. 14
114. NonylphenolGC/MSD7065-17.
115. Bisphenol A (BPA)GC/MSD7065-17.
116. p-tert -Octylphenol (OP)GC/MSD7065-17.
117. Nonylphenol Monoethoxylate (NP1EO)GC/MSD7065-17.
118. Nonylphenol Diethoxylate (NP2EO)GC/MSD7065-17.
119. Adsorbable Organic Halides (AOX)Adsorption and Coulometric Titration1650. 11
120. Chlorinated PhenolicsIn Situ Acetylation and GC/MS1653. 11
Table IC notes:

1 All parameters are expressed in micrograms per liter (µg/L) except for Method 1613B, in which the parameters are expressed in picograms per liter (pg/L).
2 The full text of Methods 601-613, 1613B, 1624B, and 1625B are provided at appendix A, Test Procedures for Analysis of Organic Pollutants. The standardized test procedure to be used to determine the method detection limit (MDL) for these test procedures is given at appendix B of this part, Definition and Procedure for the Determination of the Method Detection Limit. These methods are available at: https://www.epa.gov/cwa-methods as individual PDF files.
3 Methods for Benzidine: Chlorinated Organic Compounds, Pentachlorophenol and Pesticides in Water and Wastewater. September 1978. U.S. EPA.
4 Method 624.1 may be used for quantitative determination of acrolein and acrylonitrile, provided that the laboratory has documentation to substantiate the ability to detect and quantify these analytes at levels necessary to comply with any associated regulations. In addition, the use of sample introduction techniques other than simple purge-and-trap may be required. QC acceptance criteria from Method 603 should be used when analyzing samples for acrolein and acrylonitrile in the absence of such criteria in Method 624.1.
5 Method 625.1 may be extended to include benzidine, hexachlorocyclopentadiene, N-nitrosodimethylamine, N-nitrosodi- n -propylamine, and N-nitrosodiphenylamine. However, when they are known to be present, Methods 605, 607, and 612, or Method 1625B, are preferred methods for these compounds. Method 625.1 may be applied to 2,3,7,8-Tetrachloro-dibenzo- p -dioxin for screening purposes only.
6 Selected Analytical Methods Approved and Cited by the United States Environmental Protection Agency, Supplement to the 15th Edition of Standard Methods for the Examination of Water and Wastewater. 1981. American Public Health Association (APHA).
7 Each analyst must make an initial, one-time demonstration of their ability to generate acceptable precision and accuracy with Methods 601-603, 1624B, and 1625B in accordance with procedures in Section 8.2 of each of these methods. Additionally, each laboratory, on an on-going basis must spike and analyze 10% (5% for Methods 624.1 and 625.1 and 100% for methods 1624B and 1625B) of all samples to monitor and evaluate laboratory data quality in accordance with Sections 8.3 and 8.4 of these methods. When the recovery of any parameter falls outside the quality control (QC) acceptance criteria in the pertinent method, analytical results for that parameter in the unspiked sample are suspect. The results should be reported but cannot be used to demonstrate regulatory compliance. If the method does not contain QC acceptance criteria, control limits of ±three standard deviations around the mean of a minimum of five replicate measurements must be used. These quality control requirements also apply to the Standard Methods, ASTM Methods, and other methods cited.
8 Organochlorine Pesticides and PCBs in Wastewater Using Empore TM Disk. Revised October 28, 1994. 3M Corporation.
9 Method O-3116-87 is in Open File Report 93-125, Methods of Analysis by U.S. Geological Survey National Water Quality Laboratory—Determination of Inorganic and Organic Constituents in Water and Fluvial Sediments. 1993. USGS.
10 Analysts may use Fluid Management Systems, Inc. Power-Prep system in place of manual cleanup provided the analyst meets the requirements of Method 1613B (as specified in Section 9 of the method) and permitting authorities. Method 1613, Revision B, Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution HRGC/HRMS. Revision B, 1994. U.S. EPA. The full text of this method is provided in appendix A to this part and at https://www.epa.gov/cwa-methods/approved-cwa-test-methods-organic-compounds.
11 Method 1650, Adsorbable Organic Halides by Adsorption and Coulometric Titration. Revision C, 1997 U.S. EPA. Method 1653, Chlorinated Phenolics in Wastewater by In Situ Acetylation and GCMS. Revision A, 1997 U.S. EPA. The full text for both of these methods is provided at appendix A in part 430 of this chapter, The Pulp, Paper, and Paperboard Point Source Category.
12 The compound was formerly inaccurately labeled as 2,2′-oxybis(2-chloropropane) and bis(2-chloroisopropyl) ether. Some versions of Methods 611, and 1625 inaccurately list the analyte as “bis(2-chloroisopropyl) ether,” but use the correct CAS number of 108-60-1.
13 Method O-4127-96, U.S. Geological Survey Open-File Report 97-829, Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of 86 volatile organic compounds in water by gas chromatography/mass spectrometry, including detections less than reporting limits,1998, USGS.
14 Method O-4436-16 U.S. Geological Survey Techniques and Methods, book 5, chap. B12, Determination of heat purgeable and ambient purgeable volatile organic compounds in water by gas chromatography/mass spectrometry, 2016, USGS.
15 SGS AXYS Method 16130, “Determination of 2,3,7,8-Substituted Tetra- through Octa-Chlorinated Dibenzo- p -Dioxins and Dibenzofurans (CDDs/CDFs) Using Waters and Agilent Gas Chromatography-Tandem-Mass Spectrometry (GC/MS/MS), Revision 1.0” is available at: https://www.sgsaxys.com/wp-content/uploads/2022/09/SGS-AXYS-Method-16130-Rev-1.0.pdf.
16 Pace Analytical Method PAM-16130-SSI, “Determination of 2,3,7,8-Substituted Tetra- through Octa-Chlorinated Dibenzo- p -Dioxins and Dibenzofurans (CDDs/CDFs) Using Shimadzu Gas Chromatography Mass Spectrometry (GC-MS/MS), Revision 1.1,” is available at: pacelabs.com.
17 Please refer to the following applicable Quality Control Section: Part 6000 Individual Organic Compounds, 6020 (2019). The Quality Control Standards are available for download at standardmethods.org at no charge.

Table ID—List of Approved Test Procedures for Pesticides 1
ParameterMethodEPAStandard methods 15ASTMOther
1. AldrinGC617, 608.36630 B-2021 & C-2021D3086-90, D5812-96 (02)See footnote 3 p. 7, see footnote 4 O-3104-83, see footnote 8 3M0222.
GC/MS625.16410 B-2020.
2. AmetrynGC507, 619See footnote 3 p. 83, see footnote 9 O-3106-93, see footnote 6 p. S68.
GC/MS525.2, 625.1See footnote 14 O-1121-91.
3. AminocarbTLCSee footnote 3 p. 94, see footnote 6 p. S60.
HPLC632.
4. AtratonGC619See footnote 3 p. 83, see footnote 6 p. S68.
GC/MS625.1.
5. AtrazineGC507, 619, 608.3See footnote 3 p. 83, see footnote 6 p. S68, see footnote 9 O-3106-93.
HPLC/MSSee footnote 12 O-2060-01.
GC/MS525.1, 525.2, 625.1See footnote 11 O-1126-95.
6. Azinphos methylGC614, 622, 1657See footnote 3 p. 25, see footnote 6 p. S51.
GC-MS625.1See footnote 11 O-1126-95.
7. BarbanTLCSee footnote 3 p. 104, see footnote 6 p. S64.
HPLC632.
GC/MS625.1.
8. α-BHCGC617, 608.36630 B-2021 & C-2021D3086-90, D5812-96(02)See footnote 3 p. 7, see footnote 8 3M0222.
GC/MS625.1 56410 B-2020See footnote 11 O-1126-95.
9. β-BHCGC617, 608.36630 B-2021 & C-2021D3086-90, D5812-96(02)See footnote 8 3M0222.
GC/MS625.16410 B-2020.
10. δ-BHCGC617, 608.36630 B-2021 & C-2021D3086-90, D5812-96(02)See footnote 8 3M0222.
GC/MS625.16410 B-2020.
11. γ-BHC (Lindane)GC617, 608.36630 B-2021 & C-2021D3086-90, D5812-96(02)See footnote 3 p. 7, see footnote 4 , O-3104-83, see footnote 8 3M0222.
GC/MS625.1 56410 B-2020See footnote 11 , O-1126-95.
12. CaptanGC617, 608.36630 B-2021D3086-90, D5812-96(02)See footnote 3 p. 7.
13. CarbarylTLCSee footnote 3 p. 94, see footnote 6 p. S60.
HPLC531.1, 632.
HPLC/MS553See footnote 12 O-2060-01.
GC/MS625.1See footnote 11 O-1126-95.
14. CarbophenothionGC617, 608.36630 B-2021See footnote 4 page 27, see footnote 6 p. S73.
GC/MS625.1.
15. ChlordaneGC617, 608.36630 B-2021 & C-2021D3086-90, D5812-96(02)See footnote 3 p. 7, see footnote 4 O-3104-83, see footnote 8 3M0222.
GC/MS625.16410 B-2020.
16. ChloroprophamTLCSee footnote 3 p. 104, see footnote 6 p. S64.
HPLC632.
GC/MS625.1.
17. 2,4-DGC6156640 B-2021See footnote 3 p. 115, see footnote 4 O-3105-83.
HPLC/MSSee footnote 12 O-2060-01.
18. 4,4′-DDDGC617, 608.36630 B-2021 & C-2021D3086-90, D5812-96(02)See footnote 3 p. 7, see footnote 4 O-3105-83, see footnote 8 3M0222.
GC/MS625.16410 B-2020.
19. 4,4′-DDEGC617, 608.36630 B-2021 & C-2021D3086-90, D5812-96(02)See footnote 3 p. 7, see footnote 4 , O-3104-83, see footnote 8 3M0222.
GC/MS625.16410 B-2020See footnote 11 O-1126-95.
20. 4,4′-DDTGC617, 608.36630 B-2021 & C-2021D3086-90, D5812-96(02)See footnote 3 p. 7, see footnote 4 O-3104-83, see footnote 8 3M0222.
GC/MS625.16410 B-2020.
21. Demeton-OGC614, 622See footnote 3 p. 25, see footnote 6 p. S51.
GC/MS625.1
22. Demeton-S.GC614, 622See footnote 3 p. 25, see footnote 6 p. S51.
GC/MS625.1.
23. DiazinonGC507, 614, 622, 1657See footnote 3 p. 25, see footnote 4 O-3104-83, see footnote 6 p. S51.
GC/MS525.2, 625.1See footnote 11 O-1126-95.
24. DicambaGC615See footnote 3 p. 115.
HPLC/MSSee footnote 12 O-2060-01.
25. DichlofenthionGC622.1See footnote 4 page 27, see footnote 6 p. S73.
26. DichloranGC608.2, 617, 608.36630 B-2021See footnote 3 p. 7.
27. DicofolGC617, 608.3See footnote 4 O-3104-83.
28. DieldrinGC617, 608.36630 B-2021 & C-2021D3086-90, D5812-96(02)See footnote 3 p. 7, see footnote 4 O-3104-83, see footnote 8 3M0222.
GC/MS625.16410 B-2020See footnote 11 O-1126-95.
29. DioxathionGC614.1, 1657See footnote 4 page 27, see footnote 6 p. S73.
30. DisulfotonGC507, 614, 622, 1657See footnote 3 p. 25, see footnote 6 p. S51.
GC/MS525.2, 625.1See footnote 11 O-1126-95.
31. DiuronTLCSee footnote 3 p. 104, see footnote 6 p. S64.
HPLC632.
HPLC/MS553See footnote 12 O-2060-01.
32. Endosulfan IGC617, 608.36630 B-2021 & C-2021D3086-90, D5812-96(02)See footnote 3 p. 7, see footnote 4 O-3104-83, see footnote 8 3M0222.
GC/MS625.1 56410 B-2020See footnote 13 O-2002-01.
33. Endosulfan IIGC617, 608.36630 B-2021 & C-2021D3086-90, D5812-96(02)See footnote 3 p. 7, see footnote 8 3M0222.
GC/MS625.1 56410 B-2020See footnote 13 O-2002-01.
34. Endosulfan SulfateGC617, 608.36630 C-2021See footnote 8 3M0222.
GC/MS625.16410 B-2020.
35. EndrinGC505, 508, 617, 1656, 608.36630 B-2021 & C-2021D3086-90, D5812-96(02)See footnote 3 p. 7, see footnote 4 O-3104-83, see footnote 8 3M0222.
GC/MS525.1, 525.2, 625.1 56410 B-2020.
36. Endrin aldehydeGC617, 608.36630 C-2021See footnote 8 3M0222.
GC/MS625.16410 B-2020.
37. EthionGC614, 614.1, 1657See footnote 4 page 27, see footnote 6 , p. S73.
GC/MS625.1See footnote 13 O-2002-01.
38. FenuronTLCSee footnote 3 p. 104, see footnote 6 p. S64.
HPLC632.
HPLC/MSSee footnote 12 O-2060-01.
39. Fenuron-TCATLCSee footnote 3 p. 104, see footnote 6 p. S64.
HPLC632.
40. HeptachlorGC505, 508, 617, 1656, 608.36630 B-2021 & C-2021D3086-90, D5812-96(02)See footnote 3 p. 7, see footnote 4 O-3104-83, see footnote 8 3M0222.
GC/MS525.1, 525.2, 625.16410 B-2020.
41. Heptachlor epoxideGC617, 608.36630 B-2021 & C-2021D3086-90, D5812-96(02)See footnote 3 p. 7, see footnote 4 O-3104-83, see footnote 6 p. S73, see footnote 8 3M0222.
GC/MS625.16410 B-2020.
42. IsodrinGC617, 608.36630 B-2021 & C-2021See footnote 4 O-3104-83, see footnote 6 p. S73.
GC/MS625.1.
43. LinuronGCSee footnote 3 p. 104, see footnote 6 p. S64.
HPLC632.
HPLC/MS553See footnote 12 O-2060-01.
GC/MSSee footnote 11 O-1126-95.
44. MalathionGC614, 16576630 B-2021See footnote 3 p. 25, see footnote 6 p. S51.
GC/MS625.1See footnote 11 O-1126-95.
45. MethiocarbTLCSee footnote 3 p. 94, see footnote 6 p. S60.
HPLC632.
HPLC/MSSee footnote 12 O-2060-01.
46. MethoxychlorGC505, 508, 608.2, 617, 1656, 608.36630 B-2021 & C-2021D3086-90, D5812-96(02)See footnote 3 p. 7, see footnote 4 O-3104-83, see footnote 8 3M0222.
GC/MS525.1, 525.2, 625.1See footnote 11 O-1126-95.
47. MexacarbateTLCSee footnote 3 p. 94, see footnote 6 p. S60.
HPLC632.
GC/MS625.1.
48. MirexGC617, 608.36630 B-2021 & C-2021D3086-90, D5812-96(02)See footnote 3 p. 7, see footnote 4 O-3104-83.
GC/MS625.1.
49. MonuronTLCSee footnote 3 p. 104, see footnote 6 p. S64.
HPLC632.
50. Monuron-TCATLCSee footnote 3 p. 104, see footnote 6 p. S64.
HPLC632.
51. NeburonTLCSee footnote 3 p. 104, see footnote 6 p. S64.
HPLC632.
HPLC/MSSee footnote 12 O-2060-01.
52. Parathion methylGC614, 622, 16576630 B-2021See footnote 4 page 27, see footnote 3 p. 25.
GC/MS625.1See footnote 11 O-1126-95.
53. Parathion ethylGC6146630 B-2021See footnote 4 page 27, see footnote 3 p. 25.
GC/MSSee footnote 11 O-1126-95.
54. PCNBGC608.1, 617, 608.36630 B-2021 & C-2021D3086-90 , D5812-96(02)See footnote 3 p. 7.
55. PerthaneGC617, 608.3D3086-90, D5812-96(02)See footnote 4 O-3104-83.
56. PrometonGC507, 619See footnote 3 p. 83, see footnote 6 p. S68, see footnote 9 O-3106-93.
GC/MS525.2, 625.1See footnote 11 O-1126-95.
57. PrometrynGC507, 619See footnote 3 p. 83, see footnote 6 p. S68, see footnote 9 O-3106-93.
GC/MS525.1, 525.2, 625.1See footnote 13 O-2002-01.
58. PropazineGC507, 619, 1656, 608.3See footnote 3 p. 83, see footnote 6 p. S68, see footnote 9 O-3106-93.
GC/MS525.1, 525.2, 625.1
59. ProphamTLCSee footnote 3 p. 10, see footnote 6 p. S64.
HPLC632.
HPLC/MSSee footnote 12 O-2060-01.
60. PropoxurTLCSee footnote 3 p. 94, see footnote 6 , p. S60.
HPLC632.
61. SecbumetonTLCSee footnote 3 p. 83, see footnote 6 p. S68.
GC619.
62. SiduronTLCSee footnote 3 p. 104, see footnote 6 p. S64.
HPLC632.
HPLC/MSSee footnote 12 O-2060-01.
63. SimazineGC505, 507, 619, 1656, 608.3See footnote 3 p. 83, see footnote 6 p. S68, see footnote 9 O-3106-93.
GC/MS525.1, 525.2, 625.1See footnote 11 O-1126-95.
64. StrobaneGC617, 608.36630 B-2021 & C-2021See footnote 3 p. 7.
65. SwepTLCSee footnote 3 p. 104, see footnote 6 p. S64.
HPLC632.
66. 2,4,5-TGC6156640 B-2021See footnote 3 p. 115, see footnote 4 O-3105-83.
67. 2,4,5-TP (Silvex)GC6156640 B-2021See footnote 3 p. 115, see footnote 4 O-3105-83.
68. TerbuthylazineGC619, 1656, 608.3See footnote 3 p. 83, see footnote 6 p. S68.
GC/MSSee footnote 13 O-2002-01.
69. ToxapheneGC505, 508, 617, 1656, 608.36630 B-2021 & C-2021D3086-90, D5812-96(02)See footnote 3 p. 7, see footnote 8 , see footnote 4 O-3105-83.
GC/MS525.1, 525.2, 625.16410 B-2020.
70. TrifluralinGC508, 617, 627, 1656, 608.36630 B-2021See footnote 3 p. 7, see footnote 9 O-3106-93.
GC/MS525.2, 625.1See footnote 11 O-1126-95.

Table ID notes:
1 Pesticides are listed in this table by common name for the convenience of the reader. Additional pesticides may be found under table IC of this section, where entries are listed by chemical name.
2 The standardized test procedure to be used to determine the method detection limit (MDL) for these test procedures is given at appendix B to this part, Definition and Procedure for the Determination of the Method Detection Limit.
3 Methods for Benzidine, Chlorinated Organic Compounds, Pentachlorophenol and Pesticides in Water and Wastewater. September 1978. U.S. EPA. This EPA publication includes thin-layer chromatography (TLC) methods.
4 Methods for the Determination of Organic Substances in Water and Fluvial Sediments, Techniques of Water-Resources Investigations of the U.S. Geological Survey, Book 5, Chapter A3. 1987. USGS.
5 The method may be extended to include α-BHC, γ-BHC, endosulfan I, endosulfan II, and endrin. However, when they are known to exist, Method 608 is the preferred method.
6 Selected Analytical Methods Approved and Cited by the United States Environmental Protection Agency, Supplement to the 15th Edition of Standard Methods for the Examination of Water and Wastewater. 1981. American Public Health Association (APHA).
7 Each analyst must make an initial, one-time, demonstration of their ability to generate acceptable precision and accuracy with Methods 608.3 and 625.1 in accordance with procedures given in Section 8.2 of each of these methods. Additionally, each laboratory, on an on-going basis, must spike and analyze 10% of all samples analyzed with Method 608.3 or 5% of all samples analyzed with Method 625.1 to monitor and evaluate laboratory data quality in accordance with Sections 8.3 and 8.4 of these methods. When the recovery of any parameter falls outside the warning limits, the analytical results for that parameter in the unspiked sample are suspect. The results should be reported, but cannot be used to demonstrate regulatory compliance. These quality control requirements also apply to the Standard Methods, ASTM Methods, and other methods cited.
8 Organochlorine Pesticides and PCBs in Wastewater Using Empore TM Disk. Revised October 28, 1994. 3M Corporation.
9 Method O-3106-93 is in Open File Report 94-37, Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of Triazine and Other Nitrogen-Containing Compounds by Gas Chromatography with Nitrogen Phosphorus Detectors. 1994. USGS.
10 EPA Methods 608.1, 608.2, 614, 614.1, 615, 617, 619, 622, 622.1, 627, and 632 are found in Methods for the Determination of Nonconventional Pesticides in Municipal and Industrial Wastewater, EPA 821-R-92-002, April 1992, U.S. EPA. EPA Methods 505, 507, 508, 525.1, 531.1 and 553 are in Methods for the Determination of Nonconventional Pesticides in Municipal and Industrial Wastewater, Volume II, EPA 821-R-93-010B, 1993, U.S. EPA. EPA Method 525.2 is in Determination of Organic Compounds in Drinking Water by Liquid-Solid Extraction and Capillary Column Gas Chromatography/Mass Spectrometry, Revision 2.0, 1995, U.S. EPA. EPA methods 1656 and 1657 are in Methods for The Determination of Nonconventional Pesticides In Municipal and Industrial Wastewater, Volume I, EPA 821-R-93-010A, 1993, U.S. EPA. Methods 608.3 and 625.1 are available at: cwa-methods/approved-cwa-test-methods-organic-compounds.
11 Method O-1126-95 is in Open-File Report 95-181, Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of pesticides in water by C-18 solid-phase extraction and capillary-column gas chromatography/mass spectrometry with selected-ion monitoring. 1995. USGS.
12 Method O-2060-01 is in Water-Resources Investigations Report 01-4134, Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of Pesticides in Water by Graphitized Carbon-Based Solid-Phase Extraction and High-Performance Liquid Chromatography/Mass Spectrometry. 2001. USGS.
13 Method O-2002-01 is in Water-Resources Investigations Report 01-4098, Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of moderate-use pesticides in water by C-18 solid-phase extraction and capillary-column gas chromatography/mass spectrometry. 2001. USGS.
14 Method O-1121-91 is in Open-File Report 91-519, Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of organonitrogen herbicides in water by solid-phase extraction and capillary-column gas chromatography/mass spectrometry with selected-ion monitoring. 1992. USGS.
15 Please refer to the following applicable Quality Control Section: Part 6000 Methods, Individual Organic Compounds 6020 (2019). These Quality Control Standards are available for download at www.standardmethods.org at no charge.

* * * * *

Table IH—List of Approved Microbiological Methods for Ambient Water
Parameter and unitsMethod 1EPAStandard methodsAOAC, ASTM, USGSOther
Bacteria
1. Coliform (fecal), number per 100 mLMost Probable Number (MPN), 5 tube, 3 dilution, orp. 132 39221 E-2014, 9221 F-2014. 32
Membrane filter (MF) 2 , single stepp. 124 39222 D-2015 26B-0050-85. 4
2. Coliform (total), number per 100 mLMPN, 5 tube, 3 dilution, orp. 114 39221 B-2014.
MF 2 , single step orp. 108 39222 B-2015 27B-0025-85. 4
MF 2 , two step with enrichmentp. 111 39222 B-2015. 27
3. E. coli, number per 100 mLMPN 5713 , multiple tube, or9221 B.3-2014/9221 F-2014. 101232
Multiple tube/multiple well, or9223 B-2016 11991.15 9Colilert® 1115 , Colilert-18®. 111415
MF 2567 , two step, or1103.2 189222 B-2015/9222 I-2015 17 , 9213 D-2007D5392-93. 8
Single step1603.1 19 , 1604 20m-ColiBlue24® 16 , KwikCount EC. 2829
4. Fecal streptococci, number per 100 mLMPN, 5 tube, 3 dilution, orp. 139 39230 B-2013.
MF 2 , orp. 136 39230 C-2013 30B-0055-85. 4
Plate countp. 143. 3
5. Enterococci, number per 100 mLMPN 57 , multiple tube/multiple well, or9230 D-2013D6503-99 8Enterolert®. 1121
MF 2567 two step, or1106.2 229230 C-2013 30D5259-92. 8
Single step, or1600.1 239230 C-2013. 30
Plate countp. 143. 3
Protozoa
6. CryptosporidiumFiltration/IMS/FA1622 24 , 1623 25 , 1623.1. 2531
7. GiardiaFiltration/IMS/FA1623 25 , 1623.1. 2531
Table 1H notes:

1 The method must be specified when results are reported.
2 A 0.45-µm membrane filter (MF) or other pore size certified by the manufacturer to fully retain organisms to be cultivated and to be free of extractables which could interfere with their growth.
3 Microbiological Methods for Monitoring the Environment, Water and Wastes. EPA/600/8-78/017. 1978. US EPA.
4 U.S. Geological Survey Techniques of Water-Resource Investigations, Book 5, Laboratory Analysis, Chapter A4, Methods for Collection and Analysis of Aquatic Biological and Microbiological Samples. 1989. USGS.
5 Tests must be conducted to provide organism enumeration (density). Select the appropriate configuration of tubes/filtrations and dilutions/volumes to account for the quality, character, consistency, and anticipated organism density of the water sample.
6 When the MF method has not been used previously to test waters with high turbidity, large numbers of noncoliform bacteria, or samples that may contain organisms stressed by chlorine, a parallel test should be conducted with a multiple-tube technique to demonstrate applicability and comparability of results.
7 To assess the comparability of results obtained with individual methods, it is suggested that side-by-side tests be conducted across seasons of the year with the water samples routinely tested in accordance with the most current Standard Methods for the Examination of Water and Wastewater or EPA alternate test procedure (ATP) guidelines.
8 Annual Book of ASTM Standards—Water and Environmental Technology. Section 11.02. 2000, 1999, 1996. ASTM International.
9 Official Methods of Analysis of AOAC International, 16th Edition, Volume I, Chapter 17. 1995. AOAC International.
10 The multiple-tube fermentation test is used in 9221B.3-2014. Lactose broth may be used in lieu of lauryl tryptose broth (LTB), if at least 25 parallel tests are conducted between this broth and LTB using the water samples normally tested, and this comparison demonstrates that the false-positive rate and false-negative rate for total coliform using lactose broth is less than 10 percent. No requirement exists to run the completed phase on 10 percent of all total coliform-positive tubes on a seasonal basis.
11 These tests are collectively known as defined enzyme substrate tests.
12 After prior enrichment in a presumptive medium for total coliform using 9221B.3-2014, all presumptive tubes or bottles showing any amount of gas, growth or acidity within 48 h ± 3 h of incubation shall be submitted to 9221F-2014. Commercially available EC-MUG media or EC media supplemented in the laboratory with 50 µg/mL of MUG may be used.
13 Samples shall be enumerated by the multiple-tube or multiple-well procedure. Using multiple-tube procedures, employ an appropriate tube and dilution configuration of the sample as needed and report the Most Probable Number (MPN). Samples tested with Colilert® may be enumerated with the multiple-well procedures, Quanti-Tray® or Quanti-Tray®/2000, and the MPN calculated from the table provided by the manufacturer.
14 Colilert-18® is an optimized formulation of the Colilert® for the determination of total coliforms and E. coli that provides results within 18 h of incubation at 35 °C, rather than the 24 h required for the Colilert® test and is recommended for marine water samples.
15 Descriptions of the Colilert®, Colilert-18®, Quanti-Tray ®, and Quanti-Tray®/2000 may be obtained from IDEXX Laboratories Inc.
16 A description of the mColiBlue24® test may be obtained from Hach Company.
17 Subject coliform positive samples determined by 9222B-2015 or other membrane filter procedure to 9222I-2015 using NA-MUG media.
18 Method 1103.2: Escherichia coli ( E. coli) in Water by Membrane Filtration Using membrane-Thermotolerant Escherichia coli Agar (mTEC), EPA-821-R-23-009. September 2023. US EPA.
19 Method 1603.1: Escherichia coli ( E. coli) in Water by Membrane Filtration Using Modified membrane-Thermotolerant Escherichia coli Agar (Modified mTEC), EPA-821-R-23-008. September 2023 . US EPA.
20 Method 1604: Total Coliforms and Escherichia coli ( E. coli) in Water by Membrane Filtration by Using a Simultaneous Detection Technique (MI Medium), EPA 821-R-02-024. September 2002. US EPA.
21 A description of the Enterolert® test may be obtained from IDEXX Laboratories Inc.
22 Method 1106.2: Enterococci in Water by Membrane Filtration Using membrane- Enterococcus -Esculin Iron Agar (mE-EIA), EPA-821-R-23-007. September 2023. US EPA.
23 Method 1600.1: Enterococci in Water by Membrane Filtration Using membrane- Enterococcus Indoxyl-β-D-Glucoside Agar (mEI), EPA-821-R-21-006. September 2023. US EPA.
24 Method 1622 uses a filtration, concentration, immunomagnetic separation of oocysts from captured material, immunofluorescence assay to determine concentrations, and confirmation through vital dye staining and differential interference contrast microscopy for the detection of Cryptosporidium. Method 1622: Cryptosporidium in Water by Filtration/IMS/FA, EPA-821-R-05-001. December 2005. US EPA.
25 Methods 1623 and 1623.1 use a filtration, concentration, immunomagnetic separation of oocysts and cysts from captured material, immunofluorescence assay to determine concentrations, and confirmation through vital dye staining and differential interference contrast microscopy for the simultaneous detection of Cryptosporidium and Giardia oocysts and cysts. Method 1623: Cryptosporidium and Giardia in Water by Filtration/IMS/FA. EPA-821-R-05-002. December 2005. US EPA. Method 1623.1: Cryptosporidium and Giardia in Water by Filtration/IMS/FA. EPA 816-R-12-001. January 2012. US EPA.
26 On a monthly basis, at least ten blue colonies from positive samples must be verified using Lauryl Tryptose Broth and EC broth, followed by count adjustment based on these results; and representative non-blue colonies should be verified using Lauryl Tryptose Broth. Where possible, verifications should be done from randomized sample sources.
27 On a monthly basis, at least ten sheen colonies from positive samples must be verified using Lauryl Tryptose Broth and brilliant green lactose bile broth, followed by count adjustment based on these results; and representative non-sheen colonies should be verified using Lauryl Tryptose Broth. Where possible, verifications should be done from randomized sample sources.
28 A description of KwikCount EC may be obtained from Roth Bioscience, LLC.
29 Approved for the analyses of E. coli in freshwater only.
30 Verification of colonies by incubation of BHI agar at 10 ± 0.5 °C for 48 ± 3 h is optional. As per the Errata to the 23rd Edition of Standard Methods for the Examination of Water and Wastewater “Growth on a BHI agar plate incubated at 10 ± 0.5 °C for 48 ± 3 h is further verification that the colony belongs to the genus Enterococcus.”
31 Method 1623.1 includes updated acceptance criteria for IPR, OPR, and MS/MSD and clarifications and revisions based on the use of Method 1623 for years and technical support questions.
32 9221 F.2-2014 allows for simultaneous detection of E. coli and thermotolerant fecal coliforms by adding inverted vials to EC-MUG; the inverted vials collect gas produced by thermotolerant fecal coliforms.

* * * *

(b) The material listed in this paragraph (b) is incorporated by reference into this section with the approval of the Director of the Federal Register under 5 U.S.C. 552(a) and 1 CFR part 51. All approved incorporation by reference (IBR) material is available for inspection at the EPA and at the National Archives and Records Administration (NARA). Contact the EPA at: EPA's Water Docket, EPA West, 1301 Constitution Avenue NW, Room 3334, Washington, DC 20004; telephone: 202-566-2426; email: docket-customerservice@epa.gov. For information on the availability of this material at NARA, visit www.archives.gov/federal-register/cfr/ibr-locations or email fr.inspection@nara.gov. The material may be obtained from the following sources in this paragraph (b).

(1) Environmental Monitoring and Support Laboratory, U.S. Environmental Protection Agency, Cincinnati OH (US EPA). Available at http://water.epa.gov/scitech/methods/cwa/index.cfm or from: National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161

(i) Microbiological Methods for Monitoring the Environment, Water, and Wastes. 1978. EPA/600/8-78/017, Pub. No. PB-290329/A.S.

(A) Part III Analytical Methodology, Section B Total Coliform Methods, page 108. Table IA, Note 3; Table IH, Note 3.

(B) Part III Analytical Methodology, Section B Total Coliform Methods, 2.6.2 Two-Step Enrichment Procedure, page 111. Table IA, Note 3; Table IH, Note 3.

(C) Part III Analytical Methodology, Section B Total Coliform Methods, 4 Most Probable Number (MPN) Method, page 114. Table IA, Note 3; Table IH, Note 3.

(D) Part III Analytical Methodology, Section C Fecal Coliform Methods, 2 Direct Membrane Filter (MF) Method, page 124. Table IA, Note 3; Table IH, Note 3.

(E) Part III, Analytical Methodology, Section C Fecal Coliform Methods, 5 Most Probable Number (MPN) Method, page 132. Table IA, Note 3; Table IH, Note 3.

(F) Part III Analytical Methodology, Section D Fecal Streptococci, 2 Membrane Filter (MF) Method, page 136. Table IA, Note 3; Table IH, Note 3.

(G) Part III Analytical Methodology, Section D Fecal Streptococci, 4 Most Probable Number Method, page 139. Table IA, Note 3; Table IH, Note 3.

(H) Part III Analytical Methodology, Section D Fecal Streptococci, 5 Pour Plate Method, page 143. Table IA, Note 3; Table IH, Note 3.

(ii) [Reserved]

(2) Environmental Monitoring and Support Laboratory, U.S. Environmental Protection Agency, Cincinnati OH (US EPA). Available at http://water.epa.gov/scitech/methods/cwa/index.cfm.

(3) National Exposure Risk Laboratory-Cincinnati, U.S. Environmental Protection Agency, Cincinnati OH (US EPA). Available from http://water.epa.gov/scitech/methods/cwa/index.cfm or from the National Technical Information Service (NTIS), 5285 Port Royal Road, Springfield, VA 22161. Telephone: 800-553-6847.

(i) Methods for the Determination of Inorganic Substances in Environmental Samples. August 1993. EPA/600/R-93/100, Pub. No. PB 94120821. Table IB, Note 52.

(A) Method 180.1, Determination of Turbidity by Nephelometry. Revision 2.0. Table IB, Note 52.

(B) Method 300.0, Determination of Inorganic Anions by Ion Chromatography. Revision 2.1. Table IB, Note 52.

(C) Method 335.4, Determination of Total Cyanide by Semi-Automated Colorimetry. Revision 1.0. Table IB, Notes 52 and 57.

(D) Method 350.1, Determination of Ammonium Nitrogen by Semi-Automated Colorimetry. Revision 2.0. Table IB, Notes 30 and 52.

(E) Method 351.2, Determination of Total Kjeldahl Nitrogen by Semi-Automated Colorimetry. Revision 2.0. Table IB, Note 52.

(F) Method 353.2, Determination of Nitrate-Nitrite Automated Colorimetry. Revision 2.0. Table IB, Note 52.

(G) Method 365.1, Determination of Phosphorus by Automated Colorimetry. Revision 2.0. Table IB, Note 52.

(H) Method 375.2, Determination of Sulfate by Automated Colorimetry. Revision 2.0. Table IB, Note 52.

(I) Method 410.4, Determination of Chemical Oxygen Demand by Semi-Automated Colorimetry. Revision 2.0. Table IB, Note 52.

(ii) Methods for the Determination of Metals in Environmental Samples, Supplement I. May 1994. EPA/600/R-94/111, Pub. No. PB 95125472. Table IB, Note 52.

(A) Method 200.7, Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry. Revision 4.4. Table IB, Note 52.

(B) Method 200.8, Determination of Trace Elements in Water and Wastes by Inductively Coupled Plasma Mass Spectrometry. Revision 5.3. Table IB, Note 52.

(C) Method 200.9, Determination of Trace Elements by Stabilized Temperature Graphite Furnace Atomic Absorption Spectrometry. Revision 2.2. Table IB, Note 52.

(D) Method 218.6, Determination of Dissolved Hexavalent Chromium in Drinking Water, Groundwater, and Industrial Wastewater Effluents by Ion Chromatography. Revision 3.3. Table IB, Note 52.

(E) Method 245.1, Determination of Mercury in Water by Cold Vapor Atomic Absorption Spectrometry. Revision 3.0. Table IB, Note 52.

(4) National Exposure Risk Laboratory-Cincinnati, U.S. Environmental Protection Agency, Cincinnati OH (US EPA). Available at http://water.epa.gov/scitech/methods/cwa/index.cfm.

(i) EPA Method 200.5, Determination of Trace Elements in Drinking Water by Axially Viewed Inductively Coupled Plasma-Atomic Emission Spectrometry. Revision 4.2, October 2003. EPA/600/R-06/115. Table IB, Note 68.

(ii) EPA Method 525.2, Determination of Organic Compounds in Drinking Water by Liquid-Solid Extraction and Capillary Column Gas Chromatography/Mass Spectrometry. Revision 2.0, 1995. Table ID, Note 10.

(5) Office of Research and Development, Cincinnati OH. U.S. Environmental Protection Agency, Cincinnati OH (US EPA). Available at http://water.epa.gov/scitech/methods/cwa/index.cfm or from ORD Publications, CERI, U.S. Environmental Protection Agency, Cincinnati OH 45268.

(i) Methods for Benzidine, Chlorinated Organic Compounds, Pentachlorophenol, and Pesticides in Water and Wastewater. 1978. Table IC, Note 3; Table ID, Note 3.

(ii) Methods for Chemical Analysis of Water and Wastes. March 1979. EPA-600/4-79-020. Table IB, Note 1.

(iii) Methods for Chemical Analysis of Water and Wastes. Revised March 1983. EPA-600/4-79-020. Table IB, Note 1.

(A) Method 120.1, Conductance, Specific Conductance, μmhos at 25°C. Revision 1982. Table IB, Note 1.

(B) Method 130.1, Hardness, Total (mg/L as CaCO3), Colorimetric, Automated EDTA. Issued 1971. Table IB, Note 1.

(C) Method 150.2, pH, Continuous Monitoring (Electrometric). December 1982. Table IB, Note 1.

(D) Method 160.4, Residue, Volatile, Gravimetric, Ignition at 550°C. Issued 1971. Table IB, Note 1.

(E) Method 206.5, Arsenic, Sample Digestion Prior to Total Arsenic Analysis by Silver Diethyldithiocarbamate or Hydride Procedures. Issued 1978. Table IB, Note 1.

(F) Method 231.2, Gold, Atomic Absorption, Furnace Technique. Issued 1978. Table IB, Note 1.

(G) Method 245.2, Mercury, Automated Cold Vapor Technique. Issued 1974. Table IB, Note 1.

(H) Method 252.2, Osmium, Atomic Absorption, Furnace Technique. Issued 1978. Table IB, Note 1.

(I) Method 253.2, Palladium, Atomic Absorption, Furnace Technique. Issued 1978. Table IB, Note 1.

(J) Method 255.2, Platinum, Atomic Absorption, Furnace Technique. Issued 1978. Table IB, Note 1.

(K) Method 265.2, Rhodium, Atomic Absorption, Furnace Technique. Issued 1978. Table IB, Note 1.

(L) Method 279.2, Thallium, Atomic Absorption, Furnace Technique. Issued 1978. Table IB, Note 1.

(M) Method 283.2, Titanium, Atomic Absorption, Furnace Technique. Issued 1978. Table IB, Note 1.

(N) Method 289.2, Zinc, Atomic Absorption, Furnace Technique. Issued 1978. Table IB, Note 1.

(O) Method 310.2, Alkalinity, Colorimetric, Automated, Methyl Orange. Revision 1974. Table IB, Note 1.

(P) Method 351.1, Nitrogen, Kjeldahl, Total, Colorimetric, Automated Phenate. Revision 1978. Table IB, Note 1.

(Q) Method 352.1, Nitrogen, Nitrate, Colorimetric, Brucine. Issued 1971. Table IB, Note 1.

(R) Method 365.3, Phosphorus, All Forms, Colorimetric, Ascorbic Acid, Two Reagent. Issued 1978. Table IB, Note 1.

(S) Method 365.4, Phosphorus, Total, Colorimetric, Automated, Block Digestor AA II. Issued 1974. Table IB, Note 1.

(T) Method 410.3, Chemical Oxygen Demand, Titrimetric, High Level for Saline Waters. Revision 1978. Table IB, Note 1.

(U) Method 420.1, Phenolics, Total Recoverable, Spectrophotometric, Manual 4-AAP With Distillation. Revision 1978. Table IB, Note 1.

(iv) Prescribed Procedures for Measurement of Radioactivity in Drinking Water. 1980. EPA-600/4-80-032. Table IE.

(A) Method 900.0, Gross Alpha and Gross Beta Radioactivity. Table IE.

(B) Method 903.0, Alpha-Emitting iRadio Isotopes. Table IE.

(C) Method 903.1, Radium-226, Radon Emanation Technique. Table IE.

(D) Appendix B, Error and Statistical Calculations. Table IE.

(6) Office of Science and Technology, U.S. Environmental Protection Agency, Washington DC (US EPA). Available at http://water.epa.gov/scitech/methods/cwa/index.cfm.

(i) Method 1625C, Semivolatile Organic Compounds by Isotope Dilution GCMS. 1989. Table IF.

(ii) [Reserved]

(7) Office of Water, U.S. Environmental Protection Agency, Washington DC (US EPA). Available at http://water.epa.gov/scitech/methods/cwa/index.cfm or from National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161.

(i) Method 1631, Mercury in Water by Oxidation, Purge and Trap, and Cold Vapor Atomic Fluorescence Spectrometry. Revision E, August 2002. EPA-821-R-02-019, Pub. No. PB2002-108220. Table IB, Note 43.

(ii) Kelada-01, Kelada Automated Test Methods for Total Cyanide, Acid Dissociable Cyanide, and Thiocyanate. Revision 1.2, August 2001. EPA 821-B-01-009, Pub. No. PB 2001-108275. Table IB, Note 55.

(iii) In the compendium Analytical Methods for the Determination of Pollutants in Pharmaceutical Manufacturing Industry Wastewaters. July 1998. EPA 821-B-98-016, Pub. No. PB95201679. Table IF, Note 1.

(A) EPA Method 1666, Volatile Organic Compounds Specific to the Pharmaceutical Industry by Isotope Dilution GC/MS. Table IF, Note 1.

(B) EPA Method 1667, Formaldehyde, Isobutyraldehyde, and Furfural by Derivatization Followed by High Performance Liquid Chromatography. Table IF.

(C) Method 1671, Volatile Organic Compounds Specific to the Pharmaceutical Manufacturing Industry by GC/FID. Table IF.

(iv) Methods For The Determination of Nonconventional Pesticides In Municipal and Industrial Wastewater, Volume I. Revision I, August 1993. EPA 821-R-93-010A, Pub. No. PB 94121654. Tables ID, IG.

(A) Method 608.1, Organochlorine Pesticides. Table ID, Note 10; Table IG, Note 3.

(B) Method 608.2, Certain Organochlorine Pesticides. Table ID, Note 10; Table IG, Note 3.

(C) Method 614, Organophosphorus Pesticides. Table ID, Note 10; Table IG, Note 3.

(D) Method 614.1, Organophosphorus Pesticides. Table ID, Note 10; Table IG, Note 3.

(E) Method 615, Chlorinated Herbicides. Table ID, Note 10; Table IG, Note 3.

(F) Method 617, Organohalide Pesticides and PCBs. Table ID, Note 10; Table IG, Note 3.

(G) Method 619, Triazine Pesticides. Table ID, Note 10; Table IG, Note 3.

(H) Method 622, Organophosphorus Pesticides. Table ID, Note 10; Table IG, Note 3.

(I) Method 622.1, Thiophosphate Pesticides. Table ID, Note 10; Table IG, Note 3.

(J) Method 627, Dinitroaniline Pesticides. Table ID, Note 10; Table IG, Notes 1 and 3.

(K) Method 629, Cyanazine. Table IG, Note 3.

(L) Method 630, Dithiocarbamate Pesticides. Table IG, Note 3.

(M) Method 630.1, Dithiocarbamate Pesticides. Table IG, Note 3.

(N) Method 631, Benomyl and Carbendazim. Table IG, Note 3.

(O) Method 632, Carbamate and Urea Pesticides. Table ID, Note 10; Table IG, Note 3.

(P) Method 632.1, Carbamate and Amide Pesticides. Table IG, Note 3.

(Q) Method 633, Organonitrogen Pesticides. Table IG, Note 3.

(R) Method 633.1, Neutral Nitrogen-Containing Pesticides. Table IG, Note 3.

(S) Method 637, MBTS and TCMTB. Table IG, Note 3.

(T) Method 644, Picloram. Table IG, Note 3.

(U) Method 645, Certain Amine Pesticides and Lethane. Table IG, Note 3.

(V) Method 1656, Organohalide Pesticides. Table ID, Note 10; Table IG, Notes 1 and 3.

(W) Method 1657, Organophosphorus Pesticides. Table ID, Note 10; Table IG, Note 3.

(X) Method 1658, Phenoxy-Acid Herbicides. Table IG, Note 3.

(Y) Method 1659, Dazomet. Table IG, Note 3.

(Z) Method 1660, Pyrethrins and Pyrethroids. Table IG, Note 3.

(AA) Method 1661, Bromoxynil. Table IG, Note 3.

(BB) Ind-01. Methods EV-024 and EV-025, Analytical Procedures for Determining Total Tin and Triorganotin in Wastewater. Table IG, Note 3.

(v) Methods For The Determination of Nonconventional Pesticides In Municipal and Industrial Wastewater, Volume II. August 1993. EPA 821-R-93-010B, Pub. No. PB 94166311. Table IG.

(A) Method 200.9, Determination of Trace Elements by Stabilized Temperature Graphite Furnace Atomic Absorption Spectrometry. Table IG, Note 3.

(B) Method 505, Analysis of Organohalide Pesticides and Commercial Polychlorinated Biphenyl (PCB) Products in Water by Microextraction and Gas Chromatography. Table ID, Note 10; Table IG, Note 3.

(C) Method 507, The Determination of Nitrogen- and Phosphorus-Containing Pesticides in Water by Gas Chromatography with a Nitrogen-Phosphorus Detector. Table ID, Note 10; Table IG, Note 3.

(D) Method 508, Determination of Chlorinated Pesticides in Water by Gas Chromatography with an Electron Capture Detector. Table ID, Note 10; Table IG, Note 3.

(E) Method 515.1, Determination of Chlorinated Acids in Water by Gas Chromatography with an Electron Capture Detector. Table IG, Notes 2 and 3.

(F) Method 515.2, Determination of Chlorinated Acids in Water Using Liquid-Solid Extraction and Gas Chromatography with an Electron Capture Detector. Table IG, Notes 2 and 3.

(G) Method 525.1, Determination of Organic Compounds in Drinking Water by Liquids-Solid Extraction and Capillary Column Gas Chromatography/Mass Spectrometry. Table ID, Note 10; Table IG, Note 3.

(H) Method 531.1, Measurement of N-Methylcarbamoyloximes and N-Methylcarbamates in Water by Direct Aqueous Injection HPLC with Post-Column Derivatization. Table ID, Note 10; Table IG, Note 3.

(I) Method 547, Determination of Glyphosate in Drinking Water by Direct-Aqueous-Injection HPLC, Post-Column Derivatization, and Fluorescence Detection. Table IG, Note 3.

(J) Method 548, Determination of Endothall in Drinking Water by Aqueous Derivatization, Liquid-Solid Extraction, and Gas Chromatography with Electron-Capture Detector. Table IG, Note 3.

(K) Method 548.1, Determination of Endothall in Drinking Water by Ion-Exchange Extraction, Acidic Methanol Methylation and Gas Chromatography/Mass Spectrometry. Table IG, Note 3.

(L) Method 553, Determination of Benzidines and Nitrogen-Containing Pesticides in Water by Liquid-Liquid Extraction or Liquid-Solid Extraction and Reverse Phase High Performance Liquid Chromatography/Particle Beam/Mass Spectrometry Table ID, Note 10; Table IG, Note 3.

(M) Method 555, Determination of Chlorinated Acids in Water by High Performance Liquid Chromatography With a Photodiode Array Ultraviolet Detector. Table IG, Note 3.

(vi) In the compendium Methods for the Determination of Organic Compounds in Drinking Water. Revised July 1991, December 1998. EPA-600/4-88-039, Pub. No. PB92-207703. Table IF.

(A) EPA Method 502.2, Volatile Organic Compounds in Water by Purge and Trap Capillary Column Gas Chromatography with Photoionization and Electrolytic Conductivity Detectors in Series. Table IF.

(B) [Reserved]

(vii) In the compendium Methods for the Determination of Organic Compounds in Drinking Water-Supplement II. August 1992. EPA-600/R-92-129, Pub. No. PB92-207703. Table IF.

(A) EPA Method 524.2, Measurement of Purgeable Organic Compounds in Water by Capillary Column Gas Chromatography/Mass Spectrometry. Table IF.

(B) [Reserved]

(viii) Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, Fifth Edition. October 2002. EPA 821-R-02-012, Pub. No. PB2002-108488. Table IA, Note 26.

(ix) Short-Term Methods for Measuring the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, Fourth Edition. October 2002. EPA 821-R-02-013, Pub. No. PB2002-108489. Table IA, Note 27.

(x) Short-Term Methods for Measuring the Chronic Toxicity of Effluents and Receiving Waters to Marine and Estuarine Organisms, Third Edition. October 2002. EPA 821-R-02-014, Pub. No. PB2002-108490. Table IA, Note 28.

(8) Office of Water, U.S. Environmental Protection Agency (U.S. EPA), mail code 4303T, 1301 Constitution Avenue NW, Washington, DC 20460; website: www.epa.gov/cwa-methods.

(i) Method 245.7, Mercury in Water by Cold Vapor Atomic Fluorescence Spectrometry. Revision 2.0, February 2005. EPA-821-R-05-001. Table IB, Note 17.

(ii) Method 1103.2: Escherichia coli (E. coli) in Water by Membrane Filtration Using membrane-Thermotolerant Escherichia coli Agar (mTEC), EPA-821-R-23-009. September 2023. Table IH, Note 18.

(iii) Method 1106.2: Enterococci in Water by Membrane Filtration Using membrane- Enterococcus -Esculin Iron Agar (mE-EIA), EPA-821-R-23-007. September 2023. Table IH, Note 22.

(iv) Method 1600.1: Enterococci in Water by Membrane Filtration Using membrane- Enterococcus Indoxyl-β-D-Glucoside Agar (mEI), EPA-821-R-23-006, September 2023. Table 1A, Note 24; Table IH, Note 23.

(v) Method 1603.1: Escherichia coli (E. coli) in Water by Membrane Filtration Using Modified membrane-Thermotolerant Escherichia coli Agar (Modified mTEC), EPA-821-R-23-008, September 2023. Table IA, Note 21; Table IH, Note 19.

(vi) Method 1604: Total Coliforms and Escherichia coli ( E. coli) in Water by Membrane Filtration Using a Simultaneous Detection Technique (MI Medium). September 2002. EPA-821-R-02-024. Table IH, Note 21.

(vii) Whole Effluent Toxicity Methods Errata Sheet, EPA 821-R-02-012-ES. December 2016, Table IA, Notes 25, 26, and 27.

(viii) Method 1623: Cryptosporidium and Giardia in Water by Filtration/IMS/FA. December 2005. EPA-821-R-05-002. Table IH, Note 26.

(ix) Method 1623.1: Cryptosporidium and Giardia in Water by Filtration/IMS/FA. EPA 816-R-12-001. January 2012. U.S. EPA, Table IH, Notes 25 and 31.

(x) Method 1627, Kinetic Test Method for the Prediction of Mine Drainage Quality. December 2011. EPA-821-R-09-002. Table IB, Note 69.

(xi) Method 1664, n -Hexane Extractable Material (HEM; Oil and Grease) and Silica Gel Treated n -Hexane Extractable Material (SGT-HEM; Nonpolar Material) by Extraction and Gravimetry. Revision A, February 1999. EPA-821-R-98-002. Table IB, Notes 38 and 42.

(xii) Method 1664, n -Hexane Extractable Material (HEM; Oil and Grease) and Silica Gel Treated n -Hexane Extractable Material (SGT-HEM; Nonpolar Material) by Extraction and Gravimetry, Revision B, February 2010. EPA-821-R-10-001. Table IB, Notes 38 and 42.

(xiii) Method 1669, Sampling Ambient Water for Trace Metals at EPA Water Quality Criteria Levels. July 1996. Table IB, Note 43.

(xiv) Method 1680: Fecal Coliforms in Sewage Sludge (Biosolids) by Multiple-Tube Fermentation using Lauryl Tryptose Broth (LTB) and EC Medium. September 2014. EPA-821-R-14-009.Table IA, Note 15.

(xv) Method 1681: Fecal Coliforms in Sewage Sludge (Biosolids) by Multiple-Tube Fermentation using A-1 Medium. July 2006. EPA 821-R-06-013. Table IA, Note 20.

(xvi) Method 1682: Salmonella in Sewage Sludge (Biosolids) by Modified Semisolid Rappaport-Vassiliadis (MSRV) Medium. September 2014. EPA 821-R-14-012. Table IA, Note 23.

(9) American National Standards Institute, 1430 Broadway, New York NY 10018.

(i) ANSI. American National Standard on Photographic Processing Effluents. April 2, 1975. Table IB, Note 9.

(ii) [Reserved]

(10) American Public Health Association, 800 I Street, NW, Washington, DC 20001; phone: (202)777-2742, website: www.standardmethods.org.

(i) Standard Methods for the Examination of Water and Wastewater. 14th Edition, 1975. Table IB, Notes 27 and 86.

(ii) Standard Methods for the Examination of Water and Wastewater. 15th Edition, 1980, Table IB, Note 30; Table ID.

(iii) Selected Analytical Methods Approved and Cited by the United States Environmental Protection Agency, Supplement to the 15th Edition of Standard Methods for the Examination of Water and Wastewater. 1981. Table IC, Note 6; Table ID, Note 6.

(iv) Standard Methods for the Examination of Water and Wastewater. 18th Edition, 1992. Tables IA, IB, IC, ID, IE, and IH.

(v) Standard Methods for the Examination of Water and Wastewater. 19th Edition, 1995. Tables IA, IB, IC, ID, IE, and IH.

(vi) Standard Methods for the Examination of Water and Wastewater. 20th Edition, 1998. Tables IA, IB, IC, ID, IE, and IH.

(vii) Standard Methods for the Examination of Water and Wastewater. 21st Edition, 2005. Table IB, Notes 17 and 27.

(viii) 2120, Color. Revised September 4, 2021. Table IB.

(ix) 2130, Turbidity. Revised 2020. Table IB.

(x) 2310, Acidity. Revised 2020. Table IB.

(xi) 2320, Alkalinity. Revised 2021. Table IB.

(xii) 2340, Hardness. Revised 2021. Table IB.

(xiii) 2510, Conductivity. Revised 2021. Table IB.

(xiv) 2540, Solids. Revised 2020. Table IB.

(xv) 2550, Temperature. 2010. Table IB.

(xvi) 3111, Metals by Flame Atomic Absorption Spectrometry. Revised 2019. Table IB.

(xvii) 3112, Metals by Cold-Vapor Atomic Absorption Spectrometry. Revised 2020. Table IB.

(xviii) 3113, Metals by Electrothermal Atomic Absorption Spectrometry. Revised 2020. Table IB.

(xix) 3114, Arsenic and Selenium by Hydride Generation/Atomic Absorption Spectrometry. Revised 2020, Table IB.

(xx) 3120, Metals by Plasma Emission Spectroscopy. Revised 2020. Table IB.

(xxi) 3125, Metals by Inductively Coupled Plasma-Mass Spectrometry. Revised 2020. Table IB.

(xxii) 3500-Al, Aluminum. Revised 2020. Table IB.

(xxiii) 3500-As, Arsenic. Revised 2020. Table IB.

(xxiv) 3500-Ca, Calcium. Revised 2020. Table IB.

(xxv) 3500-Cr, Chromium. Revised 2020. Table IB.

(xxvi) 3500-Cu, Copper. Revised 2020. Table IB.

(xxvii) 3500-Fe, Iron. 2011. Table IB.

(xxviii) 3500-Pb, Lead. Revised 2020. Table IB.

(xxix) 3500-Mn, Manganese. Revised 2020. Table IB.

(xxx) 3500-K, Potassium. Revised 2020. Table IB.

(xxxi) 3500-Na, Sodium. Revised 2020. Table IB.

(xxxii) 3500-V, Vanadium. 2011. Table IB.

(xxxiii) 3500-Zn, Zinc. Revised 2020. Table IB.

(xxxiv) 4110, Determination of Anions by Ion Chromatography. Revised 2020. Table IB.

(xxxv) 4140, Inorganic Anions by Capillary Ion Electrophoresis. Revised 2020. Table IB.

(xxxvi) 4500-B, Boron. 2011. Table IB.

(xxxvii) 4500 Cl , Chloride. Revised 2021. Table IB.

(xxxviii) 4500-Cl, Chlorine (Residual). 2011. Table IB.

(xxxix) 4500-CN , Cyanide. Revised 2021. Table IB.

(xl) 4500-F , Fluoride. Revised 2021. Table IB.

(xli) 4500-H + , pH. 2021. Table IB.

(xlii) 4500-NH 3 , Nitrogen (Ammonia). Revised 2021. Table IB.

(xliii) 4500-NO 2 , Nitrogen (Nitrite). Revised 2021. Table IB.

(xliv) 4500-NO 3 , Nitrogen (Nitrate). Revised 2019. Table IB.

(xlv) 4500-N (org) , Nitrogen (Organic). Revised 2021. Table IB.

(xlvi) 4500-O, Oxygen (Dissolved). Revised 2021. Table IB.

(xlvii) 4500-P, Phosphorus. Revised 2021. Table IB.

(xlviii) 4500-SiO 2 , Silica. Revised 2021. Table IB.

(xlix) 4500-S 2− , Sulfide. Revised 2021. Table IB.

(l) 4500-SO 32− , Sulfite. Revised 2021. Table IB.

(li) 4500-SO 42− , Sulfate. Revised 2021. Table IB.

(lii) 5210, Biochemical Oxygen Demand (BOD). Revised 2016. Table IB.

(liii) 5220, Chemical Oxygen Demand (COD). 2011. Table IB.

(liv) 5310, Total Organic Carbon (TOC). Revised 2014. Table IB.

(lv) 5520, Oil and Grease. Revised 2021. Table IB.

(lvi) 5530, Phenols. Revised 2021. Table IB.

(lvii) 5540, Surfactants. Revised 2021. Table IB.

(lviii) 6200, Volatile Organic Compounds. Revised 2020. Table IC.

(lix) 6410, Extractable Base/Neutrals and Acids. Revised 2020. Tables IC and ID.

(lx) 6420, Phenols. Revised 2021. Table IC.

(lxi) 6440, Polynuclear Aromatic Hydrocarbons. Revised 2021. Table IC.

(lxii) 6630, Organochlorine Pesticides. Revised 2021. Table ID.

(lxiii) 6640, Acidic Herbicide Compounds. Revised 2021. Table ID.

(lxiv) 7110, Gross Alpha and Gross Beta Radioactivity (Total, Suspended, and Dissolved). 2000. Table IE.

(lxv) 7500, Radium. 2001. Table IE.

(lxvi) 9213, Recreational Waters. 2007. Table IH.

(lxvii) 9221, Multiple-Tube Fermentation Technique for Members of the Coliform Group. Approved 2014. Table IA, Notes 12, 14; and 33; Table IH, Notes 10, 12, and 32.

(lxviii) 9222, Membrane Filter Technique for Members of the Coliform Group. 2015. Table IA, Note 31; Table IH, Note 17.

(lxix) 9223 Enzyme Substrate Coliform Test. 2016. Table IA; Table IH.

(lxx) 9230 Fecal Enterococcus/Streptococcus Groups. 2013. Table IA, Note 32; Table IH.

(11) The Analyst, The Royal Society of Chemistry, RSC Publishing, Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge CB4 0WF, United Kingdom. (Also available from most public libraries.)

(i) Spectrophotometric Determination of Ammonia: A Study of a Modified Berthelot Reaction Using Salicylate and Dichloroisocyanurate. Krom, M.D. 105:305-316, April 1980. Table IB, Note 60.

(ii) [Reserved]

(12) Analytical Chemistry, ACS Publications, 1155 Sixteenth St. NW., Washington DC 20036. (Also available from most public libraries.)

(i) Spectrophotometric and Kinetics Investigation of the Berthelot Reaction for the Determination of Ammonia. Patton, C.J. and S.R. Crouch. 49(3):464-469, March 1977. Table IB, Note 60.

(ii) [Reserved]

(13) AOAC International, 481 North Frederick Avenue, Suite 500, Gaithersburg, MD 20877-2417.

(i) Official Methods of Analysis of AOAC International. 16th Edition, 4th Revision, 1998.

(A) 920.203, Manganese in Water, Persulfate Method. Table IB, Note 3.

(B) 925.54, Sulfate in Water, Gravimetric Method. Table IB, Note 3.

(C) 973.40, Specific Conductance of Water. Table IB, Note 3.

(D) 973.41, pH of Water. Table IB, Note 3.

(E) 973.43, Alkalinity of Water, Titrimetric Method. Table IB, Note 3.

(F) 973.44, Biochemical Oxygen Demand (BOD) of Water, Incubation Method. Table IB, Note 3.

(G) 973.45, Oxygen (Dissolved) in Water, Titrimetric Methods. Table IB, Note 3.

(H) 973.46, Chemical Oxygen Demand (COD) of Water, Titrimetric Methods. Table IB, Note 3.

(I) 973.47, Organic Carbon in Water, Infrared Analyzer Method. Table IB, Note 3.

(J) 973.48, Nitrogen (Total) in Water, Kjeldahl Method. Table IB, Note 3.

(K) 973.49, Nitrogen (Ammonia) in Water, Colorimetric Method. Table IB, Note 3.

(L) 973.50, Nitrogen (Nitrate) in Water, Brucine Colorimetric Method. Table IB, Note 3.

(M) 973.51, Chloride in Water, Mercuric Nitrate Method. Table IB, Note 3.

(N) 973.52, Hardness of Water. Table IB, Note 3.

(O) 973.53, Potassium in Water, Atomic Absorption Spectrophotometric Method. Table IB, Note 3.

(P) 973.54, Sodium in Water, Atomic Absorption Spectrophotometric Method. Table IB, Note 3.

(Q) 973.55, Phosphorus in Water, Photometric Method. Table IB, Note 3.

(R) 973.56, Phosphorus in Water, Automated Method. Table IB, Note 3.

(S) 974.27, Cadmium, Chromium, Copper, Iron, Lead, Magnesium, Manganese, Silver, Zinc in Water, Atomic Absorption Spectrophotometric Method. Table IB, Note 3.

(T) 977.22, Mercury in Water, Flameless Atomic Absorption Spectrophotometric Method. Table IB, Note 3.

(U) 991.15. Total Coliforms and Escherichia coli in Water Defined Substrate Technology (Colilert) Method. Table IA, Note 10; Table IH, Note 10.

(V) 993.14, Trace Elements in Waters and Wastewaters, Inductively Coupled Plasma-Mass Spectrometric Method. Table IB, Note 3.

(W) 993.23, Dissolved Hexavalent Chromium in Drinking Water, Ground Water, and Industrial Wastewater Effluents, Ion Chromatographic Method. Table IB, Note 3.

(X) 993.30, Inorganic Anions in Water, Ion Chromatographic Method. Table IB, Note 3.

(ii) [Reserved]

(14) Applied and Environmental Microbiology, American Society for Microbiology, 1752 N Street NW., Washington DC 20036. (Also available from most public libraries.)

(i) New Medium for the Simultaneous Detection of Total Coliforms and Escherichia coli in Water. Brenner, K.P., C.C. Rankin, Y.R. Roybal, G.N. Stelma, Jr., P.V. Scarpino, and A.P. Dufour. 59:3534-3544, November 1993. Table IH, Note 21.

(ii) [Reserved]

(15) ASTM International, 100 Barr Harbor Drive, P.O. Box C700, West Conshohocken, PA 19428-2959; phone: (877)909-2786; website: www.astm.org.

(i) Annual Book of ASTM Standards, Water, and Environmental Technology, Section 11, Volumes 11.01 and 11.02. 1994. Tables IA, IB, IC, ID, IE, and IH.

(ii) Annual Book of ASTM Standards, Water, and Environmental Technology, Section 11, Volumes 11.01 and 11.02. 1996. Tables IA, IB, IC, ID, IE, and IH.

(iii) Annual Book of ASTM Standards, Water, and Environmental Technology, Section 11, Volumes 11.01 and 11.02. 1999. Tables IA, IB, IC, ID, IE, and IH.

(iv) Annual Book of ASTM Standards, Water, and Environmental Technology, Section 11, Volumes 11.01 and 11.02. 2000. Tables IA, IB, IC, ID, IE, and IH.

(v) ASTM D511-14, Standard Test Methods for Calcium and Magnesium in Water. Approved October 1, 2014. Table IB.

(vi) ASTM D512-12, Standard Test Methods for Chloride Ion in Water. Approved June 15, 2012. Table IB.

(vii) ASTM D515-88, Test Methods for Phosphorus in Water, March 1989. Table IB.

(viii) ASTM D516-16, Standard Test Method for Sulfate Ion in Water. Approved June 1, 2016. Table IB.

(ix) ASTM D858-17, Standard Test Methods for Manganese in Water. Approved June 1, 2017. Table IB.

(x) ASTM D859-16, Standard Test Method for Silica in Water. Approved June 15, 2016. Table IB.

(xi) ASTM D888-18, Standard Test Methods for Dissolved Oxygen in Water. Approved May 1, 2018. Table IB.

(xii) ASTM D1067-16, Standard Test Methods for Acidity or Alkalinity of Water. Approved June 15, 2016. Table IB.

(xiii) ASTM D1068-15, Standard Test Methods for Iron in Water. Approved October 1, 2015. Table IB.

(xiv) ASTM D1125-95 (Reapproved 1999), Standard Test Methods for Electrical Conductivity and Resistivity of Water. December 1995. Table IB.

(xv) ASTM D1126-17, Standard Test Method for Hardness in Water. Approved December 1, 2017. Table IB.

(xvi) ASTM D1179-16, Standard Test Methods for Fluoride Ion in Water. Approved June 15, 2016. Table IB.

(xvii) ASTM D1246-16, Standard Test Method for Bromide Ion in Water. June 15, 2016. Table IB.

(xviii) ASTM D1252-06 (Reapproved 2012), Standard Test Methods for Chemical Oxygen Demand (Dichromate Oxygen Demand) of Water. Approved June 15, 2012. Table IB.

(xix) ASTM D1253-14, Standard Test Method for Residual Chlorine in Water. Approved January 15, 2014. Table IB.

(xx) ASTM D1293-18, Standard Test Methods for pH of Water. Approved January 15, 2018. Table IB.

(xxi) ASTM D1426-15, Standard Test Methods for Ammonia Nitrogen in Water. Approved March 15, 2015. Table IB.

(xxii) ASTM D1687-17, Standard Test Methods for Chromium in Water. Approved June 1, 2017. Table IB.

(xxiii) ASTM D1688-17, Standard Test Methods for Copper in Water. Approved June 1, 2017. Table IB.

(xxiv) ASTM D1691-17, Standard Test Methods for Zinc in Water. Approved June 1, 2017. Table IB.

(xxv) ASTM D1783-01 (Reapproved 2012), Standard Test Methods for Phenolic Compounds in Water. Approved June 15, 2012. Table IB.

(xxvi) ASTM D1886-14, Standard Test Methods for Nickel in Water. Approved October 1, 2014. Table IB.

(xxvii) ASTM D1889-00, Standard Test Method for Turbidity of Water. October 2000. Table IB.

(xxviii) ASTM D1890-96, Standard Test Method for Beta Particle Radioactivity of Water. April 1996. Table IE.

(xxix) ASTM D1943-96, Standard Test Method for Alpha Particle Radioactivity of Water. April 1996. Table IE.

(xxx) ASTM D1976-20, Standard Test Method for Elements in Water by Inductively-Coupled Argon Plasma Atomic Emission Spectroscopy. Approved May 1, 2020. Table IB.

(xxxi) ASTM D2036-09 (Reapproved 2015), Standard Test Methods for Cyanides in Water. Approved July 15, 2015. Table IB.

(xxxii) ASTM D2330-20, Standard Test Method for Methylene Blue Active Substances. Approved January 1, 2020. Table 1B.

(xxxiii) ASTM D2460-97, Standard Test Method for Alpha-Particle-Emitting Isotopes of Radium in Water. October 1997. Table IE.

(xxxiv) ASTM D2972-15, Standard Tests Method for Arsenic in Water. Approved February 1, 2015. Table IB.

(xxxv) ASTM D3223-17, Standard Test Method for Total Mercury in Water. Approved June 1, 2017. Table IB.

(xxxvi) ASTM D3371-95, Standard Test Method for Nitriles in Aqueous Solution by Gas-Liquid Chromatography, February 1996. Table IF.

(xxxvii) ASTM D3373-17, Standard Test Method for Vanadium in Water. Approved June 1, 2017. Table IB.

(xxxviii) ASTM D3454-97, Standard Test Method for Radium-226 in Water. February 1998. Table IE.

(xxxix) ASTM D3557-17, Standard Test Method for Cadmium in Water. Approved June 1, 2017. Table IB.

(xl) ASTM D3558-15, Standard Test Method for Cobalt in Water. Approved February 1, 2015. Table IB.

(xli) ASTM D3559-15, Standard Test Methods for Lead in Water. Approved June 1, 2015. Table IB.

(xlii) ASTM D3590-17, Standard Test Methods for Total Kjeldahl Nitrogen in Water. Approved June 1, 2017. Table IB.

(xliii) ASTM D3645-15, Standard Test Methods for Beryllium in Water. Approved February 1, 2015. Table IB.

(xliv) ASTM D3695-95, Standard Test Method for Volatile Alcohols in Water by Direct Aqueous-Injection Gas Chromatography. April 1995. Table IF.

(xlv) ASTM D3859-15, Standard Test Methods for Selenium in Water. Approved March 15, 2015. Table IB.

(xlvi) ASTM D3867-16, Standard Test Method for Nitrite-Nitrate in Water. Approved June 1, 2016. Table IB.

(xlvii) ASTM D4190-15, Standard Test Method for Elements in Water by Direct- Current Plasma Atomic Emission Spectroscopy. Approved February 1, 2015. Table IB.

(xlviii) ASTM D4282-15, Standard Test Method for Determination of Free Cyanide in Water and Wastewater by Microdiffusion. Approved July 15, 2015. Table IB.

(xlix) ASTM D4327-17, Standard Test Method for Anions in Water by Suppressed Ion Chromatography. Approved December 1, 2017. Table IB.

(l) ASTM D4382-18, Standard Test Method for Barium in Water, Atomic Absorption Spectrophotometry, Graphite Furnace. Approved February 1, 2018. Table IB.

(li) ASTM D4657-92 (Reapproved 1998), Standard Test Method for Polynuclear Aromatic Hydrocarbons in Water. January 1993. Table IC.

(lii) ASTM D4658-15, Standard Test Method for Sulfide Ion in Water. Approved March 15, 2015. Table IB.

(liii) ASTM D4763-88 (Reapproved 2001), Standard Practice for Identification of Chemicals in Water by Fluorescence Spectroscopy. September 1988. Table IF.

(liv) ASTM D4839-03 (Reapproved 2017), Standard Test Method for Total Carbon and Organic Carbon in Water by Ultraviolet, or Persulfate Oxidation, or Both, and Infrared Detection. Approved December 15, 2017. Table IB.

(lv) ASTM D5257-17, Standard Test Method for Dissolved Hexavalent Chromium in Water by Ion Chromatography. Approved December 1, 2017. Table IB.

(lvi) ASTM D5259-92, Standard Test Method for Isolation and Enumeration of Enterococci from Water by the Membrane Filter Procedure. October 1992. Table IH, Note 9.

(lvii) ASTM D5392-93, Standard Test Method for Isolation and Enumeration of Escherichia coli in Water by the Two-Step Membrane Filter Procedure. September 1993. Table IH, Note 9.

(lviii) ASTM D5673-16, Standard Test Method for Elements in Water by Inductively Coupled Plasma—Mass Spectrometry. Approved February 1, 2016. Table IB.

(lix) ASTM D5907-18, Standard Test Methods for Filterable Matter (Total Dissolved Solids) and Nonfilterable Matter (Total Suspended Solids) in Water. Approved May 1, 2018. Table IB.

(lx) ASTM D6503-99, Standard Test Method for Enterococci in Water Using Enterolert. April 2000. Table IA Note 9, Table IH, Note 9.

(lxi) ASTM. D6508-15, Standard Test Method for Determination of Dissolved Inorganic Anions in Aqueous Matrices Using Capillary Ion Electrophoresis and Chromate Electrolyte. Approved October 1, 2015. Table IB, Note 54.

(lxii) ASTM. D6888-16, Standard Test Method for Available Cyanides with Ligand Displacement and Flow Injection Analysis (FIA) Utilizing Gas Diffusion Separation and Amperometric Detection. Approved February 1, 2016. Table IB, Note 59.

(lxiii) ASTM. D6919-17, Standard Test Method for Determination of Dissolved Alkali and Alkaline Earth Cations and Ammonium in Water and Wastewater by Ion Chromatography. Approved June 1, 2017. Table IB.

(lxiv) ASTM. D7065-17, Standard Test Method for Determination of Nonylphenol, Bisphenol A, p-tert -Octylphenol, Nonylphenol Monoethoxylate and Nonylphenol Diethoxylate in Environmental Waters by Gas Chromatography Mass Spectrometry. Approved December 15, 2017. Table IC.

(lxv) ASTM D7237-18, Standard Test Method for Free Cyanide with Flow Injection Analysis (FIA) Utilizing Gas Diffusion Separation and Amperometric Detection. Approved December 1, 2018. Table IB.

(lxvi) ASTM D7284-20, Standard Test Method for Total Cyanide in Water by Micro Distillation followed by Flow Injection Analysis with Gas Diffusion Separation and Amperometric Detection. Approved August 1, 2020. Table IB.

(lxvii) ASTM D7365-09a (Reapproved 2015), Standard Practice for Sampling, Preservation and Mitigating Interferences in Water Samples for Analysis of Cyanide. Approved July 15, 2015. Table II, Notes 5 and 6.

(lxviii) ASTM. D7511-12 (Reapproved 2017) e1 , Standard Test Method for Total Cyanide by Segmented Flow Injection Analysis, In-Line Ultraviolet Digestion and Amperometric Detection. Approved July 1, 2017. Table IB.

(lxix) ASTM D7573-18a e1 , Standard Test Method for Total Carbon and Organic Carbon in Water by High Temperature Catalytic Combustion and Infrared Detection. Approved December 15, 2018. Table IB.

(lxx) ASTM D7781-14, Standard Test Method for Nitrite-Nitrate in Water by Nitrate Reductase, Approved April 1, 2014. Table IB.

(16) Bran & Luebbe Analyzing Technologies, Inc., Elmsford NY 10523.

(i) Industrial Method Number 378-75WA, Hydrogen Ion (pH) Automated Electrode Method, Bran & Luebbe (Technicon) Auto Analyzer II. October 1976. Table IB, Note 21.

(ii) [Reserved]

(17) CEM Corporation, P.O. Box 200, Matthews NC 28106-0200.

(i) Closed Vessel Microwave Digestion of Wastewater Samples for Determination of Metals. April 16, 1992. Table IB, Note 36.

(ii) [Reserved]

(18) Craig R. Chinchilla, 900 Jorie Blvd., Suite 35, Oak Brook IL 60523. Telephone: 630-645-0600.

(i) Nitrate by Discrete Analysis Easy (1-Reagent) Nitrate Method, (Colorimetric, Automated, 1 Reagent). Revision 1, November 12, 2011. Table IB, Note 62.

(ii) [Reserved]

(19) FIAlab Instruments, Inc., 334 2151 N. Northlake Way, Seattle, WA 98103; phone: (425)376-0450; website: www.flowinjection.com/app-notes/epafialab100.

(i) FIAlab 100, Determination of Inorganic Ammonia by Continuous Flow Gas Diffusion and Fluorescence Detector Analysis, April 4, 2018. Table IB, Note 82.

(ii) [Reserved]

(20) Hach Company, P.O. Box 389, Loveland CO 80537.

(i) Method 8000, Chemical Oxygen Demand. Hach Handbook of Water Analysis. 1979. Table IB, Note 14.

(ii) Method 8008, 1,10-Phenanthroline Method using FerroVer Iron Reagent for Water. 1980. Table IB, Note 22.

(iii) Method 8009, Zincon Method for Zinc. Hach Handbook for Water Analysis. 1979. Table IB, Note 33.

(iv) Method 8034, Periodate Oxidation Method for Manganese. Hach Handbook for Water Analysis. 1979. Table IB, Note 23.

(v) Method 8506, Bicinchoninate Method for Copper. Hach Handbook of Water Analysis. 1979. Table IB, Note 19.

(vi) Method 8507, Nitrogen, Nitrite-Low Range, Diazotization Method for Water and Wastewater. 1979. Table IB, Note 25.

(vii) Method 10206, Hach Company TNTplus 835/836 Nitrate Method 10206, Spectrophotometric Measurement of Nitrate in Water and Wastewater. Revision 2.1, January 10, 2013. Table IB, Note 75.

(viii) Method 10242, Hach Company TNTplus 880 Total Kjeldahl Nitrogen Method 10242, Simplified Spectrophotometric Measurement of Total Kjeldahl Nitrogen in Water and Wastewater. Revision 1.1, January 10, 2013. Table IB, Note 76.

(ix) Hach Method 10360, Luminescence Measurement of Dissolved Oxygen in Water and Wastewater and for Use in the Determination of BOD5and cBOD5. Revision 1.2, October 2011. Table IB, Note 63.

(x) m-ColiBlue24® Method, for total Coliforms and E. coli. Revision 2, 1999. Table IA, Note 18; Table IH, Note 17.

(21) IDEXX Laboratories Inc., One Idexx Drive, Westbrook ME 04092.

(i) Colilert. 2013. Table IA, Notes 17 and 18; Table IH, Notes 14, 15 and 16.

(ii) Colilert-18. 2013. Table IA, Notes 17 and 18; Table IH, Notes 14, 15 and 16.

(iii) Enterolert. 2013. Table IA, Note 24; Table IH, Note 12.

(iv) Quanti-Tray Insert and Most Probable Number (MPN) Table. 2013. Table IA, Note 18; Table IH, Notes 14 and 16.

(22) In-Situ Incorporated, 221 E. Lincoln Ave., Ft. Collins CO 80524. Telephone: 970-498-1500.

(i) In-Situ Inc. Method 1002-8-2009, Dissolved Oxygen Measurement by Optical Probe. 2009. Table IB, Note 64.

(ii) In-Situ Inc. Method 1003-8-2009, Biochemical Oxygen Demand (BOD) Measurement by Optical Probe. 2009. Table IB, Note 10.

(iii) In-Situ Inc. Method 1004-8-2009, Carbonaceous Biochemical Oxygen Demand (CBOD) Measurement by Optical Probe. 2009. Table IB, Note 35.

(23) Journal of Chromatography, Elsevier/North-Holland, Inc., Journal Information Centre, 52 Vanderbilt Avenue, New York NY 10164. (Also available from most public libraries.

(i) Direct Determination of Elemental Phosphorus by Gas-Liquid Chromatography. Addison, R.F. and R.G. Ackman. 47(3): 421-426, 1970. Table IB, Note 28.

(ii) [Reserved]

(24) Lachat Instruments, 6645 W. Mill Road, Milwaukee WI 53218, Telephone: 414-358-4200.

(i) QuikChem Method 10-204-00-1-X, Digestion and Distillation of Total Cyanide in Drinking and Wastewaters using MICRO DIST and Determination of Cyanide by Flow Injection Analysis. Revision 2.2, March 2005. Table IB, Note 56.

(ii) [Reserved]

(25) Leck Mitchell, Ph.D., P.E., 656 Independence Valley Dr., Grand Junction CO 81507. Telephone: 970-244-8661.

(i) Mitchell Method M5271, Determination of Turbidity by Nephelometry. Revision 1.0, July 31, 2008. Table IB, Note 66.

(ii) Mitchell Method M5331, Determination of Turbidity by Nephelometry. Revision 1.0, July 31, 2008. Table IB, Note 65.

(26) MACHEREY-NAGEL GmbH and Co., 2850 Emrick Blvd., Bethlehem, PA 18020; Phone: (888)321-6224.

(i) Method 036/038 NANOCOLOR® COD LR/HR, Spectrophotometric Measurement of Chemical Oxygen Demand in Water and Wastewater, Revision 1.5, May 2018. Table IB, Note 83.

(ii) [Reserved]

(27) Micrology Laboratories, LLC (now known as Roth Bioscience, LLC), 1303 Eisenhower Drive, Goshen, IN 46526; phone: (574)533-3351.

(i) KwikCount TM EC Medium E. coli enzyme substrate test, Rapid Detection of E. coli in Beach Water By KwikCount TM EC Membrane Filtration. 2014. Table IH, Notes 28 and 29.

(ii) [Reserved]

(28) National Council of the Paper Industry for Air and Stream Improvements, Inc. (NCASI), 260 Madison Avenue, New York NY 10016.

(i) NCASI Method TNTP-W10900, Total Nitrogen and Total Phophorus in Pulp and Paper Biologically Treated Effluent by Alkaline Persulfate Digestion. June 2011. Table IB, Note 77.

(ii) NCASI Technical Bulletin No. 253, An Investigation of Improved Procedures for Measurement of Mill Effluent and Receiving Water Color. December 1971. Table IB, Note 18.

(iii) NCASI Technical Bulletin No. 803, An Update of Procedures for the Measurement of Color in Pulp Mill Wastewaters. May 2000. Table IB, Note 18.

(29) The Nitrate Elimination Co., Inc. (NECi), 334 Hecla St., Lake Linden NI 49945.

(i) NECi Method N07-0003, Method for Nitrate Reductase Nitrate-Nitrogen Analysis. Revision 9.0. March 2014. Table IB, Note 73.

(ii) [Reserved]

(30) Oceanography International Corporation, 512 West Loop, P.O. Box 2980, College Station TX 77840.

(i) OIC Chemical Oxygen Demand Method. 1978. Table IB, Note 13.

(ii) [Reserved]

(31) OI Analytical, Box 9010, College Station TX 77820-9010.

(i) Method OIA-1677-09, Available Cyanide by Ligand Exchange and Flow Injection Analysis (FIA). Copyright 2010. Table IB, Note 59.

(ii) Method PAI-DK01, Nitrogen, Total Kjeldahl, Block Digestion, Steam Distillation, Titrimetric Detection. Revised December 22, 1994. Table IB, Note 39.

(iii) Method PAI-DK02, Nitrogen, Total Kjeldahl, Block Digestion, Steam Distillation, Colorimetric Detection. Revised December 22, 1994. Table IB, Note 40.

(iv) Method PAI-DK03, Nitrogen, Total Kjeldahl, Block Digestion, Automated FIA Gas Diffusion. Revised December 22, 1994. Table IB, Note 41.

(32) ORION Research Corporation, 840 Memorial Drive, Cambridge, Massachusetts 02138.

(i) ORION Research Instruction Manual, Residual Chlorine Electrode Model 97-70. 1977. Table IB, Note 16.

(ii) [Reserved]

(33) Pace Analytical Services, LLC, 1800 Elm Street, SE, Minneapolis, MN 55414; phone: (612)656-2240.

(i) PAM-16130-SSI, Determination of 2,3,7,8-Substituted Tetra- through Octa-Chlorinated Dibenzo- p -Dioxins and Dibenzofurans (CDDs/CDFs) Using Shimadzu Gas Chromatography Mass Spectrometry (GC-MS/MS), Revision 1.1, May 20, 2022. Table IC, Note 17.

(ii) [Reserved]

(34) SGS AXYS Analytical Services, Ltd., 2045 Mills Road, Sidney, British Columbia, Canada, V8L 5X2; phone: (888)373-0881.

(i) SGS AXYS Method 16130, Determination of 2,3,7,8-Substituted Tetra- through Octa-Chlorinated Dibenzo- p -Dioxins and Dibenzofurans (CDDs/CDFs) Using Waters and Agilent Gas Chromatography-Mass Spectrometry (GC/MS/MS)., Revision 1.0, revised August 2020. Table IC, Note 16.

(ii) [Reserved]

(35) Technicon Industrial Systems, Tarrytown NY 10591.

(i) Industrial Method Number 379-75WE Ammonia, Automated Electrode Method, Technicon Auto Analyzer II. February 19, 1976. Table IB, Note 7.

(ii) [Reserved]

(36) Thermo Jarrell Ash Corporation, 27 Forge Parkway, Franklin MA 02038.

(i) Method AES0029. Direct Current Plasma (DCP) Optical Emission Spectrometric Method for Trace Elemental Analysis of Water and Wastes. 1986, Revised 1991. Table IB, Note 34.

(ii) [Reserved]

(37) Thermo Scientific, 166 Cummings Center, Beverly MA 01915. Telephone: 1-800-225-1480. www.thermoscientific.com.

(i) Thermo Scientific Orion Method AQ4500, Determination of Turbidity by Nephelometry. Revision 5, March 12, 2009. Table IB, Note 67.

(ii) [Reserved]

(38) 3M Corporation, 3M Center Building 220-9E-10, St. Paul MN 55144-1000.

(i) Organochlorine Pesticides and PCBs in Wastewater Using EmporeTMDisk” Test Method 3M 0222. Revised October 28, 1994. Table IC, Note 8; Table ID, Note 8.

(ii) [Reserved]

(39) Timberline Instruments, LLC, 1880 South Flatiron Ct., Unit I, Boulder CO 80301.

(i) Timberline Amonia-001, Determination of Inorganic Ammonia by Continuous Flow Gas Diffusion and Conductivity Cell Analysis. June 24, 2011. Table IB, Note 74.

(ii) [Reserved]

(40) U.S. Geological Survey (USGS), U.S. Department of the Interior, Reston, Virginia. Available from USGS Books and Open-File Reports (OFR) Section, Federal Center, Box 25425, Denver, CO 80225; phone: (703)648-5953; website: ww.usgs.gov.

(i) Colorimetric determination of nitrate plus nitrite in water by enzymatic reduction, automated discrete analyzer methods. U.S. Geological Survey Techniques and Methods, Book 5—Laboratory Analysis, Section B—Methods of the National Water Quality Laboratory, Chapter 8. 2011. Table IB, Note 72.

(ii) Techniques and Methods—Book 5, Laboratory Analysis—Section B, Methods of the National Water Quality Laboratory—Chapter 12, Determination of Heat Purgeable and Ambient Purgeable Volatile Organic Compounds in Water by Gas Chromatography/Mass Spectrometry 2016.

(iii) Methods for Determination of Inorganic Substances in Water and Fluvial Sediments, editors, Techniques of Water-Resources Investigations of the U.S. Geological Survey, Book 5, Chapter A1. 1979. Table IB, Note 8.

(iv) Methods for Determination of Inorganic Substances in Water and Fluvial Sediments, Techniques of Water-Resources Investigations of the U.S. Geological Survey, Book 5, Chapter A1. 1989. Table IB, Notes 2 and 79.

(v) Methods for the Determination of Organic Substances in Water and Fluvial Sediments. Techniques of Water-Resources Investigations of the U.S. Geological Survey, Book 5, Chapter A3. 1987. Table IB, Note 24; Table ID, Note 4.

(vi) OFR 76-177, Selected Methods of the U.S. Geological Survey of Analysis of Wastewaters. 1976. Table IE, Note 2.

(vii) OFR 91-519, Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of Organonitrogen Herbicides in Water by Solid-Phase Extraction and Capillary-Column Gas Chromatography/Mass Spectrometry With Selected-Ion Monitoring. 1992. Table ID, Note 14.

(viii) OFR 92-146, Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of Total Phosphorus by a Kjeldahl Digestion Method and an Automated Colorimetric Finish That Includes Dialysis. 1992. Table IB, Note 48.

(ix) OFR 93-125, Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of Inorganic and Organic Constituents in Water and Fluvial Sediments. 1993. Table IB, Notes 51 and 80; Table IC, Note 9.

(x) OFR 93-449, Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of Chromium in Water by Graphite Furnace Atomic Absorption Spectrophotometry. 1993. Table IB, Note 46.

(xi) OFR 94-37, Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of Triazine and Other Nitrogen-containing Compounds by Gas Chromatography with Nitrogen Phosphorus Detectors. 1994. Table ID, Note 9.

(xii) OFR 95-181, Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of Pesticides in Water by C-18 Solid-Phase Extraction and Capillary-Column Gas Chromatography/Mass Spectrometry With Selected-Ion Monitoring. 1995. Table ID, Note 11.

(xiii) OFR 97-198, Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of Molybdenum in Water by Graphite Furnace Atomic Absorption Spectrophotometry. 1997. Table IB, Note 47.

(xiv) OFR 97-829, Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of 86 Volatile Organic Compounds in Water by Gas Chromatography/Mass Spectrometry, Including Detections Less Than Reporting Limits. 1998. Table IC, Note 13.

(xv) OFR 98-165, Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of Elements in Whole-Water Digests Using Inductively Coupled Plasma-Optical Emission Spectrometry and Inductively Coupled Plasma-Mass Spectrometry. 1998. Table IB, Notes 50 and 81.

(xvi) OFR 98-639, Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of Arsenic and Selenium in Water and Sediment by Graphite Furnace—Atomic Absorption Spectrometry. 1999. Table IB, Note 49.

(xvii) OFR 00-170, Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of Ammonium Plus Organic Nitrogen by a Kjeldahl Digestion Method and an Automated Photometric Finish that Includes Digest Cleanup by Gas Diffusion. 2000. Table IB, Note 45.

(xviii) Techniques and Methods Book 5-B1, Determination of Elements in Natural-Water, Biota, Sediment and Soil Samples Using Collision/Reaction Cell Inductively Coupled Plasma-Mass Spectrometry. Chapter 1, Section B, Methods of the National Water Quality Laboratory, Book 5, Laboratory Analysis. 2006. Table IB, Note 70.

(xix) U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Laboratory Analysis, Chapter A4, Methods for Collection and Analysis of Aquatic Biological and Microbiological Samples. 1989. Table IA, Note 4; Table IH, Note 4.

(xx) Water-Resources Investigation Report 01-4098, Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of Moderate-Use Pesticides and Selected Degradates in Water by C-18 Solid-Phase Extraction and Gas Chromatography/Mass Spectrometry. 2001. Table ID, Note 13.

(xxi) Water-Resources Investigations Report 01-4132, Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of Organic Plus Inorganic Mercury in Filtered and Unfiltered Natural Water With Cold Vapor-Atomic Fluorescence Spectrometry. 2001. Table IB, Note 71.

(xxii) Water-Resources Investigation Report 01-4134, Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of Pesticides in Water by Graphitized Carbon-Based Solid-Phase Extraction and High-Performance Liquid Chromatography/Mass Spectrometry. 2001. Table ID, Note 12.

(xxiii) Water Temperature—Influential Factors, Field Measurement and Data Presentation, Techniques of Water-Resources Investigations of the U.S. Geological Survey, Book 1, Chapter D1. 1975. Table IB, Note 32.

(41) Waters Corporation, 34 Maple Street, Milford MA 01757, Telephone: 508-482-2131, Fax: 508-482-3625. (i) Method D6508, Test Method for Determination of Dissolved Inorganic Anions in Aqueous Matrices Using Capillary Ion Electrophoresis and Chromate Electrolyte. Revision 2, December 2000. Table IB, Note 54. (ii) [Reserved]

(i) Method D6508, Test Method for Determination of Dissolved Inorganic Anions in Aqueous Matrices Using Capillary Ion Electrophoresis and Chromate Electrolyte. Revision 2, December 2000. Table IB, Note 54.

(ii) [Reserved]

* * * *

(e)

* * * *

Table II—Required Containers, Preservation Techniques, and Holding Times

* * * *

5 ASTM D7365-09a (15) specifies treatment options for samples containing oxidants (e.g ., chlorine) for cyanide analyses. Also, Section 9060A of Standard Methods for the Examination of Water and Wastewater (23rd edition) addresses dechlorination procedures for microbiological analyses.

2024-04-08T05:00:00Z

EPA Proposed Rule: Significant New Use Rules

EPA is proposing significant new use rules (SNURs) under the Toxic Substances Control Act (TSCA) for chemical substances that were the subject of premanufacture notices (PMNs). The chemical substances received “not likely to present an unreasonable risk” determinations pursuant to TSCA. The SNURs require persons who intend to manufacture (defined by statute to include import) or process any of these chemical substances for an activity that is proposed as a significant new use by this rulemaking to notify EPA at least 90 days before commencing that activity. The required notification initiates EPA's evaluation of the use, under the conditions of use for that chemical substance. In addition, the manufacture or processing for the significant new use may not commence until EPA has conducted a review of the required notification, made an appropriate determination regarding that notification, and taken such actions as required by that determination.

DATES: This proposed rule is published in the Federal Register April 8, 2024, page 24398.

View proposed rule.

2024-04-05T05:00:00Z

EPA Final Rule: National Emission Standards for Hazardous Air Pollutants: Ethylene Oxide Emissions Standards for Sterilization Facilities Residual Risk and Technology Review

This action finalizes the residual risk and technology review (RTR) conducted for the Commercial Sterilization Facilities source category regulated under national emission standards for hazardous air pollutants (NESHAP) under the Clean Air Act. The EPA is finalizing decisions concerning the RTR, including definitions for affected sources, emission standards for previously unregulated sources, amendments pursuant to the risk review to address ethylene oxide (EtO) emissions from certain sterilization chamber vents (SCVs), aeration room vents (ARVs), chamber exhaust vents (CEVs), and room air emissions, and amendments pursuant to the technology review for certain SCVs and ARVs. In addition, we are taking final action to correct and clarify regulatory provisions related to emissions during periods of startup, shutdown, and malfunction (SSM), including removing exemptions for periods of SSM. We are also taking final action to require owners and operators to demonstrate compliance through the use of EtO continuous emissions monitoring systems (CEMS), with exceptions for very small users of EtO; add provisions for electronic reporting of performance test results and other reports; and include other technical revisions to improve consistency and clarity. We estimate that these final amendments will reduce EtO emissions from this source category by approximately 21 tons per year (tpy).

DATES: This final rule is effective on April 5, 2024, published in the Federal Register April 5, 2024, page 24090.

View final rule.

Appendix B to Part 60—Performance Specifications
Performance Specification 19AddedView text
Appendix F to Part 60—Quality Assurance Procedures
Procedure 7AddedView text
§63.14 Incorporations by reference.
(a), (f), (i) introductory textRevisedView text
(i)(88)-(120)RedesignatedView text
Subpart O—Ethylene Oxide Emissions Standards for Sterilization Facilities
Entire subpartRevisedView text

Previous Text

§63.14 Incorporations by reference.

(a) The materials listed in this section are incorporated by reference into this part with the approval of the Director of the Federal Register under 5 U.S.C. 552(a) and 1 CFR part 51. To enforce any edition other than that specified in this section, a document must be published in the Federal Register and the material must be available to the public. All approved materials are available for inspection at the Air and Radiation Docket and Information Center (Air Docket) in the EPA Docket Center (EPA/DC) at Rm. 3334, EPA West Bldg., 1301 Constitution Ave. NW, Washington, DC. The EPA/DC Public Reading Room hours of operation are 8:30 a.m. to 4:30 p.m., Monday through Friday, excluding legal holidays. The telephone number of the EPA/DC Public Reading Room is (202) 566-1744, and the telephone number for the Air Docket is (202) 566-1742. These approved materials are also available for inspection at the National Archives and Records Administration (NARA). For information on the availability of this material at NARA, email fedreg.legal@nara.gov or go to www.archives.gov/federal-register/cfr/ibr-locations.html. In addition, these materials are available from the following sources:

* * * *

(f) American Society of Mechanical Engineers (ASME), Three Park Avenue, New York, NY 10016-5990, Telephone (800) 843-2763, http://www.asme.org; also available from HIS, Incorporated, 15 Inverness Way East, Englewood, CO 80112, Telephone (877) 413-5184, http://global.ihs.com.

(1) ANSI/ASME PTC 19.10-1981, Flue and Exhaust Gas Analyses [Part 10, Instruments and Apparatus], issued August 31, 1981, IBR approved for §§63.309(k), 63.457(k), 63.772(e) and (h), 63.865(b), 63.997(e), 63.1282(d) and (g), and 63.1625(b), table 5 to subpart EEEE, §§63.3166(a), 63.3360(e), 63.3545(a), 63.3555(a), 63.4166(a), 63.4362(a), 63.4766(a), 63.4965(a), and 63.5160(d), table 4 to subpart UUUU, table 3 to subpart YYYY, §§63.7822(b), 63.7824(e), 63.7825(b), 63.8000(d), 63.9307(c), 63.9323(a), 63.9621(b) and (c), 63.11148(e), 63.11155(e), 63.11162(f), 63.11163(g), 63.11410(j), 63.11551(a), 63.11646(a), and 63.11945, and table 4 to subpart AAAAA, table 5 to subpart DDDDD, table 4 to subpart JJJJJ, table 4 to subpart KKKKK, table 4 to subpart SSSSS, tables 4 and 5 of subpart UUUUU, table 1 to subpart ZZZZZ, and table 4 to subpart JJJJJJ.

(2) [Reserved]

* * * *

(i) ASTM International, 100 Barr Harbor Drive, Post Office Box C700, West Conshohocken, PA 19428-2959, Telephone (610) 832-9585, http://www.astm.org; also available from ProQuest, 789 East Eisenhower Parkway, Ann Arbor, MI 48106-1346, Telephone (734) 761-4700, http://www.proquest.com.

Subpart O—Ethylene Oxide Emissions Standards for Sterilization Facilities

§63.360 Applicability.

(a) All sterilization sources using 1 ton (see definition) in sterilization or fumigation operations are subject to the emissions standards in §63.362, except as specified in paragraphs (b) through (e) of this section. Owners or operators of sources using 1 ton (see definition) subject to the provisions of this subpart must comply with the requirements of subpart A, of this part according to the applicability of subpart A of this part to such sources in Table 1 of this section.

Table 1 of Section 63.360 - General Provisions Applicability to Subpart O
ReferenceApplies to sources using 10 tons in subpart O aApplies to sources using 1 to 10 tons in subpart O aComment
a See definition.
63.1(a)(1) YesAdditional terms defined in §63.361; when overlap between subparts A and O occurs, subpart O takes precedence.
63.1(a)(2) Yes
63.1(a)(3) Yes
63.1(a)(4) Yes Subpart O clarifies the applicability of each paragraph in subpart A to sources subject to subpart O.
63.1(a)(5) NoReserved.
63.1(a)(6) Yes
63.1(a)(7) Yes
63.1.1(a)(8)Yes
63.1(a)(9)NoReserved.
63.1(a)(10) Yes
63.1(a)(11) Yes §63.366(a) of subpart O also allows report submissions via fax and on electronic media.
63.1(a)(12)-(14) Yes
63.1(b)(1)-(2) Yes
63.1(b)(3) No §63.367 clarifies the applicability of recordkeeping requirements for sources that determine they are not subject to the emissions standards.
63.1(c)(1) Yes Subpart O clarifies the applicability of each paragraph in subpart A to sources subject to subpart O in this table.
63.1(c)(2) Yes §63.360(f) exempts area sources subject to this subpart from the obligation to obtain Title V operating permits.
63.1(c)(3) NoReserved.
63.1(c)(4)Yes
63.1(c)(5) No §63.360 specifies applicability.
63.1(d) NoReserved.
63.1(e) Yes
63.2 YesAdditional terms defined in §63.361; when overlap between subparts A and O occurs, subpart O takes precedence.
63.3 YesOther units used in subpart O are defined in the text of subpart O.
63.4(a)(1)-(3) Yes
63.4(a)(4)NoReserved.
63.4(a)(5)Yes
63.4(b) Yes
63.4(c) Yes
63.5(a) No §63.366(b)(1) contains applicability requirements for constructed or reconstructed sources.
63.5(b)(1) YesNo
63.5(b)(2) NoReserved.
63.5(b)(3) NoSee §63.366(b)(2).
63.5(b)(4) YesNo
63.5(b)(5) YesNo
63.5(b)(6) YesNo
63.5(c) NoReserved.
63.5(d)(1)-(2) NoSee §63.366(b)(3).
63.5(d)(3)-(4) YesNo
63.5(e) YesNo
63.5(f)(1)-(2) NoSee §63.366(b)(4).
63.6(a)(1) Yes
63.6(a)(2) No §63.360 specifies applicability.
63.6(b)-(c) No §63.360(g) specifies compliance dates for sources.
63.6(d) NoReserved.
63.6(e) NoSubpart O does not contain any operation and maintenance plan requirements.
63.6(f)(1) No §63.362(b) specifies when the standards apply.
63.6(f)(2)(i) Yes
63.6(f)(2)(ii) No §63.363 specifies parameters for determining compliance.
63.6(f)(2)(iii)-(iv) Yes
63.6(f)(2)(v) No
63.6(f)(3) Yes
63.6(g) Yes
63.6(h) NoSubpart O does not contain any opacity or visible emission standards.
63.6(i)(1)-(14) Yes
63.6(i)(15) NoReserved
63.6(i)(16) Yes
63.6(j) Yes
63.7(a)(1) Yes
63.7(a)(2) Yes
63.7(a)(3) Yes
63.7(b) Yes
63.7(c) YesNo
63.7(d) YesNo
63.7(e) Yes §63.365 also contains test methods specific to sources subject to the emissions standards.
63.7(f) Yes
63.7(g)(1) Yes
63.7(g)(2) NoReserved
63.7(g)(3) Yes
63.7(h) Yes
63.8(a)(1) Yes
63.8(a)(2) Yes
63.8(a)(3) NoReserved
63.8(a)(4) Yes
63.8(b)(1) Yes
63.8(b)(2) Yes
63.8(b)(3) No
63.8(c)(1) (i)-(ii) NoA startup, shutdown, and malfunction plan is not required for these standards.
63.8(c)(1)(iii) Yes
63.8(c)(2)-(3) Yes
63.8(c)(4)-(5) NoFrequency of monitoring measurements is provided in §63.364; opacity monitors are not required for these standards.
63.8(c)(6) NoPerformance specifications for gas chromatographs and temperature monitors are contained in §63.365.
63.8(c)(7)(i)(A)-(B) NoPerformance specifications for gas chromatographs and temperature monitors are contained in §63.365.
63.8(c)(7)(i)(C) NoOpacity monitors are not required for these standards.
63.8(c)(7)(ii) NoPerformance specifications for gas chromatographs and temperature monitors are contained in §63.365.
63.8(c)(8) No
63.8(d) YesNo
63.8(e)(1) Yes
63.8(e)(2) Yes
63.8(e)(3) YesNo
63.8(e)(4) Yes
63.8(e)(5)(i) Yes
63.8(e)(5)(ii) NoOpacity monitors are not required for these standards.
63.8(f)(1)-(5) Yes
63.8(f)(6) No
63.8(g)(1) Yes
63.8(g)(2) No
63.8(g)(3)-(5) Yes
63.9(a) Yes
63.9(b)(1)-(i) Yes
63.9(b)(1)(ii)-(iii) No §63.366(c)(1)(i) contains language for sources that increase usage such that the source becomes subject to the emissions standards.
63.9(b)(2)-(3) Yes §63.366(c)(3) contains additional information to be included in the initial report for existing and new sources.
63.9(b)(4)-(5) No §63.366(c)(1)(ii) and (iii) contains requirements for new or reconstructed sources subject to the emissions standards.
63.9(c) Yes
63.9(d) No
63.9(e) Yes
63.9(f) NoOpacity monitors are not required for these standards.
63.9(g)(1) Yes
63.9(g)(2)-(3) NoOpacity monitors and relative accuracy testing are not required for these standards.
63.9(h)(1)-(3) Yes
63.9(h)(4) NoReserved.
63.9(h)(5) No §63.366(c)(2) instructs sources to submit actual data.
63.9(h)(6) Yes
63.9(i) Yes
63.9(j) Yes
63.10(a) Yes
63.10(b)(1) Yes
63.10(b)(2)(i) NoNot applicable due to batch nature of the industry.
63.10(b)(2)(ii) Yes
63.10(b)(2)(iii) No
63.10(b)(2)(iv)-(v) NoA startup, shutdown, and malfunction plan is not required for these standards.
63.10(b)(2)(vi)-(xii) Yes
63.10(b)(2)(xiii) No
63.10(b)(2)(xiv) Yes
63.10(b)(3) No §63.367 (b) and (c) contains applicability determination requirements.
63.10(c)(1) Yes
63.10(c)(2)-(4) NoReserved.
63.10(c)(5) Yes
63.10(c)(6) No
63.10(c)(7) NoNot applicable due to batch nature of the industry.
63.10(c)(8) Yes
63.10(c)(9) No
63.10(c)(10)-(13) Yes
63.10(c)(14) YesNo
63.10(c)(15) NoA startup, shutdown, and malfunction plan is not required for these standards.
63.10(d)(1) Yes
63.10(d)(2) Yes
63.10(d)(3) NoSubpart O does not contain opacity or visible emissions standards.
63.10(d)(4) Yes
63.10(d)(5) NoA startup, shutdown, and malfunction plan is not required for these standards.
63.10(e)(1) Yes
63.10(e)(2)(i) Yes
63.10(e)(2)(ii) NoOpacity monitors are not required for these standards.
63.10(e)(3)(i)-(iv) Yes
63.10(e)(3)(v) No §63.366(a)(3) specifies contents and submittal dates for excess emissions and monitoring system performance reports.
63.10(e)(3)(vi)-(viii) Yes
63.10(e)(4) NoOpacity monitors are not required for these standards.
63.10(f) Yes
63.11 Yes
63.12-63.15 Yes

(b) Sterilization sources using less than 1 ton (see definition) are not subject to the emissions standards in §63.362. The recordkeeping requirements of §63.367(c) apply.

(c) This subpart does not apply to beehive fumigators.

(d) This subpart does not apply to research or laboratory facilities as defined in section 112(c)(7) of title III of the Clean Air Act Amendment of 1990.

(e) This subpart does not apply to ethylene oxide sterilization operations at stationary sources such as hospitals, doctors offices, clinics, or other facilities whose primary purpose is to provide medical services to humans or animals.

(f) If you are an owner or operator of an area source subject to this subpart, you are exempt from the obligation to obtain a permit under 40 CFR part 70 or 71, provided you are not required to obtain a permit under 40 CFR 70.3(a) or 71.3(a) for a reason other than your status as an area source under this subpart. Notwithstanding the previous sentence, you must continue to comply with the provisions of this subpart applicable to area sources.

(g) The owner or operator shall comply with the provisions of this subpart as follows:

(1) All sterilization chamber vents subject to the emissions standards in §63.362 with an initial startup date before December 6, 1998, no later than December 6, 1998.

(2) All sterilization chamber vents subject to the emissions standards in §63.362 with an initial startup date on or after December 6, 1998, immediately upon initial startup of the source.

(3) All sterilization chamber vents at sources using less than 1 ton of ethylene oxide that increase their ethylene oxide usage after December 6, 1998 such that the sterilization chamber vent becomes subject to the emissions standards in §63.362(c), immediately upon becoming subject to the emission standards.

(4) All aeration room vents subject to the emissions standards in §63.362 with an initial startup date before December 6, 2000, no later than December 6, 2000.

(5) All aeration room vents subject to the emissions standards in §63.362 with an initial startup date on or after December 6, 2000, immediately upon initial startup of the source.

(6) All aeration room vents at sources using less than 10 tons that increase their ethylene oxide usage after December 6, 2000, such that the aeration room vents become subject to the emissions standards in §63.362, immediately upon becoming subject to the emission standards.

(7)-(10) [Reserved]

§63.361 Definitions.

Terms and nomenclature used in this subpart are defined in the Clean Air Act (the Act) as amended in 1990, §§63.2 and 63.3 of subpart A of this part, or in this section. For the purposes of subpart O, if the same term is defined in subpart A and in this section, it shall have the meaning given in this section.

Aeration room means any vessel or room that is used to facilitate off-gassing of ethylene oxide at a sterilization facility.

Aeration room vent means the point(s) through which the evacuation of ethylene oxide-laden air from an aeration room occurs.

Baseline temperature means a minimum temperature at the outlet from the catalyst bed of a catalytic oxidation control device or at the exhaust point from the combustion chamber of a thermal oxidation control device.

Chamber exhaust vent means the point(s) through which ethylene oxide-laden air is removed from the sterilization chamber during chamber unloading following the completion of sterilization and associated air washes.

Compliance date means the date by which a source subject to the emissions standards in §63.362 is required to be in compliance with the standard.

Deviation means any instance in which an affected source, subject to this subpart, or an owner or operator of such a source:

(1) Fails to meet any requirement or obligation established by this subpart including, but not limited to, any emission limitation (including any operating limit) or work practice standard;

(2) Fails to meet any term or condition that is adopted to implement an applicable requirement in this subpart and that is included in the operating permit for any affected source required to obtain such a permit; or

(3) Fails to meet any emission limitation (including any operating limit) or work practice standard in this subpart during startup, shutdown, or malfunction, regardless of whether or not such failure is permitted by this subpart.

Effective date means the date of promulgation in the Federal Register notice.

Initial startup date means the date when a source subject to the emissions standards in §63.362 first begins operation of a sterilization process.

Manifolding emissions means combining ethylene oxide emissions from two or more different vent types for the purpose of controlling these emissions with a single control device.

Maximum ethylene glycol concentration means any concentration of ethylene glycol in the scrubber liquor of an acid-water scrubber control device established during a performance test when the scrubber achieves at least 99-percent control of ethylene oxide emissions.

Maximum liquor tank level means any level of scrubber liquor in the acid-water scrubber liquor recirculation tank established during a performance test when the scrubber achieves at least 99-percent control of ethylene oxide emissions.

Oxidation temperature means the temperature at the outlet point of a catalytic oxidation unit control device or at the exhaust point from the combustion chamber for a thermal oxidation unit control device.

Source(s) using less than 1 ton means source(s) using less than 907 kg (1 ton) of ethylene oxide within all consecutive 12-month periods after December 6, 1996.

Source(s) using 1 ton means source(s) using 907 kg (1 ton) or more of ethylene oxide within any consecutive 12-month period after December 6, 1996.

Source(s) using 1 to 10 tons means source(s) using 907 kg (1 ton) or more of ethylene oxide in any consecutive 12-month period but less than 9,070 kg (10 tons) of ethylene oxide in all consecutive 12-month periods after December 6, 1996.

Source(s) using less than 10 tons means source(s) using less than 9,070 kg (10 tons) of ethylene oxide in all consecutive 12-month periods after December 6, 1996.

Source(s) using 10 tons means source(s) using 9,070 kg (10 tons) or more of ethylene oxide in any consecutive 12-month period after December 6, 1996.

Sterilization chamber means any enclosed vessel or room that is filled with ethylene oxide gas, or an ethylene oxide/inert gas mixture, for the purpose of sterilizing and/or fumigating at a sterilization facility.

Sterilization chamber vent means the point (prior to the vacuum pump) through which the evacuation of ethylene oxide from the sterilization chamber occurs following sterilization or fumigation, including any subsequent air washes.

Sterilization facility means any stationary source where ethylene oxide is used in the sterilization or fumigation of materials.

Sterilization operation means any time when ethylene oxide is removed from the sterilization chamber through the sterilization chamber vent or the chamber exhaust vent or when ethylene oxide is removed from the aeration room through the aeration room vent.

Thermal oxidizer means all combustion devices except flares.

§63.362 Standards.

(a) Each owner or operator of a source subject to the provisions of this subpart shall comply with these requirements on and after the compliance date specified in §63.360(g). The standards of this section are summarized in Table 1 of this section.

Table 1 of Section 63.362 - Standards for Ethylene Oxide Commercial Sterilizers and Fumigators
Existing and new sourcesSource typeSterilization chamber ventAeration room ventChamber exhaust vent
Source size<907 kg (<1 ton)No control required; minimal recordkeeping requirements apply (see §63.367(c)).
≥907 kg and <9,070 kg (≥1 ton and <10 tons)99% emission reduction (see §63.362(c))No controlNo control.
≥9,070 kg (≥10 tons)99% emission reduction (see §63.362(c))1 ppm maximum outlet concentration or 99% emission reduction (see §63.362(d))No control.

(b) Applicability of emission limits. The emission limitations of paragraphs (c), (d), and (e) of this section apply during sterilization operation. The emission limitations do not apply during periods of malfunction.

(c) Sterilization chamber vent at sources using 1 ton. Each owner or operator of a sterilization source using 1 ton shall reduce ethylene oxide emissions to the atmosphere by at least 99 percent from each sterilization chamber vent.

(d) Aeration room vent at sources using 10 tons. Each owner or operator of a sterilization source using 10 tons shall reduce ethylene oxide emissions to the atmosphere from each aeration room vent to a maximum concentration of 1 ppmv or by at least 99 percent, whichever is less stringent, from each aeration room vent.

(e) [Reserved]

§63.363 Compliance and performance provisions.

(a)(1) The owner or operator of a source subject to emissions standards in §63.362 shall conduct an initial performance test using the procedures listed in §63.7 according to the applicability in Table 1 of §63.360, the procedures listed in this section, and the test methods listed in §63.365.

(2) The owner or operator of all sources subject to these emissions standards shall complete the performance test within 180 days after the compliance date for the specific source as determined in §63.360(g).

(b) The procedures in paragraphs (b)(1) through (3) of this section shall be used to determine initial compliance with the emission limits under §63.362(c), the sterilization chamber vent standard and to establish operating limits for the control devices:

(1) The owner or operator shall determine the efficiency of control devices used to comply with §63.362(c) using the test methods and procedures in §63.365(b).

(2) For facilities with acid-water scrubbers, the owner or operator shall establish as an operating limit either:

(i) The maximum ethylene glycol concentration using the procedures described in §63.365(e)(1); or

(ii) The maximum liquor tank level using the procedures described in §63.365(e)(2).

(3) For facilities with catalytic oxidizers or thermal oxidizers, the operating limit consists of the recommended minimum oxidation temperature provided by the oxidation unit manufacturer for an operating limit.

(4) Facilities with catalytic oxidizers shall comply with one of the following work practices:

(i) Once per year after the initial compliance test, conduct a performance test during routine operations, i.e., with product in the chamber using the procedures described in §63.365(b) or (d) as appropriate. If the percent efficiency is less than 99 percent, restore the catalyst as soon as practicable but no later than 180 days after conducting the performance test; or

(ii) Once per year after the initial compliance test, analyze ethylene oxide concentration data from §63.364(e) or a continuous emission monitoring system (CEMS) and restore the catalyst as soon as practicable but no later than 180 days after data analysis; or,

(iii) Every 5 years, beginning 5 years after the initial compliance test (or by December 6, 2002, whichever is later), replace the catalyst bed with new catalyst material.

(c) The procedures in paragraphs (c)(1) through (3) of this section shall be used to determine initial compliance with the emission limits under §63.362(d), the aeration room vent standard:

(1) The owner or operator shall comply with either paragraph (b)(2) or (3) of this section.

(2) Determine the concentration of ethylene oxide emitted from the aeration room into the atmosphere (after any control device used to comply with §63.362(d)) using the methods in §63.365(c)(1); or

(3) Determine the efficiency of the control device used to comply with §63.362(d) using the test methods and procedures in §63.365(d)(2).

(d) [Reserved]

(e) For facilities complying with the emissions limits under §63.362 with a control technology other than acid-water scrubbers or catalytic or thermal oxidizers, the owner or operator of the facility shall provide to the Administrator or delegated authority information describing the design and operation of the air pollution control system, including recommendations for the operating parameters to be monitored to demonstrate continuous compliance. Based on this information, the Administrator will determine the operating parameter(s) to be measured during the performance test. During the performance test required in paragraph (a) of this section, using the methods approved in §63.365(g), the owner or operator shall determine the site-specific operating limit(s)for the operating parameters approved by the Administrator.

(f) A facility must demonstrate continuous compliance with each operating limit and work practice standard required under this section, except during periods of startup, shutdown, and malfunction, according to the methods specified in §63.364.

§63.364 Monitoring requirements.

(a)(1) The owner or operator of a source subject to emissions standards in §63.362 shall comply with the monitoring requirements in §63.8 of subpart A of this part, according to the applicability in Table 1 of §63.360, and in this section.

(2) Each owner or operator of an ethylene oxide sterilization facility subject to these emissions standards shall monitor the parameters specified in this section. All monitoring equipment shall be installed such that representative measurements of emissions or process parameters from the source are obtained. For monitoring equipment purchased from a vendor, verification of the operational status of the monitoring equipment shall include completion of the manufacturer's written specifications or recommendations for installation, operation, and calibration of the system.

(b) For sterilization facilities complying with §63.363(b) or (d) through the use of an acid-water scrubber, the owner or operator shall either:

(1) Sample the scrubber liquor and analyze and record once per week the ethylene glycol concentration of the scrubber liquor using the test methods and procedures in §63.365(e)(1). Monitoring is required during a week only if the scrubber unit has been operated; or

(2) Measure and record once per week the level of the scrubber liquor in the recirculation tank. The owner or operator shall install, maintain, and use a liquid level indicator to measure the scrubber liquor tank level (i.e., a marker on the tank wall, a dipstick, a magnetic indicator, etc.). Monitoring is required during a week only if the scrubber unit has been operated.

(c) For sterilization facilities complying with §63.363(b) or (c) through the use of catalytic oxidation or thermal oxidation, the owner or operator shall either comply with §63.364(e) or continuously monitor and record the oxidation temperature at the outlet to the catalyst bed or at the exhaust point from the thermal combustion chamber using the temperature monitor described in paragraph (c)(4) of this section. Monitoring is required only when the oxidation unit is operated. From 15-minute or shorter period temperature values, a data acquisition system for the temperature monitor shall compute and record a daily average oxidation temperature. Strip chart data shall be converted to record a daily average oxidation temperature each day any instantaneous temperature recording falls below the minimum temperature.

(1)-(3) [Reserved]

(4) The owner or operator shall install, calibrate, operate, and maintain a temperature monitor accurate to within ±5.6°C (±10°F) to measure the oxidation temperature. The owner or operator shall verify the accuracy of the temperature monitor twice each calendar year with a reference temperature monitor (traceable to National Institute of Standards and Technology (NIST) standards or an independent temperature measurement device dedicated for this purpose). During accuracy checking, the probe of the reference device shall be at the same location as that of the temperature monitor being tested. As an alternative, the accuracy temperature monitor may be verified in a calibrated oven (traceable to NIST standards).

(d) For sterilization facilities complying with §63.363(b) or (c) through the use of a control device other than acid-water scrubbers or catalytic or thermal oxidizers, the owner or operator shall monitor the parameters as approved by the Administrator using the methods and procedures in §63.365(g).

(e) Measure and record once per hour the ethylene oxide concentration at the outlet to the atmosphere after any control device according to the procedures specified in §63.365(c)(1). The owner or operator shall compute and record a 24-hour average daily. The owner or operator will install, calibrate, operate, and maintain a monitor consistent with the requirements of performance specification (PS) 8 or 9 in 40 CFR part 60, appendix B, to measure ethylene oxide. The daily calibration requirements of section 7.2 of PS-9 or Section 13.1 of PS-8 are required only on days when ethylene oxide emissions are vented to the control device.

(f) [Reserved]

§63.365 Test methods and procedures.

(a) Performance testing. The owner or operator of a source subject to the emissions standards in §63.362 shall comply with the performance testing requirements in §63.7 of subpart A of this part, according to the applicability in Table 1 of §63.360, and in this section.

(b) Efficiency at the sterilization chamber vent. California Air Resources Board (CARB) Method 431 or the following procedures shall be used to determine the efficiency of all types of control devices used to comply with §63.362(c), sterilization chamber vent standard.

(1) First evacuation of the sterilization chamber. These procedures shall be performed on an empty sterilization chamber, charged with a typical amount of ethylene oxide, for the duration of the first evacuation under normal operating conditions (i.e., sterilization pressure and temperature).

(i) The amount of ethylene oxide loaded into the sterilizer (Wc) shall be determined by either:

(A) Weighing the ethylene oxide gas cylinder(s) used to charge the sterilizer before and after charging. Record these weights to the nearest 45 g (0.1 lb). Multiply the total mass of gas charged by the weight percent ethylene oxide present in the gas.

(B) Installing calibrated rotameters at the sterilizer inlet and measuring flow rate and duration of sterilizer charge. Use the following equation to convert flow rate to weight of ethylene oxide:



where:

Wc = weight of ethylene oxide charged, g (lb)

Fv = volumetric flow rate, liters per minute (L/min) corrected to 20°C and 101.325 kilopascals (kPa) (scf per minute (scfm) corrected to 68°F and 1 atmosphere of pressure (atm)); the flowrate must be constant during time (t)

t = time, min

%EOV = volume fraction ethylene oxide

SV = standard volume, 24.05 liters per mole (L/mole) = 22.414 L/mole ideal gas law constant corrected to 20°C and 101.325 kPa (385.32 scf per mole (scf/mole) = 359 scf/mole ideal gas law constant corrected to 68°F and 1 atm).

MW = molecular weight of ethylene oxide, 44.05 grams per gram-mole (g/g-mole) (44.05 pounds per pound-mole (lb/lb-mole)), or

(C) Calculating the mass based on the conditions of the chamber immediately after it has been charged using the following equation:



where:

P = chamber pressure, kPa (psia)

V = chamber volume, liters (L) (ft 3)

R = gas constant, 8.313 L·kPa/g-mole·(10.73 psia·ft 3/mole°R)

T = temperature, K (°R)

Note:

If the ethylene oxide concentration is in weight percent, use the following equation to calculate mole fraction:



where:

WEO = weight percent of ethylene oxide

Wx = weight percent of compound in the balance of the mixture

MWx = molecular weight of compound in the balance gas mixture

(ii) The residual mass of ethylene oxide in the sterilizer shall be determined by recording the chamber temperature, pressure, and volume after the completion of the first evacuation and using the following equation:



where:

Wr = weight of ethylene oxide remaining in chamber (after the first evacuation), in g (lb)

(iii) Calculate the total mass of ethylene oxide at the inlet to the control device (Wi) by subtracting the residual mass (Wr) calculated in paragraph (b)(1)(ii) of this section from the charged weight (Wc) calculated in paragraph (b)(1)(i) of this section.

(iv) The mass of ethylene oxide emitted from the control device outlet (Wo) shall be calculated by continuously monitoring the flow rate and concentration using the following procedure.

(A) Measure the flow rate through the control device exhaust continuously during the first evacuation using the procedure found in 40 CFR part 60, appendix A, Test Methods 2, 2A, 2C, or 2D, as appropriate. (Method 2D (using orifice plates or Rootstype meters) is recommended for measuring flow rates from sterilizer control devices.) Record the flow rate at 1-minute intervals throughout the test cycle, taking the first reading within 15 seconds after time zero. Time zero is defined as the moment when the pressure in the sterilizer is released. Correct the flow to standard conditions (20°C and 101.325 kPa (68°F and 1 atm)) and determine the flow rate for the run as outlined in the test methods listed in paragraph (b) of this section.

(B) Test Method 18 or 25A, 40 CFR part 60, appendix A (hereafter referred to as Method 18 or 25A, respectively), shall be used to measure the concentration of ethylene oxide.

(1) Prepare a graph of volumetric flow rate versus time corresponding to the period of the run cycle. Integrate the area under the curve to determine the volume.

(2) Calculate the mass of ethylene oxide by using the following equation:



Where:

Wo = Mass of ethylene oxide, g (lb)

C = concentration of ethylene oxide in ppmv

V = volume of gas exiting the control device corrected to standard conditions, L (ft 3)

1/10 6 = correction factor LEO/10 6 LTOTAL GAS (ft 3EO/10 6 ft 3TOTAL GAS)

(3) Calculate the efficiency by the equation in paragraph (b)(1)(v) of this section.

(C) [Reserved]

(v) Determine control device efficiency (% Eff) using the following equation:



where:

% Eff = percent efficiency

Wi = mass flow rate into the control device

Wo = mass flow rate out of the control device

(vi) Repeat the procedures in paragraphs (b)(1) (i) through (v) of this section three times. The arithmetic average percent efficiency of the three runs shall determine the overall efficiency of the control device.

(2) [Reserved]

(c) Concentration determination. The following procedures shall be used to determine the ethylene oxide concentration.

(1) Parameter monitoring. For determining the ethylene oxide concentration required in §63.364(e), follow the procedures in PS 8 or PS 9 in 40 CFR part 60, appendix B. Sources complying with PS 8 are exempt from the relative accuracy procedures in sections 2.4 and 3 of PS-8.

(2) Initial compliance. For determining the ethylene oxide concentration required in §63.363(c)(2), the procedures outlined in Method 18 or Method 25 A (40 CFR part 60, appendix A) shall be used. A Method 18 or Method 25A test consists of three 1-hour runs. If using Method 25A to determine concentration, calibrate and report Method 25A instrument results using ethylene oxide as the calibration gas. The arithmetic average of the ethylene oxide concentration of the three test runs shall determine the overall outlet ethylene oxide concentration from the control device.

(d) Efficiency determination at the aeration room vent (not manifolded). The following procedures shall be used to determine the efficiency of a control device used to comply with §63.362(d), the aeration room vent standard.

(1) Determine the concentration of ethylene oxide at the inlet and outlet of the control device using the procedures in Method 18 or 25A in 40 CFR part 60, appendix A. A test is comprised of three 1-hour runs.

(2) Determine control device efficiency (% Eff) using the following equation:



Where:

% Eff = percent efficiency

Wi = mass flow rate into the control device

WO = mass flow rate out of the control device

(3) Repeat the procedures in paragraphs (d)(1) and (2) of this section three times. The arithmetic average percent efficiency of the three runs shall determine the overall efficiency of the control device.

(e) Determination of baseline parameters for acid-water scrubbers. The procedures in this paragraph shall be used to determine the monitored parameters established in §63.363(b), (d), or (e) for acid-water scrubbers and to monitor the parameters as established in §63.364(b).

(1) Ethylene glycol concentration. For determining the ethylene glycol concentration, the facility owner or operator shall establish the maximum ethylene glycol concentration as the ethylene glycol concentration averaged over three test runs; the sampling and analysis procedures in ASTM D 3695-88, Standard Test Method for Volatile Alcohols in Water By Direct Aqueous-Injection Gas Chromatography, (incorporated by reference - see §63.14) shall be used to determine the ethylene glycol concentration.

(2) Scrubber liquor tank level. For determining the scrubber liquor tank level, the sterilization facility owner or operator shall establish the maximum liquor tank level based on a single measurement of the liquor tank level during one test run.

(f) [Reserved]

(g) An owner or operator of a sterilization facility seeking to demonstrate compliance with the standards found at §63.362(c), (d), or (e) with a control device other than an acid-water scrubber or catalytic or thermal oxidation unit shall provide to the Administrator the information requested under §63.363(f). The owner or operator shall submit: a description of the device; test results collected in accordance with §63.363(f) verifying the performance of the device for controlling ethylene oxide emissions to the atmosphere to the levels required by the applicable standards; the appropriate operating parameters that will be monitored; and the frequency of measuring and recording to establish continuous compliance with the standards. The monitoring plan submitted identifying the compliance monitoring is subject to the Administrator's approval. The owner or operator of the sterilization facility shall install, calibrate, operate, and maintain the monitor(s) approved by the Administrator based on the information submitted by the owner or operator. The owner or operator shall include in the information submitted to the Administrator proposed performance specifications and quality assurance procedures for their monitors. The Administrator may request further information and shall approve appropriate test methods and procedures.

(h) An owner or operator of a sterilization facility seeking to demonstrate compliance with the requirements of §63.363 or §">63.364, with a monitoring device or procedure other than a gas chromatograph or a flame ionization analyzer, shall provide to the Administrator information describing the operation of the monitoring device or procedure and the parameter(s) that would demonstrate continuous compliance with each operating limit. The Administrator may request further information and will specify appropriate test methods and procedures.

§63.366 Reporting requirements.

(a) The owner or operator of a source subject to the emissions standards in §63.362 shall fulfill all reporting requirements in §§63.10(a), (d), (e), and (f) of subpart A, according to the applicability in Table 1 of §63.360. These reports will be made to the Administrator at the appropriate address identified in §63.13 of subpart A of this part.

(1) Reports required by subpart A and this section may be sent by U.S. mail, fax, or by another courier.

(i) Submittals sent by U.S. mail shall be postmarked on or before the specified date.

(ii) Submittals sent by other methods shall be received by the Administrator on or before the specified date.

(2) If acceptable to both the Administrator and the owner or operator of a source, reports may be submitted on electronic media.

(3) Content and submittal dates for deviations and monitoring system performance reports. All deviations and monitoring system performance reports and all summary reports, if required per §63.10(e)(3)(vii) and (viii), shall be delivered or postmarked within 30 days following the end of each calendar half or quarter as appropriate (see §63.10(e)(3)(i) through (iv) for applicability). Written reports of deviations from an operating limit shall include all information required in §63.10(c)(5) through (13), as applicable in Table 1 of §63.360, and information from any calibration tests in which the monitoring equipment is not in compliance with PS 9 or the method used for temperature calibration. The written report shall also include the name, title, and signature of the responsible official who is certifying the accuracy of the report. When no deviations have occurred or monitoring equipment has not been inoperative, repaired, or adjusted, such information shall be stated in the report.

(b) Construction and reconstruction. The owner or operator of each source using 10 tons shall fulfill all requirements for construction or reconstruction of a source in §63.5 of subpart A of this part, according to the applicability in Table 1 of §63.360, and in this paragraph.

(1) Applicability.(i) This paragraph and §63.5 of subpart A of this part implement the preconstruction review requirements of section 112(i)(1) for sources subject to these emissions standards. In addition, this paragraph and §63.5 of subpart A of this part include other requirements for constructed and reconstructed sources that are or become subject to these emissions standards.

(ii) After the effective date, the requirements in this section and in §63.5 of subpart A of this part apply to owners or operators who construct a new source or reconstruct a source subject to these emissions standards after December 6, 1994. New or reconstructed sources subject to these emissions standards with an initial startup date before the effective date are not subject to the preconstruction review requirements specified in paragraphs (b) (2) and (3) of this section and §63.5(d) (3) and (4) and (e) of subpart A of this part.

(2) After the effective date, whether or not an approved permit program is effective in the State in which a source is (or would be) located, no person may construct a new source or reconstruct a source subject to these emissions standards, or reconstruct a source such that the source becomes a source subject to these emissions standards, without obtaining advance written approval from the Administrator in accordance with the procedures specified in paragraph (b)(3) of this section and §63.5(d) (3) and (4) and (e) of subpart A of this part.

(3) Application for approval of construction or reconstruction. The provisions of paragraph (b)(3) of this section and §63.5(d) (3) and (4) of subpart A of this part implement section 112(i)(1) of the Act.

(i) General application requirements.(A) An owner or operator who is subject to the requirements of paragraph (b)(2) of this section shall submit to the Administrator an application for approval of the construction of a new source subject to these emissions standards, the reconstruction of a source subject to these emissions standards, or the reconstruction of a source such that the source becomes a source subject to these emissions standards. The application shall be submitted as soon as practicable before the construction or reconstruction is planned to commence (but not sooner than the effective date) if the construction or reconstruction commences after the effective date. The application shall be submitted as soon as practicable before the initial startup date but no later than 60 days after the effective date if the construction or reconstruction had commenced and the initial startup date had not occurred before the effective date. The application for approval of construction or reconstruction may be used to fulfill the initial notification requirements of paragraph (c)(1)(iii) of this section. The owner or operator may submit the application for approval well in advance of the date construction or reconstruction is planned to commence in order to ensure a timely review by the Administrator and that the planned commencement date will not be delayed.

(B) A separate application shall be submitted for each construction or reconstruction. Each application for approval of construction or reconstruction shall include at a minimum:

(1) The applicant's name and address.

(2) A notification of intention to construct a new source subject to these emissions standards or make any physical or operational change to a source subject to these emissions standards that may meet or has been determined to meet the criteria for a reconstruction, as defined in §63.2 of subpart A of this part.

(3) The address (i.e., physical location) or proposed address of the source.

(4) An identification of the relevant standard that is the basis of the application.

(5) The expected commencement date of the construction or reconstruction.

(6) The expected completion date of the construction or reconstruction.

(7) The anticipated date of (initial) startup of the source.

(8) The type and quantity of hazardous air pollutants emitted by the source, reported in units and averaging times and in accordance with the test methods specified in the standard, or if actual emissions data are not yet available, an estimate of the type and quantity of hazardous air pollutants expected to be emitted by the source reported in units and averaging times specified. The owner or operator may submit percent reduction information, if the standard is established in terms of percent reduction. However, operating parameters, such as flow rate, shall be included in the submission to the extent that they demonstrate performance and compliance.

(9) Other information as specified in paragraph (b)(3)(ii) of this section and §63.5(d)(3) of subpart A of this part.

(C) An owner or operator who submits estimates or preliminary information in place of the actual emissions data and analysis required in paragraphs (b)(3)(i)(B)(8) and (ii) of this section shall submit the actual, measured emissions data and other correct information as soon as available but no later than with the notification of compliance status required in paragraph (c)(2) of this section.

(ii) Application for approval of construction. Each application for approval of construction shall include, in addition to the information required in paragraph (b)(3)(i)(B) of this section, technical information describing the proposed nature, size, design, operating design capacity, and method of operation of the source subject to these emissions standards, including an identification of each point of emission for each hazardous air pollutant that is emitted (or could be emitted) and a description of the planned air pollution control system (equipment or method) for each emission point. The description of the equipment to be used for the control of emissions shall include each control device for each hazardous air pollutant and the estimated control efficiency (percent) for each control device. The description of the method to be used for the control of emissions shall include an estimated control efficiency (percent) for that method. Such technical information shall include calculations of emission estimates in sufficient detail to permit assessment of the validity of the calculations. An owner or operator who submits approximations of control efficiencies under paragraph (b)(3) of this section shall submit the actual control efficiencies as specified in paragraph (b)(3)(i)(C) of this section.

(4) Approval of construction or reconstruction based on prior State preconstruction review. (i) The Administrator may approve an application for construction or reconstruction specified in paragraphs (b)(2) and (3) of this section and §63.5(d)(3) and (4) of subpart A of this part if the owner or operator of a new or reconstructed source who is subject to such requirement demonstrates to the Administrator's satisfaction that the following conditions have been (or will be) met:

(A) The owner or operator of the new or reconstructed source subject to these emissions standards has undergone a preconstruction review and approval process in the State in which the source is (or would be) located before the effective date and has received a federally enforceable construction permit that contains a finding that the source will meet these emissions standards as proposed, if the source is properly built and operated;

(B) In making its finding, the State has considered factors substantially equivalent to those specified in §63.5(e)(1) of subpart A of this part.

(ii) The owner or operator shall submit to the Administrator the request for approval of construction or reconstruction no later than the application deadline specified in paragraph (b)(3)(i) of this section. The owner or operator shall include in the request information sufficient for the Administrator's determination. The Administrator will evaluate the owner or operator's request in accordance with the procedures specified in §63.5 of subpart A of this part. The Administrator may request additional relevant information after the submittal of a request for approval of construction or reconstruction.

(c) Notification requirements. The owner or operator of each source subject to the emissions standards in §63.362 shall fulfill all notification requirements in §63.9 of subpart A of this part, according to the applicability in Table 1 of §63.360, and in this paragraph.

(1) Initial notifications. (i)(A) If a source that otherwise would be subject to these emissions standards subsequently increases its use of ethylene oxide within any consecutive 12-month period after December 6, 1996, such that the source becomes subject to these emissions standards or other requirements, such source shall be subject to the notification requirements of §63.9 of subpart A of this part.

(B) Sources subject to these emissions standards may use the application for approval of construction or reconstruction under paragraph (b)(3)(ii) of this section and §63.5(d) (3) of subpart A of this part, respectively, if relevant to fulfill the initial notification requirements.

(ii) The owner or operator of a new or reconstructed source subject to these emissions standards that has an initial startup date after the effective date and for which an application for approval of construction or reconstruction is required under paragraph (b)(3) of this section and §63.5(d) (3) and (4) of subpart A of this part shall provide the following information in writing to the Administrator:

(A) A notification of intention to construct a new source subject to these emissions standards, reconstruct a source subject to these emissions standards, or reconstruct a source such that the source becomes a source subject to these emissions standards with the application for approval of construction or reconstruction as specified in paragraph (b)(3)(i)(A) of this section;

(B) A notification of the date when construction or reconstruction was commenced, submitted simultaneously with the application for approval of construction or reconstruction, if construction or reconstruction was commenced before the effective date of these standards;

(C) A notification of the date when construction or reconstruction was commenced, delivered or postmarked not later than 30 days after such date, if construction or reconstruction was commenced after the effective date of these standards;

(D) A notification of the anticipated date of startup of the source, delivered or postmarked not more than 60 days nor less than 30 days before such date; and

(E) A notification of the actual date of initial startup of the source, delivered or postmarked within 15 calendar days after that date.

(iii) After the effective date, whether or not an approved permit program is effective in the State in which a source subject to these emissions standards is (or would be) located, an owner or operator who intends to construct a new source subject to these emissions standards or reconstruct a source subject to these emissions standards, or reconstruct a source such that it becomes a source subject to these emissions standards, shall notify the Administrator in writing of the intended construction or reconstruction. The notification shall be submitted as soon as practicable before the construction or reconstruction is planned to commence (but no sooner than the effective date of these standards) if the construction or reconstruction commences after the effective date of the standard. The notification shall be submitted as soon as practicable before the initial startup date but no later than 60 days after the effective date of this standard if the construction or reconstruction had commenced and the initial startup date has not occurred before the standard's effective date. The notification shall include all the information required for an application for approval of construction or reconstruction as specified in paragraph (b)(3) of this section and §63.5(d)(3) and (4) of subpart A of this part. For sources subject to these emissions standards, the application for approval of construction or reconstruction may be used to fulfill the initial notification requirements of §63.9 of subpart A of this part.

(2) If an owner or operator of a source subject to these emissions standards submits estimates or preliminary information in the application for approval of construction or reconstruction required in paragraph (b)(3)(ii) of this section and §63.5(d)(3) of subpart A of this part, respectively, in place of the actual emissions data or control efficiencies required in paragraphs (b)(3)(i)(B)(8) and (ii) of this section, the owner or operator shall submit the actual emissions data and other correct information as soon as available but no later than with the initial notification of compliance status.

(3) The owner or operator of any existing sterilization facility subject to this subpart shall also include the amount of ethylene oxide used during the previous consecutive 12-month period in the initial notification report required by §63.9(b)(2) and (3) of subpart A of this part. For new sterilization facilities subject to this subpart, the amount of ethylene oxide used shall be an estimate of expected use during the first consecutive 12-month period of operation.

§63.367 Recordkeeping requirements.

(a) The owner or operator of a source subject to §63.362 shall comply with the recordkeeping requirements in §63.10(b) and (c), according to the applicability in Table 1 of §63.360, and in this section. All records required to be maintained by this subpart or a subpart referenced by this subpart shall be maintained in such a manner that they can be readily accessed and are suitable for inspection. The most recent 2 years of records shall be retained onsite or shall be accessible to an inspector while onsite. The records of the preceding 3 years, where required, may be retained offsite. Records may be maintained in hard copy or computer-readable form including, but not limited to, on paper, microfilm, computer, computer disk, magnetic tape, or microfiche.

(b) The owners or operators of a source using 1 to 10 tons not subject to §63.362 shall maintain records of ethylene oxide use on a 12-month rolling average basis (until the source changes its operations to become a source subject to §63.362).

(c) The owners or operators of a source using less than 1 ton shall maintain records of ethylene oxide use on a 12-month rolling average basis (until the source changes its operations to become a source subject to §63.362).

(d) The owners or operators complying with §63.363(b) (4) shall maintain records of the compliance test, data analysis, and if catalyst is replaced, proof of replacement.

§63.368 Implementation and enforcement.

(a) This subpart can be implemented and enforced by the U.S. EPA, or a delegated authority such as the applicable State, local, or Tribal agency. If the U.S. EPA Administrator has delegated authority to a State, local, or Tribal agency, then that agency, in addition to the U.S. EPA, has the authority to implement and enforce this subpart. Contact the applicable U.S. EPA Regional Office to find out if implementation and enforcement of this subpart is delegated to a State, local, or Tribal agency.

(b) In delegating implementation and enforcement authority of this subpart to a State, local, or Tribal agency under subpart E of this part, the authorities contained in paragraph (c) of this section are retained by the Administrator of U.S. EPA and cannot be transferred to the State, local, or Tribal agency.

(c) The authorities that cannot be delegated to State, local, or Tribal agencies are as specified in paragraphs (c)(1) through (4) of this section.

(1) Approval of alternatives to the requirements in §§63.360 and 63.362.

(2) Approval of major alternatives to test methods under §63.7(e)(2)(ii) and (f), as defined in §63.90, and as required in this subpart.

(3) Approval of major alternatives to monitoring under §63.8(f), as defined in §63.90, and as required in this subpart.

(4) Approval of major alternatives to recordkeeping and reporting under §63.10(f), as defined in §63.90, and as required in this subpart.

See More

Most Recent Highlights In Safety & Health

Facility Response Plans: Hope for the best, prepare for the worst-case discharges
2024-04-05T05:00:00Z

Facility Response Plans: Hope for the best, prepare for the worst-case discharges

“What’s the worst that could happen?” You’ve likely heard and have even asked this rhetorical question. Under the Clean Water Act (CWA), it’s no longer rhetorical; it’s now a regulatory question that must be answered with formal, written plans by facilities that could discharge dangerous chemicals into nearby waterbodies.

The Environmental Protection Agency (EPA) finalized a rule (codified at 40 CFR Part 118) that requires certain facilities to develop and submit Facility Response Plans (FRPs) for worst-case discharges or the potential for worst-case discharges of CWA hazardous substances into navigable water.

Use this article to help you determine whether your facility is covered by the CWA hazardous substance FRP requirements.

First, review the terms.

The final rule covers “onshore, non-transportation-related facilities that could reasonably be expected to cause substantial harm to the environment by discharging a CWA hazardous substance into or on the navigable waters, adjoining shorelines, or exclusive economic zone.” As with all other regulations, the definitions of the terms determine what the rules mean and what they require.

  • Adverse weather refers to weather conditions that make it difficult for response equipment and personnel to clean up or respond to discharged CWA hazardous substances.
  • All CWA hazardous substances are listed at 116.4. The CWA hazardous substances with their corresponding reportable quantities are listed at 117.3.
  • The maximum quantity on-site refers to the maximum total aggregate quantity for each CWA hazardous substance present within the facility at any time.
  • Navigable waters are waters of the United States as defined at 120.2.
  • Public receptors include public spaces inhabited, occupied, or used by the public at any time where a worst-case discharge into or on the navigable waters or a conveyance (i.e., means of transport) to navigable waters could injure members of the public.
  • A worst-case discharge is the largest foreseeable discharge in adverse weather conditions, including a discharge resulting from fire or explosion.

Second, look at the applicability criteria.

A facility considered to pose substantial harm must meet three conditions. The CWA hazardous substance FRP requirements apply to facilities that:

  • Have a maximum quantity on-site of any CWA hazardous substance 1,000 times or more than the reportable quantity listed at 117.3;
  • Are within a 0.5-mile radius of navigable waters or a conveyance to navigable waters; and
  • Meet one or more substantial harm criteria, including:
    • The ability to cause injury to fish, wildlife, and sensitive environments;
    • The ability to adversely impact a public water system;
    • The ability to cause injury to public receptors; or
    • The history of a CWA hazardous substance discharge above the reportable quantity that reached navigable water within the last five years.

The final rule requires facilities to model worst-case discharge scenarios that represent each covered CWA hazardous substance. Through these scenarios, facilities determine whether they meet the first three substantial harm criteria above.

Third, check the exceptions and exemptions.

Determine whether your facility qualifies for any exceptions or exemptions to the FRP requirements listed at 118.8.

Exceptions include:

  • Facilities not reasonably expected to pose substantial harm based solely on location (excluding man-made structures designed to prevent a discharge);
  • Equipment, vessels, or transportation-related facilities subject to other federal authorities, such as the Department of Transportation; and
  • Underground storage tanks (USTs) and connected underground piping, equipment, and containment systems subject to UST regulations.

Exemptions apply to:

  • CWA hazardous substances contained in articles (which are excluded from calculations of the maximum quantity on-site); and
  • Certain uses, such as for processing or cooling water.

If your facility meets the applicability criteria and doesn’t qualify for any exceptions or exemptions, it’s subject to the CWA hazardous substance FRP requirements. You must prepare, submit to EPA, and implement an FRP.

Covered facilities must submit FRPs to EPA within three years of May 28, 2024 (the effective date of the rule).

Fourth, keep these tips in mind.

  • When calculating the quantity of CWA hazardous substances at your site, use the table at 117.3 since it contains the reportable quantities. The tables at 116.4 only list the covered substances.
  • Don’t forget to include mixtures! The standards at 118.9 explain how to handle CWA hazardous substances contained in mixtures when calculating your facility’s maximum on-site quantity.
  • EPA regional administrators may require any facility they assess on a case-by-case basis to develop an FRP based on site-specific factors. So, even if your facility determines it doesn’t meet the applicability criteria, an EPA regional administrator may still require your facility to prepare an FRP.

Key to remember: A final rule under the Clean Water Act requires certain facilities to develop, submit to EPA, and implement Facility Response Plans for worst-case discharges of hazardous substances into navigable waters.

2024-04-04T05:00:00Z

EPA Final Rule: National Emission Standards for Hazardous Air Pollutants: Ethylene Production, Miscellaneous Organic Chemical Manufacturing, Organic Liquids Distribution (Non-Gasoline), and Petroleum Refineries Reconsideration

On July 6, 2020, the U.S. Environmental Protection Agency (EPA or the Agency) finalized the residual risk and technology review (RTR) conducted for the Ethylene Production source category, which is part of the Generic Maximum Achievable Control Technology Standards National Emission Standards for Hazardous Air Pollutants (NESHAP); on July 7, 2020, the EPA finalized the RTR conducted for the Organic Liquids Distribution (Non-Gasoline) NESHAP; and on August 12, 2020, the EPA finalized the RTR conducted for the Miscellaneous Organic Chemical Manufacturing NESHAP. Amendments to the Petroleum Refinery Sector NESHAP were most recently finalized on February 4, 2020. Subsequently, the EPA received and granted various petitions for reconsideration on these NESHAP for, among other things, the provisions related to the work practice standards for pressure relief devices (PRDs), emergency flaring, and degassing of floating roof storage vessels. This action finalizes proposed amendments to remove the force majeure exemption for PRDs and emergency flaring, incorporate clarifications for the degassing requirements for floating roof storage vessels, and address other corrections and clarifications.

DATES: This final action is effective on April 4, 2024, published in the Federal Register April 4, 2024, page 23840.

View final rule.

§63.641 Definitions.
Definition of “Flare”RevisedView text
§63.643 Miscellaneous process vent provisions.
(c)(1)-(2)RevisedView text
§63.648 Equipment leak standards.
(j)(3)(iv), (j)(3)(v)(B) and (C), (j)(6) introductory text, and (j)(6)(ii)RevisedView text
§63.655 Reporting and recordkeeping requirements.
(g)RevisedView text
(i)(9)-(12)RevisedView text
§63.670 Requirements for flare control devices.
(b), (d) introductory text, (e), (l)(5) introductory text, (o)(4)(iv), (o)(6), (o)(7)(ii) through (o)(7)(v)RevisedView text
(d)(3)AddedView text
§63.671 Requirements for flare monitoring systems.
(e) introductory textRevisedView text
(e)(4), (f)AddedView text
Appendix to Subpart CC of Part 63—Tables
Table 13RevisedView text
§63.1100 Applicability.
(b), (g)(7)(iii)RevisedView text
§63.1102 Compliance schedule.
(c)(11), (d)(2)(ii), (e)(2)(iii)RevisedView text
§63.1103 Source category-specific applicability, definitions, and requirements.
(e)RevisedView text
§63.1107 Equipment leaks.
(h)(3)(iv), (h)(3)(v)(B) and (C), (h)(6) introductory text, and (h)(6)(ii)RevisedView text
§63.1109 Recordkeeping requirements.
(f)(2), (3), and (5), and (i)(2)RevisedView text
§63.1110 Reporting requirements.
(a)(10), (e)(4)(iii), (e)(4)(iv)(A) and (B), (e)(5)(iii), and (e)(8)(iii)RevisedView text
§63.2346 What emission limitations, operating limits, and work practice standards must I meet?
(a)(6) introductory text, (e)RevisedView text
(a)(6)(iv)AddedView text
§63.2378 How do I demonstrate continuous compliance with the emission limitations, operating limits, and work practice standards?
(e)RevisedView text
§63.2382 What notifications must I submit and when and what information should be submitted?
(d)RevisedView text
§63.2386 What reports must I submit and when and what information is to be submitted in each?
(f), (g), and (h)RevisedView text
(i)-(j)RemovedView text
§63.2406 What definitions apply to this subpart?
Definition of ”Force majeure event”RemovedView text
Table 12 to Subpart EEEE of Part 63—Applicability of General Provisions to Subpart EEEE
“63.9(k)”AddedView text
”63.7(a)(4)”“63.9(k)”RevisedView text
§63.2450 What are my general requirements for complying with this subpart?
(e)(1), (e)(5)(iv), (e)(5)(viii)(B), (e)(6)(i), (e)(7) introductory text, (v)(1)(i), (v)(1)(ii), and (v)(2)RevisedView text
§63.2460 What requirements must I meet for batch process vents?
(c)(9) introductory textView text
§63.2470 What requirements must I meet for storage tanks?
(f)RevisedView text
§63.2480 What requirements must I meet for equipment leaks?
(a), (e)(2)(ii), (e)(2)(iii), (e)(3)(iv), (e)(3)(v)(B), (e)(3)(v)(C), (e)(6)(ii), (f)(18)(iii), (f)(18)(vi), (f)(18)(x), and (f)(18)(xiii)RevisedView text
§63.2490 What requirements must I meet for heat exchange systems?
(a), (d) introductory text, and (d)(4)(iii) introductory text;RevisedView text
(e)AddedView text
§63.2492 How do I determine whether my process vent, storage tank, or equipment is in ethylene oxide service?
(b)RevisedView text
§63.2493 What requirements must I meet for process vents, storage tanks, or equipment that are in ethylene oxide service?
(a)(2)(vi) introductory text, (a)(2)(vi)(C), (a)(2)(viii), (b)(2), (b)(4) introductory text, (b)(4)(iv), (b)(6), (d)(1)(iii), (d)(2)(iii), (d)(3), (d)(4)(v), and (e) introductory textRevisedView text
§63.2515 What notifications must I submit and when?
(d)RevisedView text
§63.2520 What reports must I submit and when?
(d) introductory text, (e) introductory text, (e)(2), (e)(14)(iii), (e)(16), (f) and (g)RevisedView text
(d)(6)AddedView text
(h)-(i)RemovedView text
§63.2525 What records must I keep?
(o), (p)(2), (p)(3), (p)(5), (q)(2), (r)(1), (r)(4)(iv) introductory text, (r)(4)(iv)(B) and (r)(4)(iv)(C)RevisedView text
(r)(4)(iv)(D)AddedView text
§63.2550 What definitions apply to this subpart?
“In ethylene oxide service’”RevisedView text
Table 10 to Subpart FFFF of Part 63—Work Practice Standards for Heat Exchange Systems
Entire tableRevisedView text
Table 12 to Subpart FFFF of Part 63—Applicability of General Provisions to Subpart FFFF
Entry ”63.9(k)”RevisedView text

Previous Text

§63.641 Definitions.

* * * *

Flare means a combustion device lacking an enclosed combustion chamber that uses an uncontrolled volume of ambient air to burn gases. For the purposes of this rule, the definition of flare includes, but is not necessarily limited to, air-assisted flares, steam-assisted flares and non-assisted flares.

§63.643 Miscellaneous process vent provisions.

* * * *

(c)(1) Prior to venting to the atmosphere, process liquids are removed from the equipment as much as practical and the equipment is depressured to a control device meeting requirements in paragraphs (a)(1) or (2) of this section, a fuel gas system, or back to the process until one of the following conditions, as applicable, is met.

(i) The vapor in the equipment served by the maintenance vent has a lower explosive limit (LEL) of less than 10 percent.

(ii) If there is no ability to measure the LEL of the vapor in the equipment based on the design of the equipment, the pressure in the equipment served by the maintenance vent is reduced to 5 pounds per square inch gauge (psig) or less. Upon opening the maintenance vent, active purging of the equipment cannot be used until the LEL of the vapors in the maintenance vent (or inside the equipment if the maintenance is a hatch or similar type of opening) is less than 10 percent.

(iii) The equipment served by the maintenance vent contains less than 72 pounds of total volatile organic compounds (VOC).

(iv) If the maintenance vent is associated with equipment containing pyrophoric catalyst (e.g., hydrotreaters and hydrocrackers) and a pure hydrogen supply is not available at the equipment at the time of the startup, shutdown, maintenance, or inspection activity, the LEL of the vapor in the equipment must be less than 20 percent, except for one event per year not to exceed 35 percent.

(v) If, after applying best practices to isolate and purge equipment served by a maintenance vent, none of the applicable criterion in paragraphs (c)(1)(i) through (iv) of this section can be met prior to installing or removing a blind flange or similar equipment blind, the pressure in the equipment served by the maintenance vent is reduced to 2 psig or less. Active purging of the equipment may be used provided the equipment pressure at the location where purge gas is introduced remains at 2 psig or less.

(c)(2) Except for maintenance vents complying with the alternative in paragraph (c)(1)(iii) of this section, the owner or operator must determine the LEL or, if applicable, equipment pressure using process instrumentation or portable measurement devices and follow procedures for calibration and maintenance according to manufacturer's specifications.

§63.648 Equipment leak standards.

* * * *

(j)(3)(iv) The owner or operator shall determine the total number of release events occurred during the calendar year for each affected pressure relief device separately. The owner or operator shall also determine the total number of release events for each pressure relief device for which the root cause analysis concluded that the root cause was a force majeure event, as defined in this subpart.

* * * *

(j)(3)(v)(B) A second release event not including force majeure events from a single pressure relief device in a 3 calendar year period for the same root cause for the same equipment.

(j)(3)(v)(C) A third release event not including force majeure events from a single pressure relief device in a 3 calendar year period for any reason.

* * * *

(j)(6) Root cause analysis and corrective action analysis. A root cause analysis and corrective action analysis must be completed as soon as possible, but no later than 45 days after a release event. Special circumstances affecting the number of root cause analyses and/or corrective action analyses are provided in paragraphs (j)(6)(i) through (iv) of this section.

* * * *

(j)(6)(ii) You may conduct a single root cause analysis and corrective action analysis for a single emergency event that causes two or more pressure relief devices to release, regardless of the equipment served, if the root cause is reasonably expected to be a force majeure event, as defined in this subpart.

§63.655 Reporting and recordkeeping requirements.

* * * *

(g) The owner or operator of a source subject to this subpart shall submit Periodic Reports no later than 60 days after the end of each 6-month period when any of the information specified in paragraphs (g)(1) through (7) of this section or paragraphs (g)(9) through (14) of this section is collected. The first 6-month period shall begin on the date the Notification of Compliance Status report is required to be submitted. A Periodic Report is not required if none of the events identified in paragraphs (g)(1) through (7) of this section or paragraphs (g)(9) through (14) of this section occurred during the 6-month period unless emissions averaging is utilized. Quarterly reports must be submitted for emission points included in emission averages, as provided in paragraph (g)(8) of this section. An owner or operator may submit reports required by other regulations in place of or as part of the Periodic Report required by this paragraph (g) if the reports contain the information required by paragraphs (g)(1) through (14) of this section.

(1) For storage vessels, Periodic Reports shall include the information specified for Periodic Reports in paragraphs (g)(2) through (5) of this section. Information related to gaskets, slotted membranes, and sleeve seals is not required for storage vessels that are part of an existing source complying with §63.646.

(2) Internal floating roofs.(i) An owner or operator who elects to comply with §63.646 by using a fixed roof and an internal floating roof or by using an external floating roof converted to an internal floating roof shall submit the results of each inspection conducted in accordance with §63.120(a) of subpart G in which a failure is detected in the control equipment.

(A) For vessels for which annual inspections are required under §63.120(a)(2)(i) or (a)(3)(ii) of subpart G, the specifications and requirements listed in paragraphs (g)(2)(i)(A)(1) through (3) of this section apply.

(1) A failure is defined as any time in which the internal floating roof is not resting on the surface of the liquid inside the storage vessel and is not resting on the leg supports; or there is liquid on the floating roof; or the seal is detached from the internal floating roof; or there are holes, tears, or other openings in the seal or seal fabric; or there are visible gaps between the seal and the wall of the storage vessel.

(2) Except as provided in paragraph (g)(2)(i)(A)(3) of this section, each Periodic Report shall include the date of the inspection, identification of each storage vessel in which a failure was detected, and a description of the failure. The Periodic Report shall also describe the nature of and date the repair was made or the date the storage vessel was emptied.

(3) If an extension is utilized in accordance with §63.120(a)(4) of subpart G, the owner or operator shall, in the next Periodic Report, identify the vessel; include the documentation specified in §63.120(a)(4) of subpart G; and describe the date the storage vessel was emptied and the nature of and date the repair was made.

(B) For vessels for which inspections are required under §63.120(a)(2)(ii), (a)(3)(i), or (a)(3)(iii) of subpart G (i.e., internal inspections), the specifications and requirements listed in paragraphs (g)(2)(i)(B)(1) and (2) of this section apply.

(1) A failure is defined as any time in which the internal floating roof has defects; or the primary seal has holes, tears, or other openings in the seal or the seal fabric; or the secondary seal (if one has been installed) has holes, tears, or other openings in the seal or the seal fabric; or, for a storage vessel that is part of a new source, the gaskets no longer close off the liquid surface from the atmosphere; or, for a storage vessel that is part of a new source, the slotted membrane has more than a 10 percent open area.

(2) Each Periodic Report shall include the date of the inspection, identification of each storage vessel in which a failure was detected, and a description of the failure. The Periodic Report shall also describe the nature of and date the repair was made.

(ii) An owner or operator who elects to comply with §63.660 by using a fixed roof and an internal floating roof shall submit the results of each inspection conducted in accordance with §63.1063(c)(1), (d)(1), and (d)(2) of subpart WW in which a failure is detected in the control equipment. For vessels for which inspections are required under §63.1063(c) and (d), the specifications and requirements listed in paragraphs (g)(2)(ii)(A) through (C) of this section apply.

(A) A failure is defined in §63.1063(d)(1) of subpart WW.

(B) Each Periodic Report shall include a copy of the inspection record required by §63.1065(b) of subpart WW when a failure occurs.

(C) An owner or operator who elects to use an extension in accordance with §63.1063(e)(2) of subpart WW shall, in the next Periodic Report, submit the documentation required by §63.1063(e)(2).

(3) External floating roofs.(i) An owner or operator who elects to comply with §63.646 by using an external floating roof shall meet the periodic reporting requirements specified in paragraphs (g)(3)(i)(A) through (C) of this section.

(A) The owner or operator shall submit, as part of the Periodic Report, documentation of the results of each seal gap measurement made in accordance with §63.120(b) of subpart G in which the seal and seal gap requirements of §63.120(b)(3), (4), (5), or (6) of subpart G are not met. This documentation shall include the information specified in paragraphs (g)(3)(i)(A)(1) through (4) of this section.

(1) The date of the seal gap measurement.

(2) The raw data obtained in the seal gap measurement and the calculations described in §63.120(b)(3) and (4) of subpart G.

(3) A description of any seal condition specified in §63.120(b)(5) or (6) of subpart G that is not met.

(4) A description of the nature of and date the repair was made, or the date the storage vessel was emptied.

(B) If an extension is utilized in accordance with §63.120(b)(7)(ii) or (b)(8) of subpart G, the owner or operator shall, in the next Periodic Report, identify the vessel; include the documentation specified in §63.120(b)(7)(ii) or (b)(8) of subpart G, as applicable; and describe the date the vessel was emptied and the nature of and date the repair was made.

(C) The owner or operator shall submit, as part of the Periodic Report, documentation of any failures that are identified during visual inspections required by §63.120(b)(10) of subpart G. This documentation shall meet the specifications and requirements in paragraphs (g)(3)(i)(C)(1) and (2) of this section.

(1) A failure is defined as any time in which the external floating roof has defects; or the primary seal has holes or other openings in the seal or the seal fabric; or the secondary seal has holes, tears, or other openings in the seal or the seal fabric; or, for a storage vessel that is part of a new source, the gaskets no longer close off the liquid surface from the atmosphere; or, for a storage vessel that is part of a new source, the slotted membrane has more than 10 percent open area.

(2) Each Periodic Report shall include the date of the inspection, identification of each storage vessel in which a failure was detected, and a description of the failure. The Periodic Report shall also describe the nature of and date the repair was made.

(ii) An owner or operator who elects to comply with §63.660 by using an external floating roof shall meet the periodic reporting requirements specified in paragraphs (g)(3)(ii)(A) and (B) of this section.

(A) For vessels for which inspections are required under §63.1063(c)(2), (d)(1), and (d)(3) of subpart WW, the owner or operator shall submit, as part of the Periodic Report, a copy of the inspection record required by §63.1065(b) of subpart WW when a failure occurs. A failure is defined in §63.1063(d)(1).

(B) An owner or operator who elects to use an extension in accordance with §63.1063(e)(2) or (c)(2)(iv)(B) of subpart WW shall, in the next Periodic Report, submit the documentation required by those paragraphs.

(4) [Reserved]

(5) An owner or operator who elects to comply with §63.646 or §63.660 by installing a closed vent system and control device shall submit, as part of the next Periodic Report, the information specified in paragraphs (g)(5)(i) through (v) of this section, as applicable.

(i) The Periodic Report shall include the information specified in paragraphs (g)(5)(i)(A) and (B) of this section for those planned routine maintenance operations that would require the control device not to meet the requirements of either §63.119(e)(1) or (2) of subpart G, §63.985(a) and (b) of subpart SS or §63.670, as applicable.

(A) A description of the planned routine maintenance that is anticipated to be performed for the control device during the next 6 months. This description shall include the type of maintenance necessary, planned frequency of maintenance, and lengths of maintenance periods.

(B) A description of the planned routine maintenance that was performed for the control device during the previous 6 months. This description shall include the type of maintenance performed and the total number of hours during those 6 months that the control device did not meet the requirements of either §63.119(e)(1) or (2) of subpart G, §63.985(a) and (b) of subpart SS or §63.670, as applicable, due to planned routine maintenance.

(ii) If a control device other than a flare is used, the Periodic Report shall describe each occurrence when the monitored parameters were outside of the parameter ranges documented in the Notification of Compliance Status report. The description shall include: Identification of the control device for which the measured parameters were outside of the established ranges, and causes for the measured parameters to be outside of the established ranges.

(iii) If a flare is used prior to January 30, 2019 and prior to electing to comply with the requirements in §63.670, the Periodic Report shall describe each occurrence when the flare does not meet the general control device requirements specified in §63.11(b) of subpart A and shall include: Identification of the flare that does not meet the general requirements specified in §63.11(b) of subpart A, and reasons the flare did not meet the general requirements specified in §63.11(b) of subpart A.

(iv) If a flare is used on or after the date for which compliance with the requirements in §63.670 is elected, which can be no later than January 30, 2019, the Periodic Report shall include the items specified in paragraph (g)(11) of this section.

(v) An owner or operator who elects to comply with §63.660 by installing an alternate control device as described in §63.1064 of subpart WW shall submit, as part of the next Periodic Report, a written application as described in §63.1066(b)(3) of subpart WW.

(6) For miscellaneous process vents for which continuous parameter monitors are required by this subpart, periods of excess emissions shall be identified in the Periodic Reports and shall be used to determine compliance with the emission standards.

(i) Period of excess emission means any of the following conditions:

(A) An operating day when the daily average value of a monitored parameter, except presence of a flare pilot flame, is outside the range specified in the Notification of Compliance Status report. Monitoring data recorded during periods of monitoring system breakdown, repairs, calibration checks and zero (low-level) and high-level adjustments shall not be used in computing daily average values of monitored parameters.

(B) An operating day when all pilot flames of a flare are absent.

(C) An operating day when monitoring data required to be recorded in paragraphs (i)(3) (i) and (ii) of this section are available for less than 75 percent of the operating hours.

(D) For data compression systems under paragraph (h)(5)(iii) of this section, an operating day when the monitor operated for less than 75 percent of the operating hours or a day when less than 18 monitoring values were recorded.

(ii) For miscellaneous process vents, excess emissions shall be reported for the operating parameters specified in table 10 of this subpart unless other site-specific parameter(s) have been approved by the operating permit authority.

(iii) For periods in closed vent systems when a Group 1 miscellaneous process vent stream was detected in the bypass line or diverted from the control device and either directly to the atmosphere or to a control device that does not comply with the requirements in §63.643(a), report the date, time, duration, estimate of the volume of gas, the concentration of organic HAP in the gas and the resulting mass emissions of organic HAP that bypassed the control device. For periods when the flow indicator is not operating, report the date, time, and duration.

(7) If a performance test for determination of compliance for a new emission point subject to this subpart or for an emission point that has changed from Group 2 to Group 1 is conducted during the period covered by a Periodic Report, the results of the performance test shall be included in the Periodic Report.

(i) Results of the performance test shall include the identification of the source tested, the date of the test, the percentage of emissions reduction or outlet pollutant concentration reduction (whichever is needed to determine compliance) for each run and for the average of all runs, and the values of the monitored operating parameters.

(ii) The complete test report shall be maintained onsite.

(8) The owner or operator of a source shall submit quarterly reports for all emission points included in an emissions average.

(i) The quarterly reports shall be submitted no later than 60 calendar days after the end of each quarter. The first report shall be submitted with the Notification of Compliance Status report no later than 150 days after the compliance date specified in §63.640.

(ii) The quarterly reports shall include:

(A) The information specified in this paragraph and in paragraphs (g)(2) through (g)(7) of this section for all storage vessels and miscellaneous process vents included in an emissions average;

(B) The information required to be reported by §63.428 (h)(1), (h)(2), and (h)(3) for each gasoline loading rack included in an emissions average, unless this information has already been submitted in a separate report;

(C) The information required to be reported by §63.567(e)(4) and (j)(3) of subpart Y for each marine tank vessel loading operation included in an emissions average, unless the information has already been submitted in a separate report;

(D) Any information pertaining to each wastewater stream included in an emissions average that the source is required to report under the Implementation Plan for the source;

(E) The credits and debits calculated each month during the quarter;

(F) A demonstration that debits calculated for the quarter are not more than 1.30 times the credits calculated for the quarter, as required under §§63.652(e)(4);

(G) The values of any inputs to the credit and debit equations in §63.652 (g) and (h) that change from month to month during the quarter or that have changed since the previous quarter; and

(H) Any other information the source is required to report under the Implementation Plan for the source.

(iii) Every fourth quarterly report shall include the following:

(A) A demonstration that annual credits are greater than or equal to annual debits as required by §63.652(e)(3); and

(B) A certification of compliance with all the emissions averaging provisions in §63.652 of this subpart.

(9) For heat exchange systems, Periodic Reports must include the following information:

(i) The number of heat exchange systems at the plant site subject to the monitoring requirements in §63.654.

(ii) The number of heat exchange systems at the plant site found to be leaking.

(iii) For each monitoring location where the total strippable hydrocarbon concentration was determined to be equal to or greater than the applicable leak definitions specified in §63.654(c)(6), identification of the monitoring location (e.g., unique monitoring location or heat exchange system ID number), the measured total strippable hydrocarbon concentration, the date the leak was first identified, and, if applicable, the date the source of the leak was identified;

(iv) For leaks that were repaired during the reporting period (including delayed repairs), identification of the monitoring location associated with the repaired leak, the total strippable hydrocarbon concentration measured during re-monitoring to verify repair, and the re-monitoring date (i.e., the effective date of repair); and

(v) For each delayed repair, identification of the monitoring location associated with the leak for which repair is delayed, the date when the delay of repair began, the date the repair is expected to be completed (if the leak is not repaired during the reporting period), the total strippable hydrocarbon concentration and date of each monitoring event conducted on the delayed repair during the reporting period, and an estimate of the potential strippable hydrocarbon emissions over the reporting period associated with the delayed repair.

(10) For pressure relief devices subject to the requirements §63.648(j), Periodic Reports must include the information specified in paragraphs (g)(10)(i) through (iv) of this section.

(i) For pressure relief devices in organic HAP gas or vapor service, pursuant to §63.648(j)(1), report any instrument reading of 500 ppm or greater.

(ii) For pressure relief devices in organic HAP gas or vapor service subject to §63.648(j)(2), report confirmation that any monitoring required to be done during the reporting period to show compliance was conducted.

(iii) For pilot-operated pressure relief devices in organic HAP service, report each pressure release to the atmosphere through the pilot vent that equals or exceeds 72 pounds of VOC per day, including duration of the pressure release through the pilot vent and estimate of the mass quantity of each organic HAP released.

(iv) For pressure relief devices in organic HAP service subject to §63.648(j)(3), report each pressure release to the atmosphere, including duration of the pressure release and estimate of the mass quantity of each organic HAP released, and the results of any root cause analysis and corrective action analysis completed during the reporting period, including the corrective actions implemented during the reporting period and, if applicable, the implementation schedule for planned corrective actions to be implemented subsequent to the reporting period.

(11) For flares subject to §63.670, Periodic Reports must include the information specified in paragraphs (g)(11)(i) through (iv) of this section.

(i) Records as specified in paragraph (i)(9)(i) of this section for each 15-minute block during which there was at least one minute when regulated material is routed to a flare and no pilot flame is present.

(ii) Visible emission records as specified in paragraph (i)(9)(ii)(C) of this section for each period of 2 consecutive hours during which visible emissions exceeded a total of 5 minutes.

(iii) The 15-minute block periods for which the applicable operating limits specified in §63.670(d) through (f) are not met. Indicate the date and time for the period, the net heating value operating parameter(s) determined following the methods in §63.670(k) through (n) as applicable.

(iv) For flaring events meeting the criteria in §63.670(o)(3):

(A) The start and stop time and date of the flaring event.

(B) The length of time for which emissions were visible from the flare during the event.

(C) The periods of time that the flare tip velocity exceeds the maximum flare tip velocity determined using the methods in §63.670(d)(2) and the maximum 15-minute block average flare tip velocity recorded during the event.

(D) Results of the root cause and corrective actions analysis completed during the reporting period, including the corrective actions implemented during the reporting period and, if applicable, the implementation schedule for planned corrective actions to be implemented subsequent to the reporting period.

(12) For delayed coking units, the Periodic Report must include the information specified in paragraphs (g)(12)(i) through (iv) of this section.

(i) For existing source delayed coking units, any 60-cycle average exceeding the applicable limit in §63.657(a)(1).

(ii) For new source delayed coking units, any direct venting event exceeding the applicable limit in §63.657(a)(2).

(iii) The total number of double quenching events performed during the reporting period.

(iv) For each double quenching draining event when the drain water temperature exceeded 210°F, report the drum, date, time, the coke drum vessel pressure or temperature, as applicable, when pre-vent draining was initiated, and the maximum drain water temperature during the pre-vent draining period.

(13) For maintenance vents subject to the requirements in §63.643(c), Periodic Reports must include the information specified in paragraphs (g)(13)(i) through (iv) of this section for any release exceeding the applicable limits in §63.643(c)(1). For the purposes of this reporting requirement, owners or operators complying with §63.643(c)(1)(iv) must report each venting event for which the lower explosive limit is 20 percent or greater; owners or operators complying with §63.643(c)(1)(v) must report each venting event conducted under those provisions and include an explanation for each event as to why utilization of this alternative was required.

(i) Identification of the maintenance vent and the equipment served by the maintenance vent.

(ii) The date and time the maintenance vent was opened to the atmosphere.

(iii) The lower explosive limit, vessel pressure, or mass of VOC in the equipment, as applicable, at the start of atmospheric venting. If the 5 psig vessel pressure option in §63.643(c)(1)(ii) was used and active purging was initiated while the lower explosive limit was 10 percent or greater, also include the lower explosive limit of the vapors at the time active purging was initiated.

(iv) An estimate of the mass of organic HAP released during the entire atmospheric venting event.

(14) Any changes in the information provided in a previous Notification of Compliance Status report.

* * * *

(i)(9) For each flare subject to §63.670, each owner or operator shall keep the records specified in paragraphs (i)(9)(i) through (xii) of this section up-to-date and readily accessible, as applicable.

(i) Retain records of the output of the monitoring device used to detect the presence of a pilot flame as required in §63.670(b) for a minimum of 2 years. Retain records of each 15-minute block during which there was at least one minute that no pilot flame is present when regulated material is routed to a flare for a minimum of 5 years.

(ii) Retain records of daily visible emissions observations or video surveillance images required in §63.670(h) as specified in the paragraphs (i)(9)(ii)(A) through (C), as applicable, for a minimum of 3 years.

(A) If visible emissions observations are performed using Method 22 at 40 CFR part 60, appendix A-7, the record must identify whether the visible emissions observation was performed, the results of each observation, total duration of observed visible emissions, and whether it was a 5-minute or 2-hour observation. If the owner or operator performs visible emissions observations more than one time during a day, the record must also identify the date and time of day each visible emissions observation was performed.

(B) If video surveillance camera is used, the record must include all video surveillance images recorded, with time and date stamps.

(C) For each 2 hour period for which visible emissions are observed for more than 5 minutes in 2 consecutive hours, the record must include the date and time of the 2 hour period and an estimate of the cumulative number of minutes in the 2 hour period for which emissions were visible.

(iii) The 15-minute block average cumulative flows for flare vent gas and, if applicable, total steam, perimeter assist air, and premix assist air specified to be monitored under §63.670(i), along with the date and time interval for the 15-minute block. If multiple monitoring locations are used to determine cumulative vent gas flow, total steam, perimeter assist air, and premix assist air, retain records of the 15-minute block average flows for each monitoring location for a minimum of 2 years, and retain the 15-minute block average cumulative flows that are used in subsequent calculations for a minimum of 5 years. If pressure and temperature monitoring is used, retain records of the 15-minute block average temperature, pressure and molecular weight of the flare vent gas or assist gas stream for each measurement location used to determine the 15-minute block average cumulative flows for a minimum of 2 years, and retain the 15-minute block average cumulative flows that are used in subsequent calculations for a minimum of 5 years.

(iv) The flare vent gas compositions specified to be monitored under §63.670(j). Retain records of individual component concentrations from each compositional analyses for a minimum of 2 years. If NHVvg analyzer is used, retain records of the 15-minute block average values for a minimum of 5 years.

(v) Each 15-minute block average operating parameter calculated following the methods specified in §63.670(k) through (n), as applicable.

(vi) [Reserved]

(vii) All periods during which operating values are outside of the applicable operating limits specified in §63.670(d) through (f) when regulated material is being routed to the flare.

(viii) All periods during which the owner or operator does not perform flare monitoring according to the procedures in §63.670(g) through (j).

(ix) Records of periods when there is flow of vent gas to the flare, but when there is no flow of regulated material to the flare, including the start and stop time and dates of periods of no regulated material flow.

(x) Records when the flow of vent gas exceeds the smokeless capacity of the flare, including start and stop time and dates of the flaring event.

(xi) Records of the root cause analysis and corrective action analysis conducted as required in §63.670(o)(3), including an identification of the affected facility, the date and duration of the event, a statement noting whether the event resulted from the same root cause(s) identified in a previous analysis and either a description of the recommended corrective action(s) or an explanation of why corrective action is not necessary under §63.670(o)(5)(i).

(xii) For any corrective action analysis for which implementation of corrective actions are required in §63.670(o)(5), a description of the corrective action(s) completed within the first 45 days following the discharge and, for action(s) not already completed, a schedule for implementation, including proposed commencement and completion dates.

(10) [Reserved]

(11) For each pressure relief device subject to the pressure release management work practice standards in §63.648(j)(3), the owner or operator shall keep the records specified in paragraphs (i)(11)(i) through (iii) of this section. For each pilot-operated pressure relief device subject to the requirements at §63.648(j)(3), the owner or operator shall keep the records specified in paragraph (i)(11)(iv) of this section.

(i) Records of the prevention measures implemented as required in §63.648(j)(3)(ii), if applicable.

(ii) Records of the number of releases during each calendar year and the number of those releases for which the root cause was determined to be a force majeure event. Keep these records for the current calendar year and the past five calendar years.

(iii) For each release to the atmosphere, the owner or operator shall keep the records specified in paragraphs (i)(11)(iii)(A) through (D) of this section.

(A) The start and end time and date of each pressure release to the atmosphere.

(B) Records of any data, assumptions, and calculations used to estimate of the mass quantity of each organic HAP released during the event.

(C) Records of the root cause analysis and corrective action analysis conducted as required in §63.648(j)(3)(iii), including an identification of the affected facility, the date and duration of the event, a statement noting whether the event resulted from the same root cause(s) identified in a previous analysis and either a description of the recommended corrective action(s) or an explanation of why corrective action is not necessary under §63.648(j)(7)(i).

(D) For any corrective action analysis for which implementation of corrective actions are required in §63.648(j)(7), a description of the corrective action(s) completed within the first 45 days following the discharge and, for action(s) not already completed, a schedule for implementation, including proposed commencement and completion dates.

(iv) For pilot-operated pressure relief devices, general or release-specific records for estimating the quantity of VOC released from the pilot vent during a release event, and records of calculations used to determine the quantity of specific HAP released for any event or series of events in which 72 or more pounds of VOC are released in a day.

(12) For each maintenance vent opening subject to the requirements in §63.643(c), the owner or operator shall keep the applicable records specified in paragraphs (i)(12)(i) through (vi) of this section.

(i) The owner or operator shall maintain standard site procedures used to deinventory equipment for safety purposes (e.g., hot work or vessel entry procedures) to document the procedures used to meet the requirements in §63.643(c). The current copy of the procedures shall be retained and available on-site at all times. Previous versions of the standard site procedures, is applicable, shall be retained for five years.

(ii) If complying with the requirements of §63.643(c)(1)(i) and the lower explosive limit at the time of the vessel opening exceeds 10 percent, identification of the maintenance vent, the process units or equipment associated with the maintenance vent, the date of maintenance vent opening, and the lower explosive limit at the time of the vessel opening.

(iii) If complying with the requirements of §63.643(c)(1)(ii) and either the vessel pressure at the time of the vessel opening exceeds 5 psig or the lower explosive limit at the time of the active purging was initiated exceeds 10 percent, identification of the maintenance vent, the process units or equipment associated with the maintenance vent, the date of maintenance vent opening, the pressure of the vessel or equipment at the time of discharge to the atmosphere and, if applicable, the lower explosive limit of the vapors in the equipment when active purging was initiated.

(iv) If complying with the requirements of §63.643(c)(1)(iii), records used to estimate the total quantity of VOC in the equipment and the type and size limits of equipment that contain less than 72 pounds of VOC at the time of maintenance vent opening. For each maintenance vent opening for which the deinventory procedures specified in paragraph (i)(12)(i) of this section are not followed or for which the equipment opened exceeds the type and size limits established in the records specified in this paragraph, identification of the maintenance vent, the process units or equipment associated with the maintenance vent, the date of maintenance vent opening, and records used to estimate the total quantity of VOC in the equipment at the time the maintenance vent was opened to the atmosphere.

(v) If complying with the requirements of §63.643(c)(1)(iv), identification of the maintenance vent, the process units or equipment associated with the maintenance vent, records documenting the lack of a pure hydrogen supply, the date of maintenance vent opening, and the lower explosive limit of the vapors in the equipment at the time of discharge to the atmosphere for each applicable maintenance vent opening.

(vi) If complying with the requirements of §63.643(c)(1)(v), identification of the maintenance vent, the process units or equipment associated with the maintenance vent, records documenting actions taken to comply with other applicable alternatives and why utilization of this alternative was required, the date of maintenance vent opening, the equipment pressure and lower explosive limit of the vapors in the equipment at the time of discharge, an indication of whether active purging was performed and the pressure of the equipment during the installation or removal of the blind if active purging was used, the duration the maintenance vent was open during the blind installation or removal process, and records used to estimate the total quantity of VOC in the equipment at the time the maintenance vent was opened to the atmosphere for each applicable maintenance vent opening.

§63.670 Requirements for flare control devices.

* * * *

(b) Pilot flame presence. The owner or operator shall operate each flare with a pilot flame present at all times when regulated material is routed to the flare. Each 15-minute block during which there is at least one minute where no pilot flame is present when regulated material is routed to the flare is a deviation of the standard. Deviations in different 15-minute blocks from the same event are considered separate deviations. The owner or operator shall monitor for the presence of a pilot flame as specified in paragraph (g) of this section.

* * * *

(d) Flare tip velocity. For each flare, the owner or operator shall comply with either paragraph (d)(1) or (2) of this section, provided the appropriate monitoring systems are in-place, whenever regulated material is routed to the flare for at least 15-minutes and the flare vent gas flow rate is less than the smokeless design capacity of the flare.

* * * *

(e) Combustion zone operating limits. For each flare, the owner or operator shall operate the flare to maintain the net heating value of flare combustion zone gas (NHVcz) at or above 270 British thermal units per standard cubic feet (Btu/scf) determined on a 15-minute block period basis when regulated material is routed to the flare for at least 15-minutes. The owner or operator shall monitor and calculate NHVcz as specified in paragraph (m) of this section.

* * * *

(5) When a continuous monitoring system is used as provided in paragraph (j)(1) or (3) of this section and, if applicable, paragraph (j)(4) of this section, the owner or operator may elect to determine the 15-minute block average NHVvg using either the calculation methods in paragraph (l)(5)(i) of this section or the calculation methods in paragraph (l)(5)(ii) of this section. The owner or operator may choose to comply using the calculation methods in paragraph (l)(5)(i) of this section for some flares at the petroleum refinery and comply using the calculation methods (l)(5)(ii) of this section for other flares. However, for each flare, the owner or operator must elect one calculation method that will apply at all times, and use that method for all continuously monitored flare vent streams associated with that flare. If the owner or operator intends to change the calculation method that applies to a flare, the owner or operator must notify the Administrator 30 days in advance of such a change.

(i) Feed-forward calculation method. When calculating NHVvg for a specific 15-minute block:

(A) Use the results from the first sample collected during an event, (for periodic flare vent gas flow events) for the first 15-minute block associated with that event.

(B) If the results from the first sample collected during an event (for periodic flare vent gas flow events) are not available until after the second 15-minute block starts, use the results from the first sample collected during an event for the second 15-minute block associated with that event.

(C) For all other cases, use the results that are available from the most recent sample prior to the 15-minute block period for that 15-minute block period for all flare vent gas steams. For the purpose of this requirement, use the time that the results become available rather than the time the sample was collected. For example, if a sample is collected at 12:25 a.m. and the analysis is completed at 12:38 a.m., the results are available at 12:38 a.m. and these results would be used to determine compliance during the 15-minute block period from 12:45 a.m. to 1:00 a.m.

(ii) Direct calculation method. When calculating NHVvg for a specific 15-minute block:

(A) If the results from the first sample collected during an event (for periodic flare vent gas flow events) are not available until after the second 15-minute block starts, use the results from the first sample collected during an event for the first 15-minute block associated with that event.

(B) For all other cases, use the arithmetic average of all NHVvg measurement data results that become available during a 15-minute block to calculate the 15-minute block average for that period. For the purpose of this requirement, use the time that the results become available rather than the time the sample was collected. For example, if a sample is collected at 12:25 a.m. and the analysis is completed at 12:38 a.m., the results are available at 12:38 a.m. and these results would be used to determine compliance during the 15-minute block period from 12:30 a.m. to 12:45 a.m.

* * * *

(o)(4)(iv) You may conduct a single root cause analysis and corrective action analysis for a single event that causes two or more flares to have a flow event meeting the criteria in paragraph (o)(3)(i) or (ii) of this section, regardless of the configuration of the flares, if the root cause is reasonably expected to be a force majeure event, as defined in this subpart.

* * * *

(o)(6) The owner or operator shall determine the total number of events for which a root cause and corrective action analyses was required during the calendar year for each affected flare separately for events meeting the criteria in paragraph (o)(3)(i) of this section and those meeting the criteria in paragraph (o)(3)(ii) of this section. For the purpose of this requirement, a single root cause analysis conducted for an event that met both of the criteria in paragraphs (o)(3)(i) and (ii) of this section would be counted as an event under each of the separate criteria counts for that flare. Additionally, if a single root cause analysis was conducted for an event that caused multiple flares to meet the criteria in paragraph (o)(3)(i) or (ii) of this section, that event would count as an event for each of the flares for each criteria in paragraph (o)(3) of this section that was met during that event. The owner or operator shall also determine the total number of events for which a root cause and correct action analyses was required and the analyses concluded that the root cause was a force majeure event, as defined in this subpart.

* * * *

(o)(7)(ii) Two visible emissions exceedance events meeting the criteria in paragraph (o)(3)(i) of this section that were not caused by a force majeure event from a single flare in a 3 calendar year period for the same root cause for the same equipment.

(iii) Two flare tip velocity exceedance events meeting the criteria in paragraph (o)(3)(ii) of this section that were not caused by a force majeure event from a single flare in a 3 calendar year period for the same root cause for the same equipment.

(iv) Three visible emissions exceedance events meeting the criteria in paragraph (o)(3)(i) of this section that were not caused by a force majeure event from a single flare in a 3 calendar year period for any reason.

(v) Three flare tip velocity exceedance events meeting the criteria in paragraph (o)(3)(ii) of this section that were not caused by a force majeure event from a single flare in a 3 calendar year period for any reason.

§63.671 Requirements for flare monitoring systems.

* * * *

(e) Additional requirements for gas chromatographs. For monitors used to determine compositional analysis for net heating value per §63.670(j)(1), the gas chromatograph must also meet the requirements of paragraphs (e)(1) through (3) of this section.

Appendix to Subpart CC of Part 63—Tables

* * * *

Table 13 - Calibration and Quality Control Requirements for CPMS
ParameterMinimum accuracy requirementsCalibration requirements
Temperature±1 percent over the normal range of temperature measured, expressed in degrees Celsius (C), or 2.8 degrees C, whichever is greaterConduct calibration checks at least annually; conduct calibration checks following any period of more than 24 hours throughout which the temperature exceeded the manufacturer's specified maximum rated temperature or install a new temperature sensor.
At least quarterly, inspect all components for integrity and all electrical connections for continuity, oxidation, and galvanic corrosion, unless the CPMS has a redundant temperature sensor.
Record the results of each calibration check and inspection.
Locate the temperature sensor in a position that provides a representative temperature; shield the temperature sensor system from electromagnetic interference and chemical contaminants.
Flow Rate for All Flows Other Than Flare Vent Gas±5 percent over the normal range of flow measured or 1.9 liters per minute (0.5 gallons per minute), whichever is greater, for liquid flowConduct a flow sensor calibration check at least biennially (every two years); conduct a calibration check following any period of more than 24 hours throughout which the flow rate exceeded the manufacturer's specified maximum rated flow rate or install a new flow sensor.
±5 percent over the normal range of flow measured or 280 liters per minute (10 cubic feet per minute), whichever is greater, for gas flowAt least quarterly, inspect all components for leakage, unless the CPMS has a redundant flow sensor.
±5 percent over the normal range measured for mass flowRecord the results of each calibration check and inspection.
Locate the flow sensor(s) and other necessary equipment (such as straightening vanes) in a position that provides representative flow; reduce swirling flow or abnormal velocity distributions due to upstream and downstream disturbances.
Flare Vent Gas Flow Rate±20 percent of flow rate at velocities ranging from 0.03 to 0.3 meters per second (0.1 to 1 feet per second)
±5 percent of flow rate at velocities greater than 0.3 meters per second (1 feet per second)
Conduct a flow sensor calibration check at least biennially (every two years); conduct a calibration check following any period of more than 24 hours throughout which the flow rate exceeded the manufacturer's specified maximum rated flow rate or install a new flow sensor.
At least quarterly, inspect all components for leakage, unless the CPMS has a redundant flow sensor.
Record the results of each calibration check and inspection.
Locate the flow sensor(s) and other necessary equipment (such as straightening vanes) in a position that provides representative flow; reduce swirling flow or abnormal velocity distributions due to upstream and downstream disturbances.
Pressure±5 percent over the normal operating range or 0.12 kilopascals (0.5 inches of water column), whichever is greaterReview pressure sensor readings at least once a week for straightline (unchanging) pressure and perform corrective action to ensure proper pressure sensor operation if blockage is indicated.
Using an instrument recommended by the sensor's manufacturer, check gauge calibration and transducer calibration annually; conduct calibration checks following any period of more than 24 hours throughout which the pressure exceeded the manufacturer's specified maximum rated pressure or install a new pressure sensor.
At least quarterly, inspect all components for integrity, all electrical connections for continuity, and all mechanical connections for leakage, unless the CPMS has a redundant pressure sensor.
Record the results of each calibration check and inspection.
Locate the pressure sensor(s) in a position that provides a representative measurement of the pressure and minimizes or eliminates pulsating pressure, vibration, and internal and external corrosion.
Net Heating Value by Calorimeter±2 percent of spanSpecify calibration requirements in your site specific CPMS monitoring plan. Calibration requirements should follow manufacturer's recommendations at a minimum.
Temperature control (heated and/or cooled as necessary) the sampling system to ensure proper year-round operation.
Where feasible, select a sampling location at least two equivalent diameters downstream from and 0.5 equivalent diameters upstream from the nearest disturbance. Select the sampling location at least two equivalent duct diameters from the nearest control device, point of pollutant generation, air in-leakages, or other point at which a change in the pollutant concentration or emission rate occurs.
Net Heating Value by Gas ChromatographAs specified in Performance Specification 9 of 40 CFR part 60, appendix BFollow the procedure in Performance Specification 9 of 40 CFR part 60,appendix B, except that a single daily mid-level calibration check can be used (rather than triplicate analysis), the multi-point calibration can be conducted quarterly (rather than monthly), and the sampling line temperature must be maintained at a minimum temperature of 60°C (rather than 120°C).
Hydrogen analyzer±2 percent over the concentration measured or 0.1 volume percent, whichever is greaterSpecify calibration requirements in your site specific CPMS monitoring plan. Calibration requirements should follow manufacturer's recommendations at a minimum.
Where feasible, select the sampling location at least two equivalent duct diameters from the nearest control device, point of pollutant generation, air in-leakages, or other point at which a change in the pollutant concentration occurs.

§63.1100 Applicability.

* * * *

(b) Subpart A requirements. The following provisions of subpart A of this part (General Provisions), §§63.1 through 63.5, and §§63.12 through 63.15, apply to owners or operators of affected sources subject to this subpart. For sources that reclassify from major source to area source status, the applicable provisions of §63.9(j) and (k) apply. Beginning no later than the compliance dates specified in §63.1102(c), for ethylene production affected sources, §§63.7(a)(4), (c), (e)(4), and (g)(2) and 63.10(b)(2)(vi) also apply.

* * * *

(iii) Beginning no later than the compliance dates specified in §63.1102(c), flares subject to the requirements in 40 CFR part 63, subpart CC and used as a control device for an emission point subject to the requirements in Table 7 to §63.1103(e) are only required to comply with the flare requirements in 40 CFR part 63, subpart CC. This paragraph does not apply to multi-point pressure assisted flares.

§63.1102 Compliance schedule.

* * * *

(c)(11) The requirements in §63.1108(a)(4)(i), (b)(1)(ii), (b)(2), and (b)(4)(ii)(B).

* * * *

(d)(2)(ii) The compliance requirements specified in §63.1108(a)(4)(i), (b)(1)(ii), (b)(2), and (b)(4)(ii)(B).

* * * *

(e)(2)(iii) The compliance requirements specified in §63.1108(a)(4)(i), (b)(1)(ii), (b)(2), and (b)(4)(ii)(B).

§63.1103 Source category-specific applicability, definitions, and requirements.

* * * *

(e) Ethylene production applicability, definitions, and requirements- (1) Applicability- (i) Affected source. For the ethylene production (as defined in paragraph (e)(2) of this section) source category, the affected source comprises all emission points listed in paragraphs (e)(1)(i)(A) through (G) of this section that are associated with an ethylene production unit that is located at a major source, as defined in section 112(a) of the Act.

(A) All storage vessels (as defined in §63.1101) that store liquids containing organic HAP.

(B) All ethylene process vents (as defined in paragraph (e)(2) of this section) from continuous unit operations.

(C) All transfer racks (as defined in paragraph (e)(2) of this section) that load HAP-containing material.

(D) Equipment (as defined in §63.1101) that contains or contacts organic HAP.

(E) All waste streams (as defined in paragraph (e)(2) of this section) associated with an ethylene production unit.

(F) All heat exchange systems (as defined in §63.1082(b)) associated with an ethylene production unit.

(G) All ethylene cracking furnaces and associated decoking operations.

(ii) Exceptions. The emission points listed in paragraphs (e)(1)(ii) (A) through (L) of this section are in the ethylene production source category but are not subject to the requirements of paragraph (e)(3) of this section.

(A) Equipment that is located within an ethylene production unit that is subject to this subpart but does not contain organic HAP.

(B) Stormwater from segregated sewers.

(C) Water from fire-fighting and deluge systems in segregated sewers.

(D) Spills.

(E) Water from safety showers.

(F) Water from testing of fire-fighting and deluge systems.

(G) Vessels storing organic liquids that contain organic HAP as impurities.

(H) Transfer racks, loading arms, or loading hoses that only transfer liquids containing organic HAP as impurities.

(I) Transfer racks, loading arms, or loading hoses that vapor balance during all transfer operations.

(J) Air emissions from all ethylene cracking furnaces.

(K) Pressure vessels designed to operate in excess of 204.9 kilopascals and without emissions to the atmosphere.

(L) Vessels permanently attached to motor vehicles such as trucks, railcars, barges, or ships.

(iii) Exclusions. The provisions of this subpart do not apply to process units and emission points subject to subparts F, G, H, I and CC of this part.

(iv) Compliance schedule. The compliance schedule for the ethylene production source category is specified in §63.1102.

(2) Definitions. Ethylene process vent means a gas stream with a flow rate greater than 0.005 standard cubic meters per minute containing greater than 20 parts per million by volume HAP that is continuously discharged during operation of an ethylene production unit, as defined in this section. Ethylene process vents are gas streams that are discharged to the atmosphere (or the point of entry into a control device, if any) either directly or after passing through one or more recovery devices. Ethylene process vents do not include relief valve discharges; gaseous streams routed to a fuel gas system; leaks from equipment regulated under this subpart; episodic or nonroutine releases such as those associated with startup, shutdown, and malfunction; and in situ sampling systems (online analyzers).

Decoking operation means the coke combustion activity that occurs inside the radiant tube(s) in the ethylene cracking furnace firebox. Coke combustion activities during decoking can also occur in other downstream equipment such as the process gas outlet piping and transfer line exchangers or quench points.

Ethylene process vent means a gas stream with a flow rate greater than 0.005 standard cubic meters per minute containing greater than 20 parts per million by volume HAP that is continuously discharged during operation of an ethylene production unit. On and after July 6, 2023, ethylene process vent means a gas stream with a flow rate greater than 0.005 standard cubic meters per minute containing greater than 20 parts per million by volume HAP that is continuously or periodically discharged during operation of an ethylene production unit. Ethylene process vents are gas streams that are discharged to the atmosphere (or the point of entry into a control device, if any) either directly or after passing through one or more recovery devices. Ethylene process vents do not include:

(A) Pressure relief device discharges;

(B) Gaseous streams routed to a fuel gas system, including any flares using fuel gas, of which less than 50 percent of the fuel gas is derived from an ethylene production unit;

(C) Gaseous streams routed to a fuel gas system whereby any flares using fuel gas, of which 50 percent or more of the fuel gas is derived from an ethylene production unit, comply with §63.1103(e)(4) beginning no later than the compliance dates specified in §63.1102(c);

(D) Leaks from equipment regulated under this subpart;

(E) Episodic or nonroutine releases such as those associated with startup, shutdown, and malfunction until July 6, 2023;

(F) In situ sampling systems (online analyzers) until July 6, 2023; and

(G) Coke combustion emissions from decoking operations beginning no later than the compliance dates specified in §63.1102(c).

Ethylene production or production unit means a chemical manufacturing process unit in which ethylene and/or propylene are produced by separation from petroleum refining process streams or by subjecting hydrocarbons to high temperatures in the presence of steam. The ethylene production unit includes the separation of ethylene and/or propylene from associated streams such as a C4 product, pyrolysis gasoline, and pyrolysis fuel oil. Ethylene production does not include the manufacture of SOCMI chemicals such as the production of butadiene from the C4 stream and aromatics from pyrolysis gasoline.

Force majeure event means a release of HAP, either directly to the atmosphere from a pressure relief device or discharged via a flare, that is demonstrated to the satisfaction of the Administrator to result from an event beyond the owner or operator's control, such as natural disasters; acts of war or terrorism; loss of a utility external to the ethylene production unit (e.g., external power curtailment), excluding power curtailment due to an interruptible service agreement; and fire or explosion originating at a near or adjoining facility outside of the ethylene production unit that impacts the ethylene production unit's ability to operate.Force majeure event means a release of HAP, either directly to the atmosphere from a pressure relief device or discharged via a flare, that is demonstrated to the satisfaction of the Administrator to result from an event beyond the owner or operator's control, such as natural disasters; acts of war or terrorism; loss of a utility external to the ethylene production unit (e.g., external power curtailment), excluding power curtailment due to an interruptible service agreement; and fire or explosion originating at a near or adjoining facility outside of the ethylene production unit that impacts the ethylene production unit's ability to operate.

Heat exchange system means any cooling tower system or once-through cooling water system (e.g., river or pond water). A heat exchange system can include an entire recirculating or once-through cooling system.

Organic HAP means the compounds listed in Table 1 to subpart XX of this part.

Pressure-assisted multi-point flare means a flare system consisting of multiple flare burners in staged arrays whereby the vent stream pressure is used to promote mixing and smokeless operation at the flare burner tips. Pressure-assisted multi-point flares are designed for smokeless operation at velocities up to Mach = 1 conditions (i.e., sonic conditions), can be elevated or at ground level, and typically use cross-lighting for flame propagation to combust any flare vent gases sent to a particular stage of flare burners.

Pressure relief device means a valve, rupture disk, or similar device used only to release an unplanned, nonroutine discharge of gas from process equipment in order to avoid safety hazards or equipment damage. A pressure relief device discharge can result from an operator error, a malfunction such as a power failure or equipment failure, or other unexpected cause. Such devices include conventional, spring-actuated relief valves, balanced bellows relief valves, pilot-operated relief valves, rupture disks, and breaking, buckling, or shearing pin devices. Devices that are actuated either by a pressure of less than or equal to 2.5 pounds per square inch gauge or by a vacuum are not pressure relief devices.

Periodically discharged means gas stream discharges that are intermittent for which the total organic HAP concentration is greater than 20 parts per million by volume and total volatile organic compound emissions are 50 pounds per day or more. These intermittent discharges are associated with routine operations, maintenance activities, startups, shutdowns, malfunctions, or process upsets and do not include pressure relief device discharges or discharges classified as maintenance vents.

Radiant tube(s) means any portion of the tube coil assembly located within the ethylene cracking furnace firebox whereby a thermal cracking reaction of hydrocarbons (in the presence of steam) occurs. Hydrocarbons and steam pass through the radiant tube(s) of the ethylene cracking furnace during normal operation and coke is removed from the inside of the radiant tube(s) during decoking operation.

Relief valve means a type of pressure relief device that is designed to re-close after the pressure relief.

Transfer rack means the collection of loading arms and loading hoses at a single loading rack that is used to fill tank trucks and/or railcars with organic HAP. Transfer rack includes the associated pumps, meters, shutoff valves, relief valves, and other piping and valves. Transfer rack does not include racks, arms, or hoses that contain organic HAP only as impurities; or racks, arms, or hoses that vapor balance during all loading operations.

Waste means any material resulting from industrial, commercial, mining, or agricultural operations, or from community activities, that is discarded or is being accumulated, stored, or physically, chemically, thermally, or biologically treated prior to being discarded, recycled, or discharged.

Waste stream means the waste generated by a particular process unit, product tank, or waste management unit. The characteristics of the waste stream (e.g., flow rate, HAP concentration, water content) are determined at the point of waste generation. Examples of a waste stream include process wastewater, product tank drawdown, sludge and slop oil removed from waste management units, and landfill leachate.

(3) Requirements. The owner or operator must control organic HAP emissions from each affected source emission point by meeting the applicable requirements specified in Table 7 to this section. An owner or operator must perform the applicability assessment procedures and methods for process vents specified in §63.1104, except for paragraphs (d), (g), (h) through (j), (l)(1), and (n). An owner or operator must perform the applicability assessment procedures and methods for equipment leaks specified in §63.1107. General compliance, recordkeeping, and reporting requirements are specified in §§63.1108 through 63.1112. Before July 6, 2023, minimization of emissions from startup, shutdown, and malfunctions must be addressed in the startup, shutdown, and malfunction plan required by §63.1111; the plan must also establish reporting and recordkeeping of such events. A startup, shutdown, and malfunction plan is not required on and after July 6, 2023 and the requirements specified in §63.1111 no longer apply; however, for historical compliance purposes, a copy of the plan must be retained and available on-site for five years after July 6, 2023. Except as specified in paragraph (e)(4)(i) of this section, procedures for approval of alternate means of emission limitations are specified in §63.1113.

(4) Flares. Beginning no later than the compliance dates specified in §63.1102(c), if a steam-assisted, air-assisted, non-assisted, or pressure-assisted multi-point flare is used as a control device for an emission point subject to the requirements in Table 7 to this section, then the owner or operator must meet the applicable requirements for flares as specified in §§63.670 and 63.671 of subpart CC, including the provisions in Tables 12 and 13 to subpart CC of this part, except as specified in paragraphs (e)(4)(i) through (xiv) of this section. This requirement also applies to any flare using fuel gas from a fuel gas system, of which 50 percent or more of the fuel gas is derived from an ethylene production unit, being used to control an emission point subject to the requirements in Table 7 of this section. For purposes of compliance with this paragraph, the following terms are defined in §63.641 of subpart CC: Assist air, assist steam, center steam, combustion zone, combustion zone gas, flare, flare purge gas, flare supplemental gas, flare sweep gas, flare vent gas, lower steam, net heating value, perimeter assist air, pilot gas, premix assist air, total steam, and upper steam.

(i) The owner or operator may elect to comply with the alternative means of emissions limitation requirements specified in of §63.670(r) of subpart CC in lieu of the requirements in §63.670(d) through (f) of subpart CC, as applicable. However, instead of complying with §63.670(r)(3) of subpart CC, the owner or operator must submit the alternative means of emissions limitation request following the requirements in §63.1113.

(ii) Instead of complying with §63.670(o)(2)(i) of subpart CC, the owner or operator must develop and implement the flare management plan no later than the compliance dates specified in §63.1102(c).

(iii) Instead of complying with §63.670(o)(2)(iii) of subpart CC, if required to develop a flare management plan and submit it to the Administrator, then the owner or operator must also submit all versions of the plan in portable document format (PDF) to the EPA via the Compliance and Emissions Data Reporting Interface (CEDRI), which can be accessed through the EPA's Central Data Exchange (CDX) (https://cdx.epa.gov/). If you claim some of the information in your flare management plan is confidential business information (CBI), submit a version with the CBI omitted via CEDRI. A complete plan, including information claimed to be CBI and clearly marked as CBI, must be mailed to the following address: U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Sector Policies and Programs Division, U.S. EPA Mailroom (E143-01), Attention: Ethylene Production Sector Lead, 109 T.W. Alexander Drive, Research Triangle Park, NC 27711.

(iv) Section 63.670(o)(3)(ii) of subpart CC and all references to §63.670(o)(3)(ii) of subpart CC do not apply. Instead, the owner or operator must comply with the maximum flare tip velocity operating limit at all times.

(v) Substitute “ethylene production unit” for each occurrence of “petroleum refinery.”

(vi) Each occurrence of “refinery” does not apply.

(vii) Except as specified in paragraph (e)(4)(vii)(G) of this section, if a pressure-assisted multi-point flare is used as a control device for an emission point subject to the requirements in Table 7 to this section, then the owner or operator must comply with the requirements specified in paragraphs (e)(4)(vii)(A) through (F) of this section.

(A) The owner or operator is not required to comply with the flare tip velocity requirements in §63.670(d) and (k) of subpart CC;

(B) The owner or operator must substitute “800” for each occurrence of “270” in §63.670(e) of subpart CC;

(C) The owner or operator must determine the 15-minute block average NHVvg using only the direct calculation method specified in §63.670(l)(5)(ii) of subpart CC;

(D) Instead of complying with §63.670(b) and (g) of subpart CC, if a pressure-assisted multi-point flare uses cross-lighting on a stage of burners rather than having an individual pilot flame on each burner, the owner or operator must operate each stage of the pressure-assisted multi-point flare with a flame present at all times when regulated material is routed to that stage of burners. Each stage of burners that cross-lights in the pressure-assisted multi-point flare must have at least two pilots with at least one continuously lit and capable of igniting all regulated material that is routed to that stage of burners. Each 15-minute block during which there is at least one minute where no pilot flame is present on a stage of burners when regulated material is routed to that stage is a deviation of the standard. Deviations in different 15-minute blocks from the same event are considered separate deviations. The pilot flame(s) on each stage of burners that use cross-lighting must be continuously monitored by a thermocouple or any other equivalent device used to detect the presence of a flame;

(E) Unless the owner or operator of a pressure-assisted multi-point flare chooses to conduct a cross-light performance demonstration as specified in this paragraph, the owner or operator must ensure that if a stage of burners on the flare uses cross-lighting, that the distance between any two burners in series on that stage is no more than 6 feet when measured from the center of one burner to the next burner. A distance greater than 6 feet between any two burners in series may be used provided the owner or operator conducts a performance demonstration that confirms the pressure-assisted multi-point flare will cross-light a minimum of three burners and the spacing between the burners and location of the pilot flame must be representative of the projected installation. The compliance demonstration must be approved by the permitting authority and a copy of this approval must be maintained onsite. The compliance demonstration report must include: A protocol describing the test methodology used, associated test method QA/QC parameters, the waste gas composition and NHVcz of the gas tested, the velocity of the waste gas tested, the pressure-assisted multi-point flare burner tip pressure, the time, length, and duration of the test, records of whether a successful cross-light was observed over all of the burners and the length of time it took for the burners to cross-light, records of maintaining a stable flame after a successful cross-light and the duration for which this was observed, records of any smoking events during the cross-light, waste gas temperature, meteorological conditions (e.g., ambient temperature, barometric pressure, wind speed and direction, and relative humidity), and whether there were any observed flare flameouts; and

(F) The owner or operator of a pressure-assisted multi-point flare must install and operate pressure monitor(s) on the main flare header, as well as a valve position indicator monitoring system for each staging valve to ensure that the flare operates within the proper range of conditions as specified by the manufacturer. The pressure monitor must meet the requirements in Table 13 to subpart CC of this part.

(G) If a pressure-assisted multi-point flare is operating under the requirements of an approved alternative means of emission limitations, the owner or operator shall either continue to comply with the terms of the alternative means of emission limitations or comply with the provisions in paragraphs (e)(4)(vii)(A) through (F) of this section.

(viii) If an owner or operator chooses to determine compositional analysis for net heating value with a continuous process mass spectrometer, the owner or operator must comply with the requirements specified in paragraphs (e)(4)(viii)(A) through (G) of this section.

(A) The owner or operator must meet the requirements in §63.671(e)(2). The owner or operator may augment the minimum list of calibration gas components found in §63.671(e)(2) with compounds found during a pre-survey or known to be in the gas through process knowledge.

(B) Calibration gas cylinders must be certified to an accuracy of 2 percent and traceable to National Institute of Standards and Technology (NIST) standards.

(C) For unknown gas components that have similar analytical mass fragments to calibration compounds, the owner or operator may report the unknowns as an increase in the overlapped calibration gas compound. For unknown compounds that produce mass fragments that do not overlap calibration compounds, the owner or operator may use the response factor for the nearest molecular weight hydrocarbon in the calibration mix to quantify the unknown component's NHVvg.

(D) The owner or operator may use the response factor for n-pentane to quantify any unknown components detected with a higher molecular weight than n-pentane.

(E) The owner or operator must perform an initial calibration to identify mass fragment overlap and response factors for the target compounds.

(F) The owner or operator must meet applicable requirements in Performance Specification 9 of 40 CFR part 60, appendix B, for continuous monitoring system acceptance including, but not limited to, performing an initial multi-point calibration check at three concentrations following the procedure in Section 10.1 and performing the periodic calibration requirements listed for gas chromatographs in Table 13 to subpart CC of this part, for the process mass spectrometer. The owner or operator may use the alternative sampling line temperature allowed under Net Heating Value by Gas Chromatograph in Table 13 to subpart CC of this part.

(G) The average instrument calibration error (CE) for each calibration compound at any calibration concentration must not differ by more than 10 percent from the certified cylinder gas value. The CE for each component in the calibration blend must be calculated using the following equation:



Where:

Cm = Average instrument response (ppm)

Ca = Certified cylinder gas value (ppm)

(ix) An owner or operator using a gas chromatograph or mass spectrometer for compositional analysis for net heating value may choose to use the CE of NHVmeasured versus the cylinder tag value NHV as the measure of agreement for daily calibration and quarterly audits in lieu of determining the compound-specific CE. The CE for NHV at any calibration level must not differ by more than 10 percent from the certified cylinder gas value. The CE for must be calculated using the following equation:



Where:

NHVmeasured = Average instrument response (Btu/scf)

NHVa = Certified cylinder gas value (Btu/scf)

(x) Instead of complying with §63.670(p) of subpart CC, the owner or operator must keep the flare monitoring records specified in §63.1109(e).

(xi) Instead of complying with §63.670(q) of subpart CC, the owner or operator must comply with the reporting requirements specified in §63.1110(d) and (e)(4).

(xii) When determining compliance with the pilot flame requirements specified in §63.670(b) and (g), substitute “pilot flame or flare flame” for each occurrence of “pilot flame.”

(xiii) When determining compliance with the flare tip velocity and combustion zone operating limits specified in §63.670(d) and (e), the requirement effectively applies starting with the 15-minute block that includes a full 15 minutes of the flaring event. The owner or operator is required to demonstrate compliance with the velocity and NHVcz requirements starting with the block that contains the fifteenth minute of a flaring event. The owner or operator is not required to demonstrate compliance for the previous 15-minute block in which the event started and contained only a fraction of flow.

(xiv) In lieu of meeting the requirements in §§63.670 and 63.671 of subpart CC, an owner or operator may submit a request to the Administrator for approval of an alternative test method in accordance with §63.7(f). The alternative test method must be able to demonstrate on an ongoing basis at least once every 15-minutes that the flare meets 96.5% combustion efficiency and provide a description of the alternative recordkeeping and reporting that would be associated with the alternative test method. The alternative test method request may also include a request to use the alternative test method in lieu of the pilot or flare flame monitoring requirements of 63.670(g).

(5) Maintenance vents. Unless an extension is requested in accordance with the provisions in §63.6(i) of subpart A, beginning no later than the compliance dates specified in §63.1102(c), an owner or operator may designate an ethylene process vent as a maintenance vent if the vent is only used as a result of startup, shutdown, maintenance, or inspection of equipment where equipment is emptied, depressurized, degassed, or placed into service. The owner or operator must comply with the applicable requirements in paragraphs (e)(5)(i) through (iii) of this section for each maintenance vent.

(i) Prior to venting to the atmosphere, remove process liquids from the equipment as much as practical and depressurize the equipment to either: A flare meeting the requirements specified in paragraph (e)(4) of this section, or a non-flare control device meeting the requirements specified in §63.982(c)(2) of subpart SS, until one of the following conditions, as applicable, is met.

(A) The vapor in the equipment served by the maintenance vent has a lower explosive limit (LEL) of less than 10 percent.

(B) If there is no ability to measure the LEL of the vapor in the equipment based on the design of the equipment, the pressure in the equipment served by the maintenance vent is reduced to 5 pounds per square inch gauge (psig) or less. Upon opening the maintenance vent, active purging of the equipment cannot be used until the LEL of the vapors in the maintenance vent (or inside the equipment if the maintenance is a hatch or similar type of opening) is less than 10 percent.

(C) The equipment served by the maintenance vent contains less than 50 pounds of total volatile organic compounds (VOC).

(D) If, after applying best practices to isolate and purge equipment served by a maintenance vent, none of the applicable criterion in paragraphs (e)(5)(i)(A) through (C) of this section can be met prior to installing or removing a blind flange or similar equipment blind, then the pressure in the equipment served by the maintenance vent must be reduced to 2 psig or less before installing or removing the equipment blind. During installation or removal of the equipment blind, active purging of the equipment may be used provided the equipment pressure at the location where purge gas is introduced remains at 2 psig or less.

(ii) Except for maintenance vents complying with the alternative in paragraph (e)(5)(i)(C) of this section, the owner or operator must determine the LEL or, if applicable, equipment pressure using process instrumentation or portable measurement devices and follow procedures for calibration and maintenance according to manufacturer's specifications.

(iii) For maintenance vents complying with the alternative in paragraph (e)(5)(i)(C) of this section, the owner or operator must determine mass of VOC in the equipment served by the maintenance vent based on the equipment size and contents after considering any contents drained or purged from the equipment. Equipment size may be determined from equipment design specifications. Equipment contents may be determined using process knowledge.

(6) Bypass lines. Beginning on the compliance dates specified in §63.1102(c), the use of a bypass line at any time on a closed vent system to divert emissions subject to the requirements in Table 7 to §63.1103(e) to the atmosphere or to a control device not meeting the requirements specified in Table 7 of this subpart is an emissions standards violation. If the owner or operator is subject to the bypass monitoring requirements of §63.983(a)(3) of subpart SS, then the owner or operator must continue to comply with the requirements in §63.983(a)(3) of subpart SS and the recordkeeping and reporting requirements in §§63.998(d)(1)(ii) and 63.999(c)(2) of subpart SS, in addition to paragraph (e)(9) of this section, the recordkeeping requirements specified in §63.1109(g), and the reporting requirements specified in §63.1110(e)(6). For purposes of compliance with this paragraph, the phrase “Except for equipment needed for safety purposes such as pressure relief devices, low leg drains, high point bleeds, analyzer vents, and open-ended valves or lines” in §63.983(a)(3) does not apply; instead, the exemptions specified in paragraph (e)(6)(i) and (ii) of this section apply.

(i) Except for pressure relief devices subject to 40 CFR 63.1107(h)(4), equipment such as low leg drains and equipment subject to the requirements specified in paragraph (f) of Table 7 to §63.1103(e) are not subject to this paragraph (e)(6) of this section.

(ii) Open-ended valves or lines that use a cap, blind flange, plug, or second valve and follow the requirements specified in §60.482-6(a)(2), (b), and (c) or follow requirements codified in another regulation that are the same as §60.482-6(a)(2), (b), and (c) are not subject to this paragraph (e)(6) of this section.

(7) Decoking operation standards for ethylene cracking furnaces. Beginning no later than the compliance dates specified in §63.1102(c), the owner or operator must comply with paragraph (e)(7)(i) of this section and also use at least two of the control measures specified in paragraphs (e)(7)(ii) through (v) of this section to minimize coke combustion emissions from the decoking of the radiant tube(s) in each ethylene cracking furnace.

(i) During normal operations, conduct daily inspections of the firebox burners and repair all burners that are impinging on the radiant tube(s) as soon as practical, but not later than 1 calendar day after the flame impingement is found. The owner or operator may delay burner repair beyond 1 calendar day using the procedures specified in paragraphs (e)(7)(i)(A) and (B) of this section provided the repair cannot be completed during normal operations, the burner cannot be shutdown without significantly impacting the furnace heat distribution and firing rate, and action is taken to reduce flame impingement as much as possible during continued operation. An inspection may include, but is not limited to: visual inspection of the radiant tube(s) for localized bright spots (this may be confirmed with a temperature gun), use of luminescent powders injected into the burner to illuminate the flame pattern, or identifying continued localized coke build-up that causes short runtimes between decoking cycles. A repair may include, but is not limited to: Taking the burner out of service, replacing the burner, adjusting the alignment of the burner, adjusting burner configuration, making burner air corrections, repairing a malfunction of the fuel liquid removal equipment, or adding insulation around the radiant tube(s).

(A) If a shutdown for repair would cause greater emissions than the potential emissions from delaying repair, repair must be completed following the next planned decoking operation (and before returning the ethylene cracking furnace back to normal operations) or during the next ethylene cracking furnace complete shutdown (when the ethylene cracking furnace firebox is taken completely off-line), whichever is earlier.

(B) If a shutdown for repair would cause lower emissions than the potential emissions from delaying repair, then shutdown of the ethylene cracking furnace must immediately commence and the repair must be completed before returning the ethylene cracking furnace back to normal operations.

(ii) During decoking operations, beginning before the expected end of the air-in decoke time, continuously monitor (or use a gas detection tube or equivalent sample technique every three hours to monitor) the CO2 concentration in the combined decoke effluent downstream of the last component being decoked for an indication that the coke combustion in the ethylene cracking furnace radiant tube(s) is complete. The owner or operator must immediately initiate procedures to stop the coke combustion once the CO2 concentration at the outlet consistently reaches a level that indicates combustion of coke is complete and site decoke completion assurance procedures have been concluded.

(iii) During decoking operations, continuously monitor the temperature at the radiant tube(s) outlet when air is being introduced to ensure the coke combustion occurring inside the radiant tube(s) is not so aggressive (i.e., too hot) that it damages either the radiant tube(s) or ethylene cracking furnace isolation valve(s). The owner or operator must immediately initiate procedures to reduce the temperature at the radiant tube(s) outlet once the temperature reaches a level that indicates combustion of coke inside the radiant tube(s) is too aggressive.

(iv) After decoking, but before returning the ethylene cracking furnace back to normal operations, verify that decoke air is no longer being added.

(v) After decoking, but before returning the ethylene cracking furnace back to normal operations and/or during normal operations, inject materials into the steam or feed to reduce coke formation inside the radiant tube(s) during normal operation.

(8) Ethylene cracking furnace isolation valve inspections. Beginning no later than the compliance dates specified in §63.1102(c), the owner or operator must conduct ethylene cracking furnace isolation valve inspections as specified in paragraphs (e)(8)(i) and (ii) of this section.

(i) Prior to decoking operation, inspect the applicable ethylene cracking furnace isolation valve(s) to confirm that the radiant tube(s) being decoked is completely isolated from the ethylene production process so that no emissions generated from decoking operations are sent to the ethylene production process. If poor isolation is identified, then the owner or operator must rectify the isolation issue prior to continuing decoking operations to prevent leaks into the ethylene production process.

(ii) Prior to returning the ethylene cracking furnace to normal operations after a decoking operation, inspect the applicable ethylene cracking furnace isolation valve(s) to confirm that the radiant tube(s) that was decoked is completely isolated from the decoking pot or furnace firebox such that no emissions are sent from the radiant tube(s) to the decoking pot or furnace firebox once the ethylene cracking furnace returns to normal operation. If poor isolation is identified, then the owner or operator must rectify the isolation issue prior to continuing normal operations to prevent product from escaping to the atmosphere through the decoking pot or furnace firebox.

(9) Startup, shutdown, and malfunction referenced provisions. Beginning no later than the compliance dates specified in §63.1102(c), the referenced provisions specified in paragraphs (e)(9)(i) through (xx) of this section do not apply when demonstrating compliance with paragraph (e)(3) of this section.

(i) The second sentence of §63.181(d)(5)(i) of subpart H.

(ii) The second sentence of §63.983(a)(5) of subpart SS.

(iii) The phrase “except during periods of start-up, shutdown and malfunction as specified in the referencing subpart” in §63.984(a) of subpart SS.

(iv) The phrase “except during periods of start-up, shutdown and malfunction as specified in the referencing subpart” in §63.985(a) of subpart SS.

(v) The phrase “other than start-ups, shutdowns, or malfunctions” in §63.994(c)(1)(ii)(D) of subpart SS.

(vi) Section 63.996(c)(2)(ii) of subpart SS.

(vii) The last sentence of §63.997(e)(1)(i) of subpart SS.

(viii) Section 63.998(b)(2)(iii) of subpart SS.

(ix) The phrase “other than periods of startups, shutdowns, and malfunctions” from §63.998(b)(5)(i)(A) of subpart SS.

(x) The phrase “other than a start-up, shutdown, or malfunction” from §63.998(b)(5)(i)(B)(3) of subpart SS.

(xi) The phrase “other than periods of startups, shutdowns, and malfunctions” from §63.998(b)(5)(i)(C) of subpart SS.

(xii) The phrase “other than a start-up, shutdown, or malfunction” from §63.998(b)(5)(ii)(C) of subpart SS.

(xiii) The phrase “except as provided in paragraphs (b)(6)(i)(A) and (B) of this section” from §63.998(b)(6)(i) of subpart SS.

(xiv) The second sentence of §63.998(b)(6)(ii) of subpart SS.

(xv) Section 63.998(c)(1)(ii)(D) through (G) of subpart SS.

(xvi) Section 63.998(d)(3) of subpart SS.

(xvii) The phrase “may be included as part of the startup, shutdown, and malfunction plan, as required by the referencing subpart for the source, or” from §63.1024(f)(4)(i) of subpart UU.

(xviii) The phrase “(except periods of startup, shutdown, or malfunction)” from §63.1026(e)(1)(ii)(A) of subpart UU.

(xix) The phrase “(except periods of startup, shutdown, or malfunction)” from §63.1028(e)(1)(i)(A) of subpart UU.

(xx) The phrase “(except periods of startup, shutdown, or malfunction)” from §63.1031(b)(1) of subpart UU.

(10) Storage vessel degassing. Beginning no later than the compliance dates specified in §63.1102(c), for each storage vessel subject to paragraph (b) or (c) of Table 7 to §63.1103(e), the owner or operator must comply with paragraphs (e)(10)(i) through (iii) of this section during storage vessel shutdown operations (i.e., emptying and degassing of a storage vessel) until the vapor space concentration in the storage vessel is less than 10 percent of the LEL. The owner or operator must determine the LEL using process instrumentation or portable measurement devices and follow procedures for calibration and maintenance according to manufacturer's specifications.

(i) Remove liquids from the storage vessel as much as practicable;

(ii) Comply with one of the following:

(A) Reduce emissions of total organic HAP by 98 weight-percent by venting emissions through a closed vent system to a flare and meet the requirements of §63.983 and paragraphs (e)(4) and (9) of this section.

(B) Reduce emissions of total organic HAP by 98 weight-percent by venting emissions through a closed vent system to any combination of non-flare control devices and meet the requirements specified in §63.982(c)(1) and paragraph (e)(9) of this section.

(C) Reduce emissions of total organic HAP by 98 weight-percent by routing emissions to a fuel gas system or process and meet the requirements specified in §63.982(d) and paragraph (e)(9) of this section.

(iii) Maintain records necessary to demonstrate compliance with the requirements in §63.1108(a)(4)(ii) including, if appropriate, records of existing standard site procedures used to empty and degas (deinventory) equipment for safety purposes.

Table 7 to §63.1103(e)—What Are My Requirements If I Own or Operate an Ethylene Production Existing or New Affected Source?
If you own or operate . . .And if . . .Then you must . . .
(a) A storage vessel (as defined in §63.1101) that stores liquid containing organic HAP(1) The maximum true vapor pressure of total organic HAP is ≥3.4 kilopascals but <76.6 kilopascals; and the capacity of the vessel is ≥4 cubic meters but <95 cubic meters(i) Fill the vessel through a submerged pipe; or (ii) Comply with the requirements for storage vessels with capacities ≥95 cubic meters.
(b) A storage vessel (as defined in §63.1101) that stores liquid containing organic HAP(1) The maximum true vapor pressure of total organic HAP is ≥3.4 kilopascals but <76.6 kilopascals; and the capacity of the vessel is ≥95 cubic meters(i) Except as specified in paragraph (b)(1)(iii) of this table, comply with the requirements of subpart WW of this part; or (ii) Except as specified in paragraph (b)(1)(iii) of this table, reduce emissions of total organic HAP by 98 weight-percent by venting emissions through a closed vent system to any combination of control devices and meet the requirements of §63.982(a)(1). (iii) Beginning no later than the compliance dates specified in §63.1102(c), comply with paragraph (b)(1)(iii)(A), (B), (C), or (D) of this table, and (e)(10) of this section. (A) Comply with the requirements of subpart WW of this part; or (B) Reduce emissions of total organic HAP by 98 weight-percent by venting emissions through a closed vent system to a flare and meet the requirements of §63.983 and paragraphs (e)(4) and (9) of this section; or (C) Reduce emissions of total organic HAP by 98 weight-percent by venting emissions through a closed vent system to any combination of non-flare control devices and meet the requirements specified in §63.982(c)(1) and (e)(9) of this section; or (D) Reduce emissions of total organic HAP by 98 weight-percent by routing emissions to a fuel gas system(a) or process and meet the requirements specified in §63.982(d) and (e)(9) of this section.
(c) A storage vessel (as defined in §63.1101) that stores liquid containing organic HAP(1) The maximum true vapor pressure of total organic HAP is ≥76.6 kilopascals(i) Except as specified in paragraph (c)(1)(ii) of this table, reduce emissions of total organic HAP by 98 weight-percent by venting emissions through a closed vent system to any combination of control devices and meet the requirements of §63.982(a)(1). (ii) Beginning no later than the compliance dates specified in §63.1102(c), comply with paragraph (c)(1)(ii)(A), (B), or (C) of this table, and (e)(10) of this section. (A) Reduce emissions of total organic HAP by 98 weight-percent by venting emissions through a closed vent system to a flare and meet the requirements of §63.983 and paragraphs (e)(4) and (9) of this section; or (B) Reduce emissions of total organic HAP by 98 weight-percent by venting emissions through a closed vent system to any combination of non-flare control devices and meet the requirements specified in §63.982(c)(1) and (e)(9) of this section; or (C) Reduce emissions of total organic HAP by 98 weight-percent by routing emissions to a fuel gas system(a) or process and meet the requirements specified in §63.982(d) and (e)(9) of this section.
(d) An ethylene process vent (as defined in paragraph (e)(2) of this section)(1) The process vent is at an existing source and the vent stream has a flow rate ≥0.011 scmm and a total organic HAP concentration ≥50 parts per million by volume on a dry basis; or the process vent is at a new source and the vent stream has a flow rate ≥0.008 scmm and a total organic HAP concentration ≥30 parts per million by volume on a dry basis(i) Except as specified in paragraph (d)(1)(ii) of this table, reduce emissions of organic HAP by 98 weight-percent; or reduce organic HAP or TOC to a concentration of 20 parts per million by volume on a dry basis corrected to 3% oxygen; whichever is less stringent, by venting emissions through a closed vent system to any combination of control devices and meet the requirements specified in §63.982(b) and (c)(2). (ii) Beginning no later than the compliance dates specified in §63.1102(c), comply with the maintenance vent requirements specified in paragraph (e)(5) of this section and either paragraph (d)(1)(ii)(A) or (B) of this table. (A) Reduce emissions of organic HAP by 98 weight-percent; or reduce organic HAP or TOC to a concentration of 20 parts per million by volume on a dry basis corrected to 3-percent oxygen; whichever is less stringent, by venting emissions through a closed vent system to a flare and meet the requirements of §63.983 and paragraphs (e)(4) and (9) of this section; or (B) Reduce emissions of organic HAP by 98 weight-percent; or reduce organic HAP or TOC to a concentration of 20 parts per million by volume on a dry basis corrected to 3-percent oxygen; whichever is less stringent, by venting emissions through a closed vent system to any combination of non-flare control devices and meet the requirements specified in §63.982(c)(2) and (e)(9) of this section.
(e) A transfer rack (as defined in paragraph (e)(2) of this section)(1) Materials loaded have a true vapor pressure of total organic HAP ≥3.4 kilopascals and ≥76 cubic meters per day (averaged over any consecutive 30-day period) of HAP-containing material is loaded(i) Reduce emissions of organic HAP by 98 weight-percent; or reduce organic HAP or TOC to a concentration of 20 parts per million by volume on a dry basis corrected to 3-percent oxygen; whichever is less stringent, by venting emissions through a closed vent system to any combination of control devices as specified in §63.1105 and meet the requirements specified in paragraph (e)(9) of this section.; or
(ii) Install process piping designed to collect the HAP-containing vapors displaced from tank trucks or railcars during loading and to route it to a process, a fuel gas system, or a vapor balance system, as specified in §63.1105 and meet the requirements specified in paragraph (e)(9) of this section.(a)
(f) Equipment (as defined in §63.1101) that contains or contacts organic HAP(1) The equipment contains or contacts ≥5 weight-percent organic HAP; and the equipment is not in vacuum service(i) Except as specified in paragraph (f)(1)(ii) of this table, comply with the requirements of subpart UU of this part. (ii) Beginning no later than the compliance dates specified in §63.1102(c), comply with the requirements of paragraph (e)(9) of this section and subpart UU of this part, except instead of complying with the pressure relief device requirements of §63.1030 of subpart UU, meet the requirements of §63.1107(h), and in lieu of the flare requirement of §63.1034(b)(2)(iii), comply with the requirements specified in paragraph (e)(4) of this section.(a)
(g) Processes that generate waste (as defined in paragraph (e)(2) of this section(1) The waste stream contains any of the following HAP: Benzene, cumene, ethyl benzene, hexane, naphthalene, styrene, toluene, o-xylene, m-xylene, p-xylene, or 1,3-butadieneComply with the waste requirements of subpart XX of this part. For ethylene production unit waste stream requirements, terms have the meanings specified in subpart XX.
(h) A heat exchange system (as defined in §63.1082(b)) Comply with the heat exchange system requirements of subpart XX of this part.
(i) A closed vent system that contains one or more bypass lines(1) The bypass line could divert a vent stream directly to the atmosphere or to a control device not meeting the requirements in this tableBeginning no later than the compliance dates specified in §63.1102(c), comply with the requirements specified in paragraphs (e)(6) and (9) of this section.
(j) A decoking operation associated with an ethylene cracking furnaceBeginning no later than the compliance dates specified in §63.1102(c), comply with the requirements specified in paragraphs (e)(7) and (8) of this section.
(a) Beginning no later than the compliance dates specified in §63.1102(c), any flare using fuel gas from a fuel gas system, of which 50 percent or more of the fuel gas is derived from an ethylene production unit as determined on an annual average basis, must be in compliance with paragraph (e)(4) of this section.

§63.1107 Equipment leaks.

* * * *

(h)(3)(iv) The owner or operator must determine the total number of release events that occurred during the calendar year for each affected pressure relief device separately. The owner or operator must also determine the total number of release events for each pressure relief device for which the root cause analysis concluded that the root cause was a force majeure event, as defined in §63.1103(e)(2).

(h)(3)(v)(B) A second release event not including force majeure events from a single pressure relief device in a 3-calendar year period for the same root cause for the same equipment.

* * * *

(h)(6) Root cause analysis and corrective action analysis. A root cause analysis and corrective action analysis must be completed as soon as possible, but no later than 45 days after a release event. Special circumstances affecting the number of root cause analyses and/or corrective action analyses are provided in paragraphs (h)(6)(i) through (iv) of this section.

* * * *

(h)(6)(ii) Prior to June 3, 2024, you may conduct a single root cause analysis and corrective action analysis for a single emergency event that causes two or more pressure relief devices to release, regardless of the equipment served, if the root cause is reasonably expected to be a force majeure event, as defined in §63.1103(e)(2).

§63.1109 Recordkeeping requirements.

* * * *

(2) If complying with the requirements of §63.1103(e)(5)(i)(A) and the LEL at the time of the vessel opening exceeds 10 percent, records that identify the maintenance vent, the process units or equipment associated with the maintenance vent, the date of maintenance vent opening, and the LEL at the time of the vessel opening.

(3) If complying with the requirements of §63.1103(e)(5)(i)(B) and either the vessel pressure at the time of the vessel opening exceeds 5 psig or the LEL at the time of the active purging was initiated exceeds 10 percent, records that identify the maintenance vent, the process units or equipment associated with the maintenance vent, the date of maintenance vent opening, the pressure of the vessel or equipment at the time of discharge to the atmosphere and, if applicable, the LEL of the vapors in the equipment when active purging was initiated.

* * * *

(5) If complying with the requirements of §63.1103(e)(5)(i)(D), identification of the maintenance vent, the process units or equipment associated with the maintenance vent, records documenting actions taken to comply with other applicable alternatives and why utilization of this alternative was required, the date of maintenance vent opening, the equipment pressure and LEL of the vapors in the equipment at the time of discharge, an indication of whether active purging was performed and the pressure of the equipment during the installation or removal of the blind if active purging was used, the duration the maintenance vent was open during the blind installation or removal process, and records used to estimate the total quantity of VOC in the equipment at the time the maintenance vent was opened to the atmosphere for each applicable maintenance vent opening.

* * * *

(i)(2) Records of the number of releases during each calendar year and the number of those releases for which the root cause was determined to be a force majeure event. Keep these records for the current calendar year and the past five calendar years.

§63.1110 Reporting requirements.

* * * *

(a)(10) Beginning no later than the compliance dates specified in §63.1102(c), within 60 days after the date of completing each performance test required by this subpart, the owner or operator must submit the results of the performance test following the procedures specified in paragraphs (a)(10)(i)(A) through (C) of this section.

(i) Beginning no later than the compliance dates specified in §63.1102(c) for ethylene production affected sources, specified in §63.1102(d) for cyanide chemicals manufacturing affected sources, and specified in §63.1102(e) for carbon black production affected sources, within 60 days after the date of completing each performance test required by this subpart or applicability assessment required by §63.1103(f)(3)(iv), the owner or operator must submit the results of the performance test or applicability assessment following the procedures specified in paragraphs (a)(10)(i)(A) through (C) of this section.

(A) Data collected using test methods supported by the EPA's Electronic Reporting Tool (ERT) as listed on the EPA's ERT website (https://www.epa.gov/electronic-reporting-air-emissions/electronic-reporting-tool-ert) at the time of the test. Submit the results of the performance test or applicability assessment to the EPA via CEDRI, which can be accessed through the EPA's CDX ( https://cdx.epa.gov/ ). The data must be submitted in a file format generated through the use of the EPA's ERT. Alternatively, you may submit an electronic file consistent with the extensible markup language (XML) schema listed on the EPA's ERT website.

(B) Data collected using test methods that are not supported by the EPA's ERT as listed on the EPA's ERT website at the time of the test. The results of the performance test or applicability assessment must be included as an attachment in the ERT or an alternate electronic file consistent with the XML schema listed on the EPA's ERT website. Submit the ERT generated package or alternative file to the EPA via CEDRI.

(C) CBI. Do not use CEDRI to submit information you claim as CBI. Anything submitted to CEDRI cannot later be claimed CBI. Although we do not expect persons to assert a claim of CBI, if an owner or operator wishes to assert a CBI claim for some of the information submitted under paragraph (a)(10)(i)(A) or (B) of this section, then the owner or operator must submit a complete file, including information claimed to be CBI, to the EPA. The file must be generated through the use of the EPA's ERT or an alternate electronic file consistent with the XML schema listed on the EPA's ERT website. Submit the file on a compact disc, flash drive, or other commonly used electronic storage medium and clearly mark the medium as CBI. Mail the electronic medium to U.S. EPA/OAQPS/CORE CBI Office, Attention: Group Leader, Measurement Policy Group, MD C404-02, 4930 Old Page Rd., Durham, NC 27703. The same file with the CBI omitted must be submitted to the EPA via EPA's CDX as described in paragraphs (a)(10)(i)(A) and (B) of this section. All CBI claims must be asserted at the time of submission. Furthermore, under CAA section 114(c), emissions data is not entitled to confidential treatment, and the EPA is required to make emissions data available to the public. Thus, emissions data will not be protected as CBI and will be made publicly available.

(ii) Beginning no later than the compliance dates specified in §63.1102(c) through (e), the owner or operator must submit all subsequent Notification of Compliance Status reports required under paragraph (a)(4) of this section in PDF format to the EPA via CEDRI, which can be accessed through EPA's CDX ( https://cdx.epa.gov/ ). All subsequent Periodic Reports required under paragraph (a)(5) of this section must be submitted to the EPA via CEDRI using the appropriate electronic report template on the CEDRI website ( https://www.epa.gov/electronic-reporting-air-emissions/compliance-and-emissions-data-reporting-interface-cedri ) for this subpart beginning no later than the compliance dates specified in §63.1102(c) through (e) or once the report template has been available on the CEDRI website for 1 year, whichever date is later. The date report templates become available will be listed on the CEDRI website. The report must be submitted by the deadline specified in this subpart, regardless of the method in which the report is submitted. Although we do not expect persons to assert a claim of CBI, if you wish to assert a CBI claim, then submit a complete report, including information claimed to be CBI, to the EPA. Periodic Reports must be generated using the appropriate template on the CEDRI website. Submit the file on a compact disc, flash drive, or other commonly used electronic storage medium and clearly mark the medium as CBI. Mail the electronic medium to U.S. EPA/OAQPS/CORE CBI Office, MD C404-02, 4930 Old Page Road, Durham NC 27703 to the attention of the applicable person specified in paragraphs (A) through (C) of this section. The same file with the CBI omitted must be submitted to the EPA via the EPA's CDX as described earlier in this paragraph. All CBI claims must be asserted at the time of submission. Furthermore, under CAA section 114(c), emissions data is not entitled to confidential treatment, and the EPA is required to make emissions data available to the public. Thus, emissions data will not be protected as CBI and will be made publicly available.

(A) Ethylene Production Sector Lead

(B) Cyanide Chemicals Manufacturing Sector Lead

(C) Carbon Black Production Sector Lead

(iii) If you are required to electronically submit a report through CEDRI in the EPA's CDX, you may assert a claim of EPA system outage for failure to timely comply with the reporting requirement. To assert a claim of EPA system outage, the owner or operator must meet the requirements outlined in paragraphs (a)(10)(iii)(A) through (G) of this section.

(A) The owner or operator must have been or will be precluded from accessing CEDRI and submitting a required report within the time prescribed due to an outage of either the EPA's CEDRI or CDX systems.

(B) The outage must have occurred within the period of time beginning five business days prior to the date that the submission is due.

(C) The outage may be planned or unplanned.

(D) The owner or operator must submit notification to the Administrator in writing as soon as possible following the date you first knew, or through due diligence should have known, that the event may cause or has caused a delay in reporting.

(E) The owner or operator must provide to the Administrator a written description identifying:

(1) The date(s) and time(s) when CDX or CEDRI was accessed and the system was unavailable;

(2) A rationale for attributing the delay in reporting beyond the regulatory deadline to EPA system outage;

(3) Measures taken or to be taken to minimize the delay in reporting; and

(4) The date by which you propose to report, or if you have already met the reporting requirement at the time of the notification, the date you reported.

(F) The decision to accept the claim of EPA system outage and allow an extension to the reporting deadline is solely within the discretion of the Administrator.

(G) In any circumstance, the report must be submitted electronically as soon as possible after the outage is resolved.

(iv) If you are required to electronically submit a report through CEDRI in the EPA's CDX, you may assert a claim of force majeure for failure to timely comply with the reporting requirement. To assert a claim of force majeure, the owner or operator must meet the requirements outlined in paragraphs (a)(10)(iv)(A) through (E) of this section.

(A) You may submit a claim if a force majeure event is about to occur, occurs, or has occurred or there are lingering effects from such an event within the period of time beginning five business days prior to the date the submission is due. For the purposes of this paragraph, a force majeure event is defined as an event that will be or has been caused by circumstances beyond the control of the affected facility, its contractors, or any entity controlled by the affected facility that prevents you from complying with the requirement to submit a report electronically within the time period prescribed. Examples of such events are acts of nature (e.g., hurricanes, earthquakes, or floods), acts of war or terrorism, or equipment failure or safety hazard beyond the control of the affected facility (e.g., large scale power outage).

(B) The owner or operator must submit notification to the Administrator in writing as soon as possible following the date you first knew, or through due diligence should have known, that the event may cause or has caused a delay in reporting.

(C) The owner or operator must provide to the Administrator:

(1) A written description of the force majeure event;

(2) A rationale for attributing the delay in reporting beyond the regulatory deadline to the force majeure event;

(3) Measures taken or to be taken to minimize the delay in reporting; and

(4) The date by which you propose to report, or if you have already met the reporting requirement at the time of the notification, the date you reported.

(D) The decision to accept the claim of force majeure and allow an extension to the reporting deadline is solely within the discretion of the Administrator.

(E) In any circumstance, the reporting must occur as soon as possible after the force majeure event occurs.

* * * *

(e)(4)(iii) The periods specified in §63.1109(e)(7). Indicate the date and start time for the period, and the net heating value operating parameter(s) determined following the methods in §63.670(k) through (n) of subpart CC as applicable.

* * * *

(e)(4)(iv)(A) The start and stop time and date of the flaring event.

(B) The length of time that emissions were visible from the flare during the event.

* * * *

(e)(5)(iii) The LEL, vessel pressure, or mass of VOC in the equipment, as applicable, at the start of atmospheric venting. If the 5 psig vessel pressure option in §63.1103(e)(5)(i)(B) was used and active purging was initiated while the LEL was 10 percent or greater, also include the LEL of the vapors at the time active purging was initiated.

* * * *

(e)(8)(iii) For pressure relief devices in organic HAP service subject to §63.1107(h)(3), report each pressure release to the atmosphere, including duration of the pressure release and estimate of the mass quantity of each organic HAP released; the results of any root cause analysis and corrective action analysis completed during the reporting period, including the corrective actions implemented during the reporting period; and, if applicable, the implementation schedule for planned corrective actions to be implemented subsequent to the reporting period.

* * * *

§63.2346 What emission limitations, operating limits, and work practice standards must I meet?

* * * *

(a)(6) Beginning no later than the compliance dates specified in §63.2342(e), tank emissions during storage tank shutdown operations (i.e., emptying and degassing of a storage tank) for each storage tank at an affected source storing organic liquids that meets the tank capacity and liquid vapor pressure criteria for control in items 3 through 6 of Table 2 to this subpart, or items 1 through 3 of Table 2b to this subpart, you must comply with paragraphs (a)(6)(i) through (iii) of this section during tank emptying and degassing until the vapor space concentration in the tank is less than 10 percent of the lower explosive limit (LEL). The owner or operator must determine the LEL using process instrumentation or portable measurement devices and follow procedures for calibration and maintenance according to manufacturer's specifications.

* * * *

(e) Operating limits. For each high throughput transfer rack, you must meet each operating limit in Table 3 to this subpart for each control device used to comply with the provisions of this subpart whenever emissions from the loading of organic liquids are routed to the control device. Except as specified in paragraph (k) of this section, for each storage tank and low throughput transfer rack, you must comply with paragraph (l) of this section and the requirements for monitored parameters as specified in subpart SS of this part, for storage vessels and, during the loading of organic liquids, for low throughput transfer racks, respectively. Alternatively, you may comply with the operating limits in Table 3 to this subpart.

§63.2378 How do I demonstrate continuous compliance with the emission limitations, operating limits, and work practice standards?

* * * *

(e) Beginning no later than the compliance dates specified in §63.2342(e), paragraphs (b) through (d) of this section no longer apply. Instead, you must be in compliance with each emission limitation, operating limit, and work practice standard specified in paragraph (a) of this section at all times, except during periods of nonoperation of the affected source (or specific portion thereof) resulting in cessation of the emissions to which this subpart applies and must comply with the requirements specified in paragraphs (e)(1) through (5) of this section, as applicable. Equipment subject to the work practice standards for equipment leak components in Table 4 to this subpart, item 4 are not subject to this paragraph (e).

(1) Except as specified in paragraphs (e)(3) through (5) of this section, the use of a bypass line at any time on a closed vent system to divert a vent stream to the atmosphere or to a control device not meeting the requirements specified in paragraph (a) of this section is an emissions standards deviation.

(2) If you are subject to the bypass monitoring requirements of §63.983(a)(3), then you must continue to comply with the requirements in §63.983(a)(3) and the recordkeeping and reporting requirements in §§63.998(d)(1)(ii) and 63.999(c)(2), in addition to §63.2346(l), the recordkeeping requirements specified in §63.2390(g), and the reporting requirements specified in §63.2386(c)(12).

(3) Periods of planned routine maintenance of a control device used to control storage tank breathing loss emissions, during which the control device does not meet the emission limits in Table 2 or 2b to this subpart, must not exceed 240 hours per year. The level of material in the storage vessel shall not be increased during periods that the closed-vent system or control device is bypassed to perform routine maintenance.

(4) If you elect to route emissions from storage tanks to a fuel gas system or to a process, as allowed by §63.982(d), to comply with the emission limits in Table 2 or 2b to this subpart, the total aggregate amount of time during which the breathing loss emissions bypass the fuel gas system or process during the calendar year without being routed to a control device, for all reasons (except product changeovers of flexible operation units and periods when a storage tank has been emptied and degassed), must not exceed 240 hours. The level of material in the storage vessel shall not be increased during periods that the fuel gas system or process is bypassed to perform routine maintenance.

§63.2382 What notifications must I submit and when and what information should be submitted?

* * * *

(d)(3) Submitting Notification of Compliance Status. Beginning no later than the compliance dates specified in §63.2342(e), you must submit all subsequent Notification of Compliance Status reports to the EPA via CEDRI, which can be accessed through EPA's Central Data Exchange (CDX) (https://cdx.epa.gov/). If you claim some of the information required to be submitted via CEDRI is confidential business information (CBI), then submit a complete report, including information claimed to be CBI, to the EPA. Submit the file on a compact disc, flash drive, or other commonly used electronic storage medium and clearly mark the medium as CBI. Mail the electronic medium to U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Sector Policies and Programs Division, U.S. EPA Mailroom (C404-02), Attention: Organic Liquids Distribution Sector Lead, 4930 Old Page Rd., Durham, NC 27703. The same file with the CBI omitted must be submitted to the EPA via EPA's CDX as described earlier in this paragraph. You may assert a claim of EPA system outage or force majeure for failure to timely comply with this reporting requirem

§63.2386 What reports must I submit and when and what information is to be submitted in each?

* * * *

(f) Beginning no later than the compliance dates specified in §63.2342(e), you must submit all Compliance reports to the EPA via CEDRI, which can be accessed through EPA's CDX (https://cdx.epa.gov/). You must use the appropriate electronic report template on the CEDRI website (https://www.epa.gov/electronic-reporting-air-emissions/compliance-and-emissions-data-reporting-interface-cedri) for this subpart. The date report templates become available will be listed on the CEDRI website. Unless the Administrator or delegated state agency or other authority has approved a different schedule for submission of reports under §§63.9(i) and 63.10(a), the report must be submitted by the deadline specified in this subpart, regardless of the method in which the report is submitted. If you claim some of the information required to be submitted via CEDRI is CBI, submit a complete report, including information claimed to be CBI, to the EPA. The report must be generated using the appropriate form on the CEDRI website or an alternate electronic file consistent with the extensible markup language (XML) schema listed on the CEDRI website. Submit the file on a compact disc, flash drive, or other commonly used electronic storage medium and clearly mark the medium as CBI. Mail the electronic medium to U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Sector Policies and Programs Division, U.S. EPA Mailroom (C404-02), Attention: Organic Liquids Distribution Sector Lead, 4930 Old Page Rd., Durham, NC 27703. The same file with the CBI omitted must be submitted to the EPA via EPA's CDX as described earlier in this paragraph. You may assert a claim of EPA system outage or force majeure for failure to timely comply with this reporting requirement provided you meet the requirements outlined in paragraph (i) or (j) of this section, as applicable.

(g) Beginning no later than the compliance dates specified in §63.2342(e), you must start submitting performance test reports in accordance with this paragraph. Unless otherwise specified in this subpart, within 60 days after the date of completing each performance test required by this subpart, you must submit the results of the performance test following the procedures specified in paragraphs (g)(1) through (3) of this section.

(1) Data collected using test methods supported by the EPA's Electronic Reporting Tool (ERT) as listed on the EPA's ERT website (https://www.epa.gov/electronic-reporting-air-emissions/electronic-reporting-tool-ert) at the time of the test. Submit the results of the performance test to the EPA via CEDRI, which can be accessed through the EPA's CDX (https://cdx.epa.gov/). The data must be submitted in a file format generated through the use of the EPA's ERT. Alternatively, you may submit an electronic file consistent with the XML schema listed on the EPA's ERT website.

(2) Data collected using test methods that are not supported by the EPA's ERT as listed on the EPA's ERT website at the time of the test. The results of the performance test must be included as an attachment in the ERT or an alternate electronic file consistent with the XML schema listed on the EPA's ERT website. Submit the ERT generated package or alternative file to the EPA via CEDRI.

(3) CBI. If you claim some of the information submitted under paragraph (g)(1) or (2) of this section is CBI, then you must submit a complete file, including information claimed to be CBI, to the EPA. The file must be generated through the use of the EPA's ERT or an alternate electronic file consistent with the XML schema listed on the EPA's ERT website. Submit the file on a compact disc, flash drive, or other commonly used electronic storage medium and clearly mark the medium as CBI. Mail the electronic medium to U.S. EPA/OAQPS/CORE CBI Office, Attention: Group Leader, Measurement Policy Group, MD C404-02, 4930 Old Page Rd., Durham, NC 27703. The same file with the CBI omitted must be submitted to the EPA via EPA's CDX as described in paragraphs (g)(1) and (2) of this section.

(h) Beginning no later than the compliance dates specified in §63.2342(e), you must start submitting performance evaluation reports in accordance with this paragraph. Unless otherwise specified in this subpart, within 60 days after the date of completing each CEMS performance evaluation (as defined in §63.2) , you must submit the results of the performance evaluation following the procedures specified in paragraphs (h)(1) through (3) of this section.

(1) Performance evaluations of CEMS measuring relative accuracy test audit (RATA) pollutants that are supported by the EPA's ERT as listed on the EPA's ERT website at the time of the evaluation. Submit the results of the performance evaluation to the EPA via CEDRI, which can be accessed through the EPA's CDX. The data must be submitted in a file format generated through the use of the EPA's ERT. Alternatively, you may submit an electronic file consistent with the XML schema listed on the EPA's ERT website.

(2) Performance evaluations of CEMS measuring RATA pollutants that are not supported by the EPA's ERT as listed on the EPA's ERT website at the time of the evaluation. The results of the performance evaluation must be included as an attachment in the ERT or an alternate electronic file consistent with the XML schema listed on the EPA's ERT website. Submit the ERT generated package or alternative file to the EPA via CEDRI.

(3) CBI. If you claim some of the information submitted under paragraph (h)(1) or (2) of this section is CBI, then you must submit a complete file, including information claimed to be CBI, to the EPA. The file must be generated through the use of the EPA's ERT or an alternate electronic file consistent with the XML schema listed on the EPA's ERT website. Submit the file on a compact disc, flash drive, or other commonly used electronic storage medium and clearly mark the medium as CBI. Mail the electronic medium to U.S. EPA/OAQPS/CORE CBI Office, Attention: Group Leader, Measurement Policy Group, MD C404-02, 4930 Old Page Rd., Durham, NC 27703. The same file with the CBI omitted must be submitted to the EPA via the EPA's CDX as described in paragraphs (h)(1) and (2) of this section.

Table 12 to Subpart EEEE of Part 63—Applicability of General Provisions to Subpart EEEE

* * * *

§63.9(k) Electronic reporting proceduresProcedure to report electronically for notification in §63.9(j)Yes, only as specified in §63.9(j).

§63.2450 What are my general requirements for complying with this subpart?

* * * *

(e)(1) Except when complying with §63.2485, if you reduce organic HAP emissions by venting emissions through a closed-vent system to any combination of control devices (except a flare) or recovery devices, you must meet the requirements of paragraph (e)(4) of this section, and the requirements of §63.982(c) and the requirements referenced therein.

* * * *

(e)(5)(iv) Instead of complying with paragraph (o)(2)(iii) of §63.670 of subpart CC, if required to develop a flare management plan and submit it to the Administrator, then you must also submit all versions of the plan in portable document format (PDF) to the EPA via the Compliance and Emissions Data Reporting Interface (CEDRI), which can be accessed through the EPA's Central Data Exchange (CDX) (https://cdx.epa.gov/). The EPA will make all the information submitted through CEDRI available to the public without further notice to you. Do not use CEDRI to submit information you claim as confidential business information (CBI). Anything submitted using CEDRI cannot later be claimed to be CBI. Although we do not expect persons to assert a claim of CBI, if you wish to assert a CBI claim, submit a version with the CBI omitted via CEDRI. A complete plan, including information claimed to be CBI and clearly marked as CBI, must be mailed to the following address: U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Sector Policies and Programs Division, CORE CBI Office, U.S. EPA Mailroom (C404-02), Attention: Miscellaneous Organic Chemical Manufacturing Sector Lead, 4930 Old Page Rd., Durham, NC 27703. All CBI claims must be asserted at the time of submission. Furthermore, under CAA section 114(c) emissions data is not entitled to confidential treatment, and the EPA is required to make emissions data available to the public. Thus, emissions data will not be protected as CBI and will be made publicly available.

* * * *

(e)(5)(viii)(B) You must substitute "800" for each occurrence of "270" in paragraph (e) of §63.670 of subpart CC;

* * * *

(e)(6)(i) If you are subject to the bypass monitoring requirements of §63.148(f) of subpart G, then you must continue to comply with the requirements in §63.148(f) of subpart G and the recordkeeping and reporting requirements in §§63.148(j)(2) and (3) of subpart G, and (h)(3) of subpart G, in addition to the applicable requirements specified in §63.2485(q), the recordkeeping requirements specified in §63.2525(n), and the reporting requirements specified in §63.2520(e)(12).

* * * *

(e)(7) Beginning no later than the compliance dates specified in §63.2445(g), if you reduce organic HAP emissions by venting emissions through a closed-vent system to an adsorber(s) that cannot be regenerated or a regenerative adsorber(s) that is regenerated offsite, then you must comply with paragraphs (e)(4) and (6) of this section and the requirements in §63.983, and you must install a system of two or more adsorber units in series and comply with the requirements specified in paragraphs (e)(7)(i) through (iii) of this section.

* * * *

(v)(1)(i) The vapor in the equipment served by the maintenance vent has a lower explosive limit (LEL) of less than 10 percent and has an outlet concentration less than or equal to 20 ppmv hydrogen halide and halogen HAP.

* * * *

(v)(1)(ii) If there is no ability to measure the LEL of the vapor in the equipment based on the design of the equipment, the pressure in the equipment served by the maintenance vent is reduced to 5 pounds per square inch gauge (psig) or less. Upon opening the maintenance vent, active purging of the equipment cannot be used until the LEL of the vapors in the maintenance vent (or inside the equipment if the maintenance is a hatch or similar type of opening) is less than 10 percent.

* * * *

(v)(2) Except for maintenance vents complying with the alternative in paragraph (v)(1)(iii) of this section, you must determine the LEL or, if applicable, equipment pressure using process instrumentation or portable measurement devices and follow procedures for calibration and maintenance according to manufacturer's specifications.

§63.2460 What requirements must I meet for batch process vents?

* * * *

(c)(9) Requirements for a biofilter. If you use a biofilter to meet either the95-percent reduction requirement or outlet concentration requirement specified in Table 2 to this subpart, you must meet the requirements specified in paragraphs (c)(9)(i) through (vi) of this section.

§63.2470 What requirements must I meet for storage tanks?

* * * *

(f) Storage tank degassing. Beginning no later than the compliance dates specified in §63.2445(g), for each storage tank subject to item 1 of Table 4 to this subpart, you must comply with paragraphs (f)(1) through (3) of this section during storage tank shutdown operations (i.e., emptying and degassing of a storage tank) until the vapor space concentration in the storage tank is less than 10 percent of the LEL. You must determine the LEL using process instrumentation or portable measurement devices and follow procedures for calibration and maintenance according to manufacturer's specifications.

§63.2480 What requirements must I meet for equipment leaks?

(a) You must meet each requirement in Table 6 to this subpart that applies to your equipment leaks, except as specified in paragraphs (b) through (f) of this section. For each light liquid pump, valve, and connector in ethylene oxide service as defined in §63.2550(i), you must also meet the applicable requirements specified in §§63.2492 and 63.2493(d) and (e).

* * * *

(e)(2)(i) If the pressure relief device does not consist of or include a rupture disk, conduct instrument monitoring, as specified in §63.1023(b) of subpart UU, §63.180(c) of subpart H, or §65.104(b) of this chapter, no later than 5 calendar days after the pressure relief device returns to organic HAP gas or vapor service following a pressure release to verify that the pressure relief device is operating with an instrument reading of less than 500 ppm.

* * * *

(e)(2)(iii) If the pressure relief device consists only of a rupture disk, install a replacement disk as soon as practicable after a pressure release, but no later than 5 calendar days after the pressure release. You must not initiate startup of the equipment served by the rupture disk until the rupture disc is replaced. You must conduct instrument monitoring, as specified in §63.1023(b) of subpart UU, §63.180(c) of subpart H, or §65.104(b) of this chapter, no later than 5 calendar days after the pressure relief device returns to organic HAP gas or vapor service following a pressure release to verify that the pressure relief device is operating with an instrument reading of less than 500 ppm.

* * * *

(e)(3)(iv) You must determine the total number of release events that occurred during the calendar year for each affected pressure relief device separately. You must also determine the total number of release events for each pressure relief device for which the root cause analysis concluded that the root cause was a force majeure event, as defined in §63.2550.

* * * *

(e)(3)(5)(B) A second release event not including force majeure events from a single pressure relief device in a 3 calendar year period for the same root cause for the same equipment.

(e)(3)(5)(C) A third release event not including force majeure events from a single pressure relief device in a 3 calendar year period for any reason.

* * * *

(e)(6)(ii) You may conduct a single root cause analysis and corrective action analysis for a single emergency event that causes two or more pressure relief devices to release, regardless of the equipment served, if the root cause is reasonably expected to be a force majeure event, as defined in §63.2550.

* * * *

(f)(18)(iii) In §63.181(b)(2)(i), replace the reference to §63.165(a) with §63.2480(e)(1).

* * * *

(f)(18)(vi) The information required to be reported under §63.182(d)(2)(xiv) is now required to be reported under §63.2520(e)(15)(i) through (iii).

* * * *

(f)(18)(x) The reference to §63.1030(c) in §63.1022(a)(1)(v) no longer applies. Instead comply with the §63.2480(e)(1) and (2).

* * * *

(f)(18)(xiii) The information required to be reported under §63.1039(b)(4) is now required to be reported under §63.2520(e)(15)(i) and (ii).

§63.2490 What requirements must I meet for heat exchange systems?

* * * *

(a) You must comply with each requirement in Table 10 to this subpart that applies to your heat exchange systems, except as specified in paragraphs (b) through (d) of this section.

* * * *

(d) Unless one or more of the conditions specified in §63.104(a)(1), (2), (5), and (6) are met, beginning no later than the compliance dates specified in §63.2445(g), the requirements of §63.104 as specified in Table 10 to this subpart and paragraphs (b) and (c) of this section no longer apply. Instead, you must monitor the cooling water for the presence of total strippable hydrocarbons that indicate a leak according to paragraph (d)(1) of this section, and if you detect a leak, then you must repair it according to paragraphs (d)(2) and (3) of this section, unless repair is delayed according to paragraph (d)(4) of this section. At any time before the compliance dates specified in §63.2445(g), you may choose to comply with the requirements in this paragraph (d) in lieu of the requirements of §63.104 as specified in Table 10 to this subpart and paragraphs (b) and (c) of this section. The requirements in this paragraph (d) do not apply to heat exchange systems that have a maximum cooling water flow rate of 10 gallons per minute or less.

* * * *

(d)(4)(iii) The delay of repair action level is a total strippable hydrocarbon concentration (as methane) in the stripping gas of 62 ppmv or, for heat exchange systems with a recirculation rate of 10,000 gallons per minute or less, the delay of repair action level is a total hydrocarbon mass emissions rate (as methane) or 1.8 kg/hr. The delay of repair action level is assessed as described in paragraph (d)(4)(iii)(A) or (B) of this section, as applicable.

§63.2492 How do I determine whether my process vent, storage tank, or equipment is in ethylene oxide service?

* * * *

(b) For storage tanks, you must measure the concentration of ethylene oxide of the fluid stored in the storage tanks using Method 624.1 of 40 CFR part 136, appendix A, or preparation by Method 5031 and analysis by Method 8260D (both incorporated by reference, see §63.14) in the SW-846 Compendium. In lieu of preparation by SW-846 Method 5031, you may use SW-846 Method 5030B (incorporated by reference, see §63.14), as long as: You do not use a preservative in the collected sample; you store the sample with minimal headspace as cold as possible and at least below 4 degrees C; and you analyze the sample as soon as possible, but in no case longer than 7 days from the time the sample was collected. If you are collecting a sample from a pressure vessel, you must maintain the sample under pressure both during and following sampling.

§63.2493 What requirements must I meet for process vents, storage tanks, or equipment that are in ethylene oxide service?

* * * *

(a)(2)(vi) If you vent emissions through a closed-vent system to a scrubber, then you must establish operating parameter limits by monitoring the operating parameters specified in paragraphs (a)(2)(vi)(A) through (C) of this section during the performance test.

* * * *

(a)(2)(vi)(C) Temperature of the water entering the scrubber column. The temperature may be measured at any point after the heat exchanger and prior to entering the top of the scrubber column. Determine the average inlet water temperature as the average of the test run averages.

* * * *

(a)(2)(viii) If you vent emissions through a closed-vent system to a control device other than a flare, scrubber, or thermal oxidizer, then you must notify the Administrator of the operating parameters that you plan to monitor during the performance test prior to establishing operating parameter limits for the control device.

* * * *

(b)(2) Continuously monitor the ethylene oxide concentration at the exit of the control device using an FTIR CEMS meeting the requirements of Performance Specification 15 of 40 CFR part 60, appendix B, and §63.2450(j). If you use an FTIR CEMS, you do not need to conduct the performance testing required in paragraph (b)(3) of this section or the operating parameter monitoring required in paragraphs (b)(4) through (6) of this section.

* * * *

(b)(4) If you vent emissions through a closed-vent system to a scrubber, then you must comply with §63.2450(e)(4) and (6) and the requirements in §63.983, and you must meet the operating parameter limits specified in paragraphs (b)(4)(i) through (v) of this section.

* * * *

(b)(4)(iv) Maximum temperature of the water entering the scrubber column, equal to the average temperature measured during the most recent performance test. Compliance with the inlet water temperature operating limit must be determined continuously on a 1-hour block basis. Use a temperature sensor with a minimum accuracy of ±1 percent over the normal range of the temperature measured, expressed in degrees Celsius, or 2.8 degrees Celsius, whichever is greater.

* * * *

(b)(6) If you vent emissions through a closed-vent system to a control device other than a flare, scrubber, or thermal oxidizer, then you must comply with §63.2450(e)(4) and (6) and the requirements in §63.983, and you must monitor the operating parameters identified in paragraph (a)(2)(viii) of this section and meet the established operating parameter limits to ensure continuous compliance. The frequency of monitoring and averaging time will be determined based upon the information provided to the Administrator.

* * * *

(d)(1)(iii) When a leak is detected, it must be repaired as soon as practicable, but not later than 15 calendar days after it is detected.

* * * *

(d)(2)(iii) When a leak is detected, it must be repaired as soon as practicable, but not later than 15 calendar days after it is detected.

* * * *

(d)(3) For each light liquid pump or connector in ethylene oxide service that is added to an affected source, and for each light liquid pump or connector in ethylene oxide service that replaces a light liquid pump or connector in ethylene oxide service, you must initially monitor for leaks within 5 days after initial startup of the equipment.

* * * *

(d)(4)(v) Replace all references to §63.2445(g) with §63.2445(h).

* * * *

(e) Non-applicable referenced provisions. The referenced provisions specified in paragraphs (e)(1) through (15) of this section do not apply when demonstrating compliance with this section.

* * * *

§63.2515 What notifications must I submit and when?

* * * *

(d) Supplement to Notification of Compliance Status. You must also submit supplements to the Notification of Compliance Status as specified in §63.2520(d)(3) through (5).

§63.2520 What reports must I submit and when?

* * * *

(d) Notification of compliance status report. You must submit a notification of compliance status report according to the schedule in paragraph (d)(1) of this section, and the notification of compliance status report must contain the information specified in paragraphs (d)(2) through (5) of this section.

* * * *

(e) Compliance report. The compliance report must contain the information specified in paragraphs (e)(1) through (17) of this section. On and after August 12, 2023 or once the reporting template for this subpart has been available on the CEDRI website for 1 year, whichever date is later, you must submit all subsequent reports to the EPA via the CEDRI, which can be accessed through the EPA's CDX (https://cdx.epa.gov/). The EPA will make all the information submitted through CEDRI available to the public without further notice to you. Do not use CEDRI to submit information you claim as CBI. Anything submitted using CEDRI cannot later be claimed to be CBI. You must use the appropriate electronic report template on the CEDRI website (https://www.epa.gov/electronic-reporting-air-emissions/compliance-and-emissions-data-reporting-interface-cedri) for this subpart. The date report templates become available will be listed on the CEDRI website. Unless the Administrator or delegated state agency or other authority has approved a different schedule for submission of reports under §§63.9(i) and 63.10(a) of subpart A, the report must be submitted by the deadline specified in this subpart, regardless of the method in which the report is submitted. Although we do not expect persons to assert a claim of CBI, if you wish to assert a CBI claim, submit a complete report, including information claimed to be CBI, to the EPA. The report must be generated using the appropriate form on the CEDRI website or an alternate electronic file consistent with the extensible markup language (XML) schema listed on the CEDRI website. Submit the file on a compact disc, flash drive, or other commonly used electronic storage medium and clearly mark the medium as CBI. Mail the electronic medium to U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Sector Policies and Programs Division, CORE CBI Office, U.S. EPA Mailroom (C404-02), Attention: Miscellaneous Organic Chemical Manufacturing Sector Lead, 4930 Old Page Rd., Durham, NC 27703. The same file with the CBI omitted must be submitted to the EPA via the EPA's CDX as described in this paragraph (e). All CBI claims must be asserted at the time of submission. Furthermore under CAA section 114(c) emissions data is not entitled to confidential treatment, and the EPA is required to make emissions data available to the public. Thus, emissions data will not be protected as CBI and will be made publicly available. You may assert a claim of EPA system outage or force majeure for failure to timely comply with the reporting requirement in this paragraph (e) provided you meet the requirements outlined in paragraph (i) or (j) of this section, as applicable.

* * * *

(e)(2) Statement by a responsible official with that official's name, title, and signature, certifying the accuracy of the content of the report. If your report is submitted via CEDRI, the certifier's electronic signature during the submission process replaces the requirement in this paragrpah (e)(2).

* * * *

(e)(14)(iii) The lower explosive limit in percent, vessel pressure in psig, or mass in pounds of VOC in the equipment, as applicable, at the start of atmospheric venting. If the 5 psig vessel pressure option in §63.2450(v)(1)(ii) was used and active purging was initiated while the lower explosive limit was 10 percent or greater, also include the lower explosive limit of the vapors at the time active purging was initiated.

* * * *

(e)(16) For each heat exchange system subject to §63.2490(d), beginning no later than the compliance dates specified in §63.2445(g), the reporting requirements of §63.104(f)(2) no longer apply; instead, the compliance report must include the information specified in paragraphs (e)(16)(i) through (v) of this section.

(i) The number of heat exchange systems at the plant site subject to the monitoring requirements in §63.2490(d) during the reporting period;

(ii) The number of heat exchange systems subject to the monitoring requirements in §63.2490(d) at the plant site found to be leaking during the reporting period;

(iii) For each monitoring location where the total strippable hydrocarbon concentration or total hydrocarbon mass emissions rate was determined to be equal to or greater than the applicable leak definitions specified in §63.2490(d)(1)(v) during the reporting period, identification of the monitoring location (e.g., unique monitoring location or heat exchange system ID number), the measured total strippable hydrocarbon concentration or total hydrocarbon mass emissions rate, the date the leak was first identified, and, if applicable, the date the source of the leak was identified;

(iv) For leaks that were repaired during the reporting period (including delayed repairs), identification of the monitoring location associated with the repaired leak, the total strippable hydrocarbon concentration or total hydrocarbon mass emissions rate measured during re-monitoring to verify repair, and the re-monitoring date (i.e., the effective date of repair); and

(v) For each delayed repair, identification of the monitoring location associated with the leak for which repair is delayed, the date when the delay of repair began, the date the repair is expected to be completed (if the leak is not repaired during the reporting period), the total strippable hydrocarbon concentration or total hydrocarbon mass emissions rate and date of each monitoring event conducted on the delayed repair during the reporting period, and an estimate in pounds of the potential total hydrocarbon emissions over the reporting period associated with the delayed repair.

* * * *

(f) Performance test reports. Beginning no later than October 13, 2020, you must submit performance test reports in accordance with this paragraph (f). Unless otherwise specified in this subpart, within 60 days after the date of completing each performance test required by this subpart, you must submit the results of the performance test following the procedures specified in paragraphs (f)(1) through (3) of this section.

(1) Data collected using test methods supported by the EPA's Electronic Reporting Tool (ERT) as listed on the EPA's ERT website (https://www.epa.gov/electronic-reporting-air-emissions/electronic-reporting-tool-ert) at the time of the test. Submit the results of the performance test to the EPA via CEDRI, which can be accessed through the EPA's CDX (https://cdx.epa.gov/). The data must be submitted in a file format generated through the use of the EPA's ERT. Alternatively, you may submit an electronic file consistent with the extensible markup language (XML) schema listed on the EPA's ERT website.

(2) Data collected using test methods that are not supported by the EPA's ERT as listed on the EPA's ERT website at the time of the test. The results of the performance test must be included as an attachment in the ERT or an alternate electronic file consistent with the XML schema listed on the EPA's ERT website. Submit the ERT generated package or alternative file to the EPA via CEDRI.

(3) Confidential business information (CBI). The EPA will make all the information submitted through CEDRI available to the public without further notice to you. Do not use CEDRI to submit information you claim as CBI. Anything submitted using CEDRI cannot later be claimed to be CBI. Although we do not expect persons to assert a claim of CBI, if you wish to assert a CBI claim, you must submit a complete file, including information claimed to be CBI, to the EPA. The file must be generated through the use of the EPA's ERT or an alternate electronic file consistent with the XML schema listed on the EPA's ERT website. Submit the file on a compact disc, flash drive, or other commonly used electronic storage medium and clearly mark the medium as CBI. Mail the electronic medium to U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Sector Policies and Programs Division, CORE CBI Office, U.S. EPA Mailroom (C404-02), Attention: Group Leader, Measurement Policy Group, 4930 Old Page Rd., Durham, NC 27703. The same file with the CBI omitted must be submitted to the EPA via the EPA's CDX as described in paragraph (f)(1) and (2) of this section. All CBI claims must be asserted at the time of submission. Furthermore, under CAA section 114(c) emissions data is not entitled to confidential treatment, and the EPA is required to make emissions data available to the public. Thus, emissions data will not be protected as CBI and will be made publicly available.

(g) CEMS relative accuracy test audit (RATA) Performance evaluation reports. Beginning no later than October 13, 2020, you must start submitting CEMS RATA performance evaluation reports in accordance with this paragraph (g). Unless otherwise specified in this subpart, within 60 days after the date of completing each continuous monitoring system performance evaluation (as defined in §63.2), you must submit the results of the performance evaluation following the procedures specified in paragraphs (g)(1) through (3) of this section.

(1) Performance evaluations of CMS measuring RATA pollutants that are supported by the EPA's ERT as listed on the EPA's ERT website at the time of the evaluation. Submit the results of the performance evaluation to the EPA via CEDRI, which can be accessed through the EPA's CDX. The data must be submitted in a file format generated through the use of the EPA's ERT. Alternatively, you may submit an electronic file consistent with the XML schema listed on the EPA's ERT website.

(2) Performance evaluations of CMS measuring RATA pollutants that are not supported by the EPA's ERT as listed on the EPA's ERT website at the time of the evaluation. The results of the performance evaluation must be included as an attachment in the ERT or an alternate electronic file consistent with the XML schema listed on the EPA's ERT website. Submit the ERT generated package or alternative file to the EPA via CEDRI.

(3) Confidential business information (CBI). The EPA will make all the information submitted through CEDRI available to the public without further notice to you. Do not use CEDRI to submit information you claim as CBI. Anything submitted using CEDRI cannot later be claimed to be CBI. Although we do not expect persons to assert a claim of CBI, if you wish to assert a CBI claim, you must submit a complete file, including information claimed to be CBI, to the EPA. The file must be generated through the use of the EPA's ERT or an alternate electronic file consistent with the XML schema listed on the EPA's ERT website. Submit the file on a compact disc, flash drive, or other commonly used electronic storage medium and clearly mark the medium as CBI. Mail the electronic medium to U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Sector Policies and Programs Division, CORE CBI Office, U.S. EPA Mailroom (C404-02), Attention: Group Leader, Measurement Policy Group, 4930 Old Page Rd., Durham, NC 27703. The same file with the CBI omitted must be submitted to the EPA via the EPA's CDX as described in paragraphs (g)(1) and (2) of this section. All CBI claims must be asserted at the time of submission. Furthermore, under CAA section 114(c) emissions data is not entitled to confidential treatment, and the EPA is required to make emissions data available to the public. Thus, emissions data will not be protected as CBI and will be made publicly available.

§63.2525 What records must I keep?

* * * *

(o) For each nonregenerative adsorber and regenerative adsorber that is regenerated offsite subject to the requirements in §63.2450(e)(7), you must keep the applicable records specified in paragraphs (o)(1) through (4) of this section.

(1) Outlet HAP or TOC concentration for each adsorber bed measured during each performance test conducted.

(2) Daily outlet HAP or TOC concentration.

(3) Date and time you last replaced the adsorbent.

(4) If you conduct monitoring less frequently than daily as specified in §63.2450(e)(7)(iii)(B), you must record the average life of the bed.

* * * *

(p)(2) If complying with the requirements of §63.2450(v)(1)(i) and the lower explosive limit at the time of the vessel opening exceeds 10 percent, identification of the maintenance vent, the process units or equipment associated with the maintenance vent, the date of maintenance vent opening, and the lower explosive limit at the time of the vessel opening.

(p)(3) If complying with the requirements of §63.2450(v)(1)(ii) and either the vessel pressure at the time of the vessel opening exceeds 5 psig or the lower explosive limit at the time of the active purging was initiated exceeds 10 percent, identification of the maintenance vent, the process units or equipment associated with the maintenance vent, the date of maintenance vent opening, the pressure of the vessel or equipment at the time of discharge to the atmosphere and, if applicable, the lower explosive limit of the vapors in the equipment when active purging was initiated.

* * * *

(p)(5) If complying with the requirements of §63.2450(v)(1)(iv), identification of the maintenance vent, the process units or equipment associated with the maintenance vent, records documenting actions taken to comply with other applicable alternatives and why utilization of this alternative was required, the date of maintenance vent opening, the equipment pressure and lower explosive limit of the vapors in the equipment at the time of discharge, an indication of whether active purging was performed and the pressure of the equipment during the installation or removal of the blind if active purging was used, the duration the maintenance vent was open during the blind installation or removal process, and records used to estimate the total quantity of VOC in the equipment at the time the maintenance vent was opened to the atmosphere for each applicable maintenance vent opening.

* * * *

(q)(2) Records of the number of releases during each calendar year and the number of those releases for which the root cause was determined to be a force majeure event. Keep these records for the current calendar year and the past 5 calendar years.

* * * *

(r)(1) Monitoring data required by §63.2490(d) that indicate a leak, the date the leak was detected, or, if applicable, the basis for determining there is no leak.

* * * *

(r)(4)(iv) An estimate of the potential total hydrocarbon emissions from the leaking heat exchange system or heat exchanger for each required delay of repair monitoring interval following the procedures in paragraphs (r)(4)(iv)(A) through (C) of this section.

* * * *

(r)(4)(iv)(B) For delay of repair monitoring intervals prior to repair of the leak, calculate the potential total hydrocarbon emissions for the leaking heat exchange system or heat exchanger for the monitoring interval by multiplying the mass emissions rate, determined in §63.2490(d)(1)(iii)(B) or paragraph (r)(4)(iv)(A) of this section, by the duration of the delay of repair monitoring interval. The duration of the delay of repair monitoring interval is the time period starting at midnight on the day of the previous monitoring event or at midnight on the day the repair would have had to be completed if the repair had not been delayed, whichever is later, and ending at midnight of the day the of the current monitoring event.

(C) For delay of repair monitoring intervals ending with a repaired leak, calculate the potential total hydrocarbon emissions for the leaking heat exchange system or heat exchanger for the final delay of repair monitoring interval by multiplying the duration of the final delay of repair monitoring interval by the mass emissions rate determined for the last monitoring event prior to the re-monitoring event used to verify the leak was repaired. The duration of the final delay of repair monitoring interval is the time period starting at midnight of the day of the last monitoring event prior to re-monitoring to verify the leak was repaired and ending at the time of the re-monitoring event that verified that the leak was repaired.

§63.2550 What definitions apply to this subpart?

* * * *

In ethylene oxide service means the following:

(1) For equipment leaks, any equipment that contains or contacts a fluid (liquid or gas) that is at least 0.1 percent by weight of ethylene oxide. If information exists that suggests ethylene oxide could be present in equipment, the equipment is considered to be "in ethylene oxide service" unless sampling and analysis is performed as specified in §63.2492 to demonstrate that the equipment does not meet the definition of being "in ethylene oxide service". Examples of information that could suggest ethylene oxide could be present in equipment, include calculations based on safety data sheets, material balances, process stoichiometry, or previous test results provided the results are still relevant to the current operating conditions.

(2) For process vents, each batch and continuous process vent in a process that, when uncontrolled, contains a concentration of greater than or equal to 1 ppmv undiluted ethylene oxide, and when combined, the sum of all these process vents would emit uncontrolled ethylene oxide emissions greater than or equal to 5 lb/yr (2.27 kg/yr). If information exists that suggests ethylene oxide could be present in a batch or continuous process vent, then the batch or continuous process vent is considered to be "in ethylene oxide service" unless an analysis is performed as specified in §63.2492 to demonstrate that the batch or continuous process vent does not meet the definition of being "in ethylene oxide service". Examples of information that could suggest ethylene oxide could be present in a batch or continuous process vent, include calculations based on safety data sheets, material balances, process stoichiometry, or previous test results provided the results are still relevant to the current operating conditions.

(3) For storage tanks, storage tanks of any capacity and vapor pressure storing a liquid that is at least 0.1 percent by weight of ethylene oxide. If knowledge exists that suggests ethylene oxide could be present in a storage tank, then the storage tank is considered to be "in ethylene oxide service" unless sampling and analysis is performed as specified in §63.2492 to demonstrate that the storage tank does not meet the definition of being "in ethylene oxide service". The exemptions for "vessels storing organic liquids that contain HAP only as impurities" and "pressure vessels designed to operate in excess of 204.9 kilopascals and without emissions to the atmosphere" listed in the definition of "storage tank" in this section do not apply for storage tanks that may be in ethylene oxide service. Examples of information that could suggest ethylene oxide could be present in a storage tank, include calculations based on safety data sheets, material balances, process stoichiometry, or previous test results provided the results are still relevant to the current operating conditions.

Table 10 to Subpart FFFF of Part 63—Work Practice Standards for Heat Exchange Systems

Table 10 to Subpart FFFF of Part 63—Work Practice Standards for Heat Exchange Systems
For each . . .You must . . .
Heat exchange system, as defined in §63.101a. Comply with the requirements of §63.104 and the requirements referenced therein, except as specified in §63.2490(b) and (c); or
b. Comply with the requirements in §63.2490(d).

Table 12 to Subpart FFFF of Part 63—Applicability of General Provisions to Subpart FFFF

* * * *

§63.9(k)Electronic reporting proceduresYes, as specified in §63.9(j).

2024-04-03T05:00:00Z

EPA Proposed Rule: Lead Wheel Weights; Regulatory Investigation Under the Toxic Substances Control Act (TSCA)

The Environmental Protection Agency (EPA or the Agency) is requesting comments and information to assist in the potential development of regulations for the manufacture (including importing), processing (including recycling), and distribution in commerce of lead for wheel-balancing weights (“lead wheel weights”) under the Toxic Substances Control Act (TSCA). To inform this consideration, EPA is requesting comment and information from all stakeholders on the use and exposure to lead from the manufacture (including importing), processing (including recycling), distribution in commerce, use, and disposal of lead wheel weights, as well as information on their substitutes, to help determine if there is unreasonable risk to human health and the environment associated with this use. This action is relevant to a petition for a writ of mandamus filed in August 2023, by the Ecology Center, Center for Environmental Health, United Parents Against Lead & Other Environmental Hazards, and Sierra Club in the United States Court of Appeals for the Ninth Circuit requesting the court to direct EPA to conduct a rulemaking regulating lead wheel weights under TSCA.

DATES: Comments must be received on or before May 3, 2024, published in the Federal Register April 3, 2024, page 22972.

View proposed rule.

2024-04-03T05:00:00Z

EPA Final Rule: National Emission Standards for Hazardous Air Pollutants: Integrated Iron and Steel Manufacturing Facilities Technology Review

The U.S. Environmental Protection Agency (EPA or the Agency) is finalizing amendments to the National Emission Standards for Hazardous Air Pollutants (NESHAP) for Integrated Iron and Steel Manufacturing Facilities to regulate hazardous air pollutant (HAP) emissions. The amendments include: HAP from unmeasured fugitive and intermittent particulate (UFIP) sources previously not regulated by the NESHAP; previously unregulated HAP for sinter plants:; previously unregulated pollutants for blast furnace (BF) stoves and basic oxygen process furnaces (BOPFs) primary control devices; and previously unregulated pollutants for BF primary control devices. We are also finalizing an update to the technology review for this source category.

DATES: This final rule is effective June 3, 2024, published in the Federal Register April 3, 2024, page 23294 .

View final rule.

§63.14 Incorporations by reference.
(i)(88), (i)(110), (o)RevisedView text
(o)(3)AddedView text
§63.7782 What parts of my plant does this subpart cover?
(c)-(e)RevisedView text
§63.7783 When do I have to comply with this subpart?
(a) introductory textRevisedView text
(g)AddedView text
§63.7791 How do I comply with the requirements for the control of mercury from BOPF Groups?
Section headingRevisedView text
§63.7792 What fenceline monitoring requirements must I meet?
Entire sectionAddedView text
§63.7793 What work practice standards must I meet?
Entire sectionAddedView text
§63.7800 What are my operation and maintenance requirements?
(b) introductory textRevisedView text
(b)(8)-(9)AddedView text
§63.7820 By what date must I conduct performance tests or other initial compliance demonstrations?
(e)RevisedView text
§63.7821 When must I conduct subsequent performance tests?
Entire sectionRevisedView text
§63.7823 What test methods and other procedures must I use to demonstrate initial compliance with the opacity limits?
(a)RevisedView text
(c)(3), (d)(6), (f)-(h)AddedView text
§63.7825 What test methods and other procedures must I use to demonstrate initial compliance with the emission limits for hazardous air pollutants?
Section headingRevisedView text
(a) introductory text; (b)(1)(v), (b)(2), (c)RevisedView text
(g)(-(k)AddedView text
§63.7830 What are my monitoring requirements?
(e)(2)RevisedView text
§63.7833 How do I demonstrate continuous compliance with the emission limitations that apply to me?
(j)AddedView text
§63.7840 What notifications must I submit and when?
(g)(3), (h)(3)RemovedView text
(i)AddedView text
§63.7841 What reports must I submit and when?
(b)(14), (h)AddedView text
(d)RevisedView text
§63.7842 What records must I keep?
(d)RevisedView text
(f), (g)AddedView text
§63.7852 What definitions apply to this subpart?
Definitions for “Iron beaching operation”, Large blast furnace”, “Planned bleeder valve opening”, “Slip”, “Small blast furnace”, “Total hydrocarbons (THC)”, and “Unplanned bleeder valve opening”AddedView text
Table 1 to Subpart FFFFF of Part 63 - Emission, Opacity, and Work Practice Limits
Entire tableRevisedView text
Table 2 to Subpart FFFFF of Part 63 - Initial Compliance With Emission and Opacity Limits
Entire tableRevisedView text
Table 3 to Subpart FFFFF of Part 63 - Continuous Compliance With Emission and Opacity Limits
Entire tableRevisedView text
Table 4 to Subpart FFFFF of Part 63 - Applicability of General Provisions to Subpart FFFFF
Entire tableRevisedView text
Table 5 to Subpart FFFFF of Part 63 - Toxic Equivalency Factors
Entire tableAddedView text
Table 6 to Subpart FFFFF of Part 63 - List of Polycyclic Aromatic Hydrocarbons
Entire tableAddedView text

New Text

§63.14 Incorporations by reference.

* * * *

(i)(88) ASTM D6348-12 (Reapproved 2020), Determination of Gaseous Compounds by Extractive Direct Interface Fourier Transform (FTIR) Spectroscopy, including Annexes A1 through A8, Approved December 1; 2020, IBR approved for §§63.365(b); 63.7825(g) and (h) .

* * * * *

(i)(110) ASTM D7520-16, Standard Test Method for Determining the Opacity of a Plume in the Outdoor Ambient Atmosphere, approved April 1, 2016; IBR approved for §§63.1625(b); table 3 to subpart LLLLL; 63.7823(c) through (f), 63.7833(g); 63.11423(c).

* * * * *

(o) U.S. Environmental Protection Agency, 1200 Pennsylvania Avenue NW, Washington, DC 20460; phone: (202) 272-0167; website: www.epa.gov/aboutepa/forms/contact-epa .

§63.7782 What parts of my plant does this subpart cover?

* * * *

(c) This subpart covers emissions from the sinter plant windbox exhaust, discharge end, and sinter cooler; the blast furnace casthouse; the blast furnace stove; and the BOPF shop including each individual BOPF and shop ancillary operations (hot metal transfer, hot metal desulfurization, slag skimming, and ladle metallurgy). This subpart also covers fugitive and intermittent particulate emissions from blast furnace unplanned bleeder valve openings, blast furnace planned bleeder valve openings, blast furnace and BOPF slag processing, handling, and storage, blast furnace bell leaks, beaching of iron from blast furnaces, blast furnace casthouse fugitives, and BOPF shop fugitives.

(d) A sinter plant, blast furnace, blast furnace stove, or BOPF shop at your integrated iron and steel manufacturing facility is existing if you commenced construction or reconstruction of the affected source before July 13, 2001.

(e) A sinter plant, blast furnace, blast furnace stove, or BOPF shop at your integrated iron and steel manufacturing facility is new if you commence construction or reconstruction of the affected source on or after July 13, 2001. An affected source is reconstructed if it meets the definition of reconstruction in §63.2.

§63.7783 When do I have to comply with this subpart?

(a) If you have an existing affected source, you must comply with each emission limitation, standard, and operation and maintenance requirement in this subpart that applies to you by the dates specified in paragraphs (a)(1) and (2) of this section. This paragraph does not apply to the emission limitations for BOPF group: mercury (Hg); sinter plant windbox: Hg, hydrochloric acid (HCl), carbonyl sulfide (COS); Blast Furnace casthouse: HCl, total hydrocarbon (THC); Blast Furnace stove: HCl and total hydrocarbon (THC); primary emission control system for a BOPF: 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) toxic equivalent (TEQ), HCl, THC; fugitive and intermittent particulate sources.

* * * *

§63.7791 How do I comply with the requirements for the control of mercury from BOPF Groups?

* * * *

§63.7800 What are my operation and maintenance requirements?

* * * *

(b) You must prepare and operate at all times according to a written operation and maintenance plan for each capture system or control device subject to an operating limit in §63.7790(b). Each plan must address the elements in paragraphs (b)(1) through (9) of this section.

§63.7820 By what date must I conduct performance tests or other initial compliance demonstrations?

* * * *

(e) Notwithstanding the deadlines in this section, existing and new affected sources must comply with the deadlines for making the initial compliance demonstrations for the BOPF Group mercury emission limit set forth in paragraphs (e)(1) through (4) in this section.

§63.7821 When must I conduct subsequent performance tests?

(a) You must conduct subsequent performance tests to demonstrate compliance with all applicable emission and opacity limits in table 1 to this subpart at the frequencies specified in paragraphs (b) through (m) of this section.

(b) For each sinter cooler at an existing sinter plant and each emissions unit equipped with a control device other than a baghouse, you must conduct subsequent particulate matter and opacity performance tests no less frequently than twice (at mid-term and renewal) during each term of your title V operating permit.

(c) For each emissions unit equipped with a baghouse, you must conduct subsequent particulate matter and opacity performance tests no less frequently than once during each term of your title V operating permit.

(d) For sources without a title V operating permit, you must conduct subsequent particulate matter and opacity performance tests every 2.5 years.

(e) For each BOPF Group, if demonstrating compliance with the mercury emission limit in table 1 to this subpart through performance testing under §§63.7825 and 63.7833, you must conduct subsequent performance tests twice per permit cycle ( i.e., mid-term and initial/final) for sources with title V operating permits, and every 2.5 years for sources without a title V operating permit, at the outlet of the control devices for the BOPF Group.

(f) For each sinter plant windbox, you must conduct subsequent mercury, hydrogen chloride, carbonyl sulfide, dioxin/furan, and polycyclic aromatic hydrocarbon performance tests every 5 years.

(g) For each blast furnace stove and BOPF shop primary emission control device, you must conduct subsequent hydrogen chloride and total hydrocarbon testing every 5 years. For the BOPF shop primary emission control device, you must also conduct subsequent dioxin/furan testing every 5 years.

(h) For each blast furnace casthouse and BOPF shop, you must conduct subsequent opacity tests two times per month during a cast, or during a full heat cycle, as appropriate.

(i) For planned bleeder valve openings on each blast furnace, you must conduct opacity tests according to §63.7823(f) for each planned opening.

(j) For slag processing, handling, and storage operations for each blast furnace or BOPF, you must conduct subsequent opacity tests once per week for a minimum of 18 minutes for each: BF pit filling; BOPF slag pit filling; BF pit digging; BOPF slag pit digging; and one slag handling (either truck loading or dumping slag to slag piles).

(k) For large bells on each blast furnace, you must conduct visible emissions testing on the interbell relief valve according to EPA Method 22 in appendix A-7 to part 60 of this chapter, unless specified in paragraphs (k)(1) through (3) of this section. Testing must be conducted monthly, for 15 minutes.

(1) If visible emissions are detected for a large bell during the monthly visible emissions testing, you must conduct EPA Method 9 (in appendix A-4 to part 60 of this chapter) opacity tests in place of EPA Method 22 testing on that bell once per month, taking 3-minute averages for 15 minutes, until the large bell seal is repaired or replaced.

(2) If the average of 3 instantaneous visible emission readings taken while the interbell relief valve is exhausting exceeds 20 percent, you must initiate corrective action within five business days.

(3) Ten business days after the initial opacity exceedance of 20 percent, you must conduct an EPA Method 9 opacity test, taking 3-minute averages for 15 minutes. If the average of 3 instantaneous visible emissions readings from this test exceeds 20 percent, you must repair or replace that bell seal within 4 months.

(l) For small bells on each blast furnace, you must conduct visible emissions testing according to EPA Method 22 in appendix A-7 to part 60 of this chapter. Testing must be conducted monthly for 15 minutes. If visible emissions are observed, you must compare the period between the visible emissions being present and the most recent bell seal repair or replacement. If this time period or throughput is shorter or lower than the period or throughput stated in the O&M plan required by 63.7800, this new shorter period or lower limit shall be placed in the O&M plan as the work practice limit.

(m) For each blast furnace casthouse, you must conduct subsequent hydrogen chloride and total hydrocarbon testing every 5 years.

§63.7823 What test methods and other procedures must I use to demonstrate initial compliance with the opacity limits?

(a) For each discharge end of a sinter plant, sinter plant cooler, blast furnace casthouse, BOPF shop, and large bell on a blast furnace, you must conduct each performance test that applies to your affected source based on representative performance ( i.e., performance based on normal operating conditions) of the affected source for the period being tested, according to the conditions detailed in paragraphs (b) through (d) of this section. Representative conditions exclude periods of startup and shutdown. You shall not conduct performance tests during periods of malfunction. You must record the process information that is necessary to document operating conditions during the test and include in such record an explanation to support that such conditions represent normal operation. Upon request, you shall make available to the Administrator such records as may be necessary to determine the conditions of performance tests.

* * * *

§63.7825 What test methods and other procedures must I use to demonstrate initial compliance with the emission limits for hazardous air pollutants?

(a) If demonstrating compliance with the emission limits in Table 1 to this subpart through performance testing, you must conduct a performance test to demonstrate initial compliance with the emission limit. If demonstrating compliance with the emission limit through performance testing, you must conduct each performance test that applies to your affected source based on representative performance ( i.e., performance based on normal operating conditions) of the affected source for the period being tested, according to the conditions detailed in paragraphs (b) through (k) of this section. Representative conditions exclude periods of startup and shutdown. You shall not conduct performance tests during periods of malfunction. Initial compliance tests must be conducted by the deadlines in §63.7820(e).

* * * * *

(b) * * *

(1) * * *

(v) EPA Method 29 or 30B in appendix A-8 to part 60 of this chapter to determine the concentration of mercury from the exhaust stream stack of each unit. If performing measurements using EPA Method 29, you must collect a minimum sample volume of 1.7 dscm (60 dscf). Alternative test methods may be considered on a case-by-case basis per §63.7(f).

(2) Three valid test runs are needed to comprise a performance test of each unit in table 1 to this subpart as applicable. If the performance testing results for any of the emission points yields a non-detect value, then the method detection limit (MDL) must be used to calculate the mass emissions (lb) for that emission unit and, in turn, for calculating the sum of the emissions (in units of pounds of mercury per ton of steel scrap or pounds of mercury per ton of product sinter) for all units subject to the emission standard for determining compliance. If the resulting mercury emissions are greater than the MACT emission standard, the owner or operator may use procedures that produce lower MDL results and repeat the mercury performance testing one additional time for any emission point for which the measured result was below the MDL. If this additional testing is performed, the results from that testing must be used to determine compliance ( i.e., there are no additional opportunities allowed to lower the MDL).

* * * * *

(c) Calculate the mass emissions, based on the average of three test run values, for each BOPF Group unit (or combination of units that are ducted to a common stack and are tested when all affected sources are operating pursuant to paragraph (a) of this section) using equation 1 to this paragraph (c) as follows:



Where:

E = Mass emissions of pollutant, pounds (lb);

C s = Concentration of pollutant in stack gas, mg/dscm;

454,000 = Conversion factor (mg/lb);

Q = Volumetric flow rate of stack gas, dscf/min;

35.31 = Conversion factor (dscf/dscm); and

t = Duration of test, minutes.

* * * *

§63.7830 What are my monitoring requirements?

* * * *

(e)(2) Compute and record the 30-day rolling average of the volatile organic compound emissions (lbs/ton of sinter) for each operating day using the procedures in §63.7824(e).

[Change Notice] [New Text]

§63.7841 What reports must I submit and when?

* * * *

(d) CEDRI submission. If you are required to submit reports following the procedure specified in this paragraph, you must submit reports to the EPA via CEDRI, which can be accessed through EPA's CDX ( https://cdx.epa.gov/ ). You must use the appropriate electronic report template on the CEDRI website ( https://www.epa.gov/electronic-reporting-air-emissions/compliance-and-emissions-data-reporting-interface-cedri ) for this subpart. The date report templates become available will be listed on the CEDRI website. The report must be submitted by the deadline specified in this subpart, regardless of the method in which the report is submitted. Do not use CEDRI to submit information you claim as CBI. Although we do not expect persons to assert a claim of CBI, if you wish to assert a CBI claim for some of the information in the report, you must submit a complete file, including information claimed to be CBI, to the EPA following the procedures in paragraphs (d)(1) and (2) of this section. Clearly mark the part or all of the informatioqn that you claim to be CBI. Information not marked as CBI may be authorized for public release without prior notice. Information marked as CBI will not be disclosed except in accordance with procedures set forth in 40 CFR part 2. All CBI claims must be asserted at the time of submission. Anything submitted using CEDRI cannot later be claimed CBI. Furthermore, under CAA section 114(c), emissions data is not entitled to confidential treatment, and the EPA is required to make emissions data available to the public. Thus, emissions data will not be protected as CBI and will be made publicly available. You must submit the same file submitted to the CBI office with the CBI omitted to the EPA via the EPA's CDX as described earlier in this paragraph.

(1) The preferred method to receive CBI is for it to be transmitted electronically using email attachments, File Transfer Protocol, or other online file sharing services. Electronic submissions must be transmitted directly to the OAQPS CBI Office at the email address oaqpscbi@epa.gov, and as described above, should include clear CBI markings and be flagged to the attention of the Integrated Iron and Steel Sector Lead. If assistance is needed with submitting large electronic files that exceed the file size limit for email attachments, and if you do not have your own file sharing service, please email oaqpscbi@epa.gov to request a file transfer link.

(2) If you cannot transmit the file electronically, you may send CBI information through the postal service to the following address: OAQPS Document Control Officer (C404-02), OAQPS, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, Attention Integrated Iron and Steel Sector Lead. The mailed CBI material should be double wrapped and clearly marked. Any CBI markings should not show through the outer envelope.

§63.7842 What records must I keep?

* * * *

(d) You must keep the records required in §§63.7823, 63.7833, and 63.7834 to show continuous compliance with each emission limitation and operation and maintenance requirement that applies to you. This includes a record of each large and small bell repair and replacement, a record of the date on which the large bell opacity has exceeded 20 percent, and the most current time period or throughput over which no opacity was observed from the small bell.

[Change Notice] [New Text]

Table 1 to Subpart FFFFF of Part 63 - Emission, Opacity, and Work Practice Limits

As required in §63.7790(a), you must comply with each applicable emission, opacity, and work practice limit in the following table:

Table 1 to Subpart FFFFF of Part 63—Emission, Opacity, and Work Practice Limits
For . . .You must comply with each of the following . . .
1 This limit applies if the cooler is vented to the same control device as the discharge end.
2 This concentration limit (gr/dscf) for a control device does not apply to discharges inside a building or structure housing the discharge end at an existing sinter plant, inside a casthouse at an existing blast furnace, or inside an existing BOPF shop if the control device was installed before August 30, 2005.
3 This limit applies to control devices operated in parallel for a single BOPF during the oxygen blow.
1. Each windbox exhaust stream at an existing sinter planta. You must not cause to be discharged to the atmosphere any gases that contain particulate matter in excess of 0.4 lb/ton of product sinter;
b. You must not cause to be discharged to the atmosphere any gases that contain mercury in excess of 0.000018 lb/ton of product sinter;
c. You must not cause to be discharged to the atmosphere any gases that contain hydrogen chloride in excess of 0.025 lb/ton of product sinter;
d. You must not cause to be discharged to the atmosphere any gases that contain carbonyl sulfide in excess of 0.064 lb/ton of product sinter;
e. You must not cause to be discharged to the atmosphere any gases that contain D/F TEQs in excess of 1.1E-08 lb/ton of product sinter; and
f. You must not cause to be discharged to the atmosphere any gases that contain polycyclic aromatic hydrocarbons in excess of 0.0018 lb/ton of product sinter.
2. Each windbox exhaust stream at a new sinter planta. You must not cause to be discharged to the atmosphere any gases that contain particulate matter in excess of 0.3 lb/ton of product sinter;
b. You must not cause to be discharged to the atmosphere any gases that contain mercury in excess of 0.000012 lb/ton of product sinter;
c. You must not cause to be discharged to the atmosphere any gases that contain hydrogen chloride in excess of 0.0012 lb/ton of product sinter;
d. You must not cause to be discharged to the atmosphere any gases that contain carbonyl sulfide in excess of 0.030 lb/ton of product sinter;
e. You must not cause to be discharged to the atmosphere any gases that contain D/F TEQs in excess of 1.1E-08 lb/ton of product sinter; and
f. You must not cause to be discharged to the atmosphere any gases that contain polycyclic aromatic hydrocarbons in excess of 0.0015 lb/ton of product sinter.
3. Each discharge end at an existing sinter planta. You must not cause to be discharged to the atmosphere any gases that exit from one or more control devices that contain, on a flow-weighted basis, particulate matter in excess of 0.02 gr/dscf; 12 and
b. You must not cause to be discharged to the atmosphere any secondary emissions that exit any opening in the building or structure housing the discharge end that exhibit opacity greater than 20 percent (6-minute average).
4. Each discharge end at a new sinter planta. You must not cause to be discharged to the atmosphere any gases that exit from one or more control devices that contain, on a flow weighted basis, particulate matter in excess of 0.01 gr/dscf; and
b. You must not cause to be discharged to the atmosphere any secondary emissions that exit any opening in the building or structure housing the discharge end that exhibit opacity greater than 10 percent (6-minute average).
5. Each sinter cooler at an existing sinter plantYou must not cause to be discharged to the atmosphere any emissions that exhibit opacity greater than 10 percent (6-minute average).
6. Each sinter cooler at a new sinter plantYou must not cause to be discharged to the atmosphere any gases that contain particulate matter in excess of 0.01 gr/dscf.
7. Each casthouse at an existing blast furnacea. You must not cause to be discharged to the atmosphere any gases that exit from a control device that contain particulate matter in excess of 0.01 gr/dscf; 2
b. You must not cause to be discharged to the atmosphere any secondary emissions that exit all openings in the casthouse or structure housing the blast furnace that exhibit opacity greater than 20 percent (6-minute average);
c. You must not cause to be discharged to the atmosphere any gases that exit from a control device that contain hydrogen chloride in excess of 0.0056 lb/ton of iron;
d. You must not cause to be discharged to the atmosphere any gases that exit from a control device that contain total hydrocarbons as propane in excess of 0.48 lb/ton of iron; and
e. You must not cause unplanned bleeder valve openings in excess of 4 events per year for large blast furnaces or 15 events per year for small blast furnaces.
8. Each casthouse at a new blast furnacea. You must not cause to be discharged to the atmosphere any gases that exit from a control device that contain particulate matter in excess of 0.003 gr/dscf; and
b. You must not cause to be discharged to the atmosphere any secondary emissions that exit all openings in the casthouse or structure housing the blast furnace that exhibit opacity greater than 15 percent (6-minute average);
c. You must not cause to be discharged to the atmosphere any gases that exit from a control device that contain hydrogen chloride in excess of 0.00059 lb/ton of iron;
d. You must not cause to be discharged to the atmosphere any gases that exit from a control device that contain total hydrocarbons as propane in excess of 0.035 lb/ton of iron; and
e. You must not cause unplanned bleeder valve openings in excess of zero events per year.
9. Each BOPF at a new or existing shopa. You must not cause to be discharged to the atmosphere any gases that exit from a primary emission control system for a BOPF with a closed hood system at a new or existing BOPF shop that contain, on a flow-weighted basis, particulate matter in excess of 0.03 gr/dscf during the primary oxygen blow; 23
b. You must not cause to be discharged to the atmosphere any gases that exit from a primary emission control system for a BOPF with an open hood system that contain, on a flow-weighted basis, particulate matter in excess of 0.02 gr/dscf during the steel production cycle for an existing BOPF shop 23 or 0.01 gr/dscf during the steel production cycle for a new BOPF shop; 3
c. You must not cause to be discharged to the atmosphere any gases that exit from a control device used solely for the collection of secondary emissions from the BOPF that contain particulate matter in excess of 0.01 gr/dscf for an existing BOPF shop 2 or 0.0052 gr/dscf for a new BOPF shop;
d. You must not cause to be discharged to the atmosphere any gases that exit from a primary emission control system for a BOPF that contain hydrogen chloride in excess of 0.058 lb/ton of steel for existing sources and 2.8E-04 lb/ton steel for new sources;
e. You must not cause to be discharged to the atmosphere any gases that exit from a primary emission control system for a BOPF that contain THC as propane in excess of 0.04 lb/ton of steel for existing sources and 0.0017 lb/ton of steel for new sources; and
f. You must not cause to be discharged to the atmosphere any gases that exit from a primary emission control system for a BOPF that contain D/F TEQs in excess of 9.2E-10 lb/ton of steel.
10. Each hot metal transfer, skimming, and desulfurization operation at a new or existing BOPF shopYou must not cause to be discharged to the atmosphere any gases that exit from a control device that contain particulate matter in excess of 0.01 gr/dscf for an existing BOPF shop 2 or 0.003 gr/dscf for a new BOPF shop.
11. Each ladle metallurgy operation at a new or existing BOPF shopYou must not cause to be discharged to the atmosphere any gases that exit from a control device that contain particulate matter in excess of 0.01 gr/dscf for an existing BOPF shop 2 or 0.004 gr/dscf for a new BOPF shop.
12. Each existing BOPF shopYou must not cause to be discharged to the atmosphere any secondary emissions that exit any opening in the BOPF shop or any other building housing the BOPF or BOPF shop operation that exhibit opacity greater than 20 percent (3-minute average).
13. Each new BOPF shopa. You must not cause to be discharged to the atmosphere any secondary emissions that exit any opening in the BOPF shop or other building housing a bottom-blown BOPF or BOPF shop operations that exhibit opacity (for any set of 6-minute averages) greater than 10 percent, except that one 6-minute period not to exceed 20 percent may occur once per steel production cycle; or
b. You must not cause to be discharged to the atmosphere any secondary emissions that exit any opening in the BOPF shop or other building housing a top-blown BOPF or BOPF shop operations that exhibit opacity (for any set of 3-minute averages) greater than 10 percent, except that one 3-minute period greater than 10 percent but less than 20 percent may occur once per steel production cycle.
14. Each BOPF Group at an existing BOPF shopYou must not cause to be discharged to the atmosphere any gases that exit from the collection of BOPF Group control devices that contain mercury in excess of 0.00026 lb/ton of steel scrap input to the BOPF.
15. Each BOPF Group at a new BOPF shopYou must not cause to be discharged to the atmosphere any gases that exit from the collection of BOPF Group control devices that contain mercury in excess of 0.000081 lb/ton of steel scrap input to the BOPF.
16. Each planned bleeder valve opening at a new or existing blast furnaceYou must not cause to be discharged to the atmosphere any emissions that exhibit opacity greater than 8 percent (6-minute average).
17. Each slag processing, handling and storage operation for a new or existing blast furnace or BOPFYou must not cause to be discharged to the atmosphere any emissions that exhibit opacity greater than 10 percent (6-minute average).
18. Each existing blast furnace stovea. You must not cause to be discharged to the atmosphere any gases that exit from a control device that contain HCl in excess of 0.0012 lb/MMBtu; and
b. You must not cause to be discharged to the atmosphere any gases that exit from a control device that contain THC in excess of 0.12 lb/MMBtu.
19. Each new blast furnace stovea. You must not cause to be discharged to the atmosphere any gases that exit from a control device that contain HCl in excess of 4.2e-4 lb/MMBtu; and
b. You must not cause to be discharged to the atmosphere any gases that exit from a control device that contain THC in excess of 0.0054 lb/MMBtu.

[Change Notice] [New Text]

Table 2 to Subpart FFFFF of Part 63 - Initial Compliance With Emission and Opacity Limits

As required in §63.7826(a)(1), you must demonstrate initial compliance with the emission and opacity limits according to the following table:

Table 2 to Subpart FFFFF of Part 63 - Initial Compliance With Emission and Opacity Limits
For . . .You have demonstrated initial compliance if . . .
1. Each windbox exhaust stream at an existing sinter planta. The process-weighted mass rate of particulate matter from a windbox exhaust stream, measured according to the performance test procedures in §63.7822(c), did not exceed 0.4 lb/ton of product sinter;
b. The process-weighted mass rate of mercury from a windbox exhaust stream, measured according to the performance test procedures in §63.7825, did not exceed 0.000018 lb/ton of product sinter;
c. The process-weighted mass rate of hydrogen chloride from a windbox exhaust stream, measured according to the performance test procedures in §63.7825, did not exceed 0.025 lb/ton of product sinter;
d. The process-weighted mass rate of carbonyl sulfide from a windbox exhaust stream, measured according to the performance test procedures in §63.7825, did not exceed 0.064 lb/ton of product sinter;
e. The process-weighted mass rate of D/F TEQs from a windbox exhaust stream, measured according to the performance test procedures in §63.7825, did not exceed 1.1E-08 lb/ton of product sinter; and
f. The process-weighted mass rate of polycyclic aromatic hydrocarbons from a windbox exhaust stream, measured according to the performance test procedures in §63.7825, did not exceed 0.0018 lb/ton of product sinter.
2. Each windbox exhaust stream at a new sinter planta. The process-weighted mass rate of particulate matter from a windbox exhaust stream, measured according to the performance test procedures in §63.7822(c), did not exceed 0.3 lb/ton of product sinter;
b. The process-weighted mass rate of mercury from a windbox exhaust stream, measured according to the performance test procedures in §63.7825, did not exceed 0.000012 lb/ton of product sinter;
c. The process-weighted mass rate of hydrogen chloride from a windbox exhaust stream, measured according to the performance test procedures in §63.7825, did not exceed 0.0012 lb/ton of product sinter;
d. The process-weighted mass rate of carbonyl sulfide from a windbox exhaust stream, measured according to the performance test procedures in §63.7825, did not exceed 0.030 lb/ton of product sinter;
e. The process-weighted mass rate of D/F TEQs from a windbox exhaust stream, measured according to the performance test procedures in §63.7825, did not exceed 1.1E-08 lb/ton of product sinter; and
f. The process-weighted mass rate of polycyclic aromatic hydrocarbons from a windbox exhaust stream, measured according to the performance test procedures in §63.7825, did not exceed 0.0015 lb/ton of product sinter.
3. Each discharge end at an existing sinter planta. The flow-weighted average concentration of particulate matter from one or more control devices applied to emissions from a discharge end, measured according to the performance test procedures in §63.7822(d), did not exceed 0.02 gr/dscf; and
b. The opacity of secondary emissions from each discharge end, determined according to the performance test procedures in §63.7823(c), did not exceed 20 percent (6-minute average).
4. Each discharge end at a new sinter planta. The flow-weighted average concentration of particulate matter from one or more control devices applied to emissions from a discharge end, measured according to the performance test procedures in §63.7822(d), did not exceed 0.01 gr/dscf; and
b. The opacity of secondary emissions from each discharge end, determined according to the performance test procedures in §63.7823(c), did not exceed 10 percent (6-minute average).
5. Each sinter cooler at an existing sinter plantThe opacity of emissions, determined according to the performance test procedures in §63.7823(e), did not exceed 10 percent (6-minute average).
6. Each sinter cooler at a new sinter plantThe average concentration of particulate matter, measured according to the performance test procedures in §63.7822(b), did not exceed 0.01 gr/dscf.
7. Each casthouse at an existing blast furnacea. The average concentration of particulate matter from a control device applied to emissions from a casthouse, measured according to the performance test procedures in §63.7822(e), did not exceed 0.01 gr/dscf;
b. The opacity of secondary emissions from each casthouse, determined according to the performance test procedures in §63.7823(c), did not exceed 20 percent (6-minute average);
c. The process-weighted mass rate of hydrogen chloride from a windbox exhaust stream, measured according to the performance test procedures in §63.7825, did not exceed 0.0056 lb/ton of iron;
d. The process-weighted mass rate of total hydrocarbons from a windbox exhaust stream, measured according to the performance test procedures in §63.7825, did not exceed 0.48 lb/ton of iron; and
e. The number of unplanned bleeder valve openings in one year, as reported according to the specifications in §63.7841(b)(14), did not exceed 4 events for large blast furnaces or 15 events for small blast furnaces.
8. Each casthouse at a new blast furnacea. The average concentration of particulate matter from a control device applied to emissions from a casthouse, measured according to the performance test procedures in §63.7822(e), did not exceed 0.003 gr/dscf; and
b. The opacity of secondary emissions from each casthouse, determined according to the performance test procedures in §63.7823(c), did not exceed 15 percent (6-minute average);
c. The process-weighted mass rate of hydrogen chloride from a windbox exhaust stream, measured according to the performance test procedures in §63.7825, did not exceed 0.00059 lb/ton of iron;
d. The process-weighted mass rate of total hydrocarbons from a windbox exhaust stream, measured according to the performance test procedures in §63.7825, did not exceed 0.035 lb/ton of iron; and
e. The number of unplanned bleeder valve openings in one year, as reported according to the specifications in §63.7841(b)(14), did not exceed zero events.
9. Each BOPF at a new or existing BOPF shopa. The average concentration of particulate matter from a primary emission control system applied to emissions from a BOPF with a closed hood system, measured according to the performance test procedures in §63.7822(f), did not exceed 0.03 gr/dscf for a new or existing BOPF shop;
b. The average concentration of particulate matter from a primary emission control system applied to emissions from a BOPF with an open hood system, measured according to the performance test procedures in §63.7822(g), did not exceed 0.02 gr/dscf for an existing BOPF shop or 0.01 gr/dscf for a new BOPF shop;
c. The average concentration of particulate matter from a control device applied solely to secondary emissions from a BOPF, measured according to the performance test procedures in §63.7822(g), did not exceed 0.01 gr/dscf for an existing BOPF shop or 0.0052 gr/dscf for a new BOPF shop;
d. The process-weighted mass rate of hydrogen chloride from a windbox exhaust stream, measured according to the performance test procedures in §63.7825, did not exceed 0.058 lb/ton of steel for an existing BOPF shop or 0.00028 lb/ton of steel for a new BOPF shop;
e. The process-weighted mass rate of total hydrocarbons from a windbox exhaust stream, measured according to the performance test procedures in §63.7825, did not exceed 0.04 lb/ton of steel for an existing BOPF shop or 0.0017 lb/ton of steel for a new BOPF shop; and
f. The process-weighted mass rate of D/F TEQs from a windbox exhaust stream, measured according to the performance test procedures in §63.7825, did not exceed 9.2e-10 lb/ton of steel.
10. Each hot metal transfer skimming, and desulfurization at a new or existing BOPF shopThe average concentration of particulate matter from a control device applied to emissions from hot metal transfer, skimming, or desulfurization, measured according to the performance test procedures in §63.7822(h), did not exceed 0.01 gr/dscf for an existing BOPF shop or 0.003 gr/dscf for a new BOPF shop.
11. Each ladle metallurgy operation at a new or existing BOPF shopThe average concentration of particulate matter from a control device applied to emissions from a ladle metallurgy operation, measured according to the performance test procedures in §63.7822(h), did not exceed 0.01 gr/dscf for an existing BOPF shop or 0.004 gr/dscf for a new BOPF shop.
12. Each existing BOPF shopThe opacity of secondary emissions from each BOPF shop, determined according to the performance test procedures in §63.7823(d), did not exceed 20 percent (3-minute average).
13. Each new BOPF shopa. The opacity of the highest set of 6-minute averages from each BOPF shop housing a bottom-blown BOPF, determined according to the performance test procedures in §63.7823(d), did not exceed 20 percent and the second highest set of 6-minute averages did not exceed 10 percent; or
b. The opacity of the highest set of 3-minute averages from each BOPF shop housing a top-blown BOPF, determined according to the performance test procedures in §63.7823(d), did not exceed 20 percent and the second highest set of 3-minute averages did not exceed 10 percent.
14. Each BOPF Group at an existing BOPF shopIf demonstrating compliance through performance testing, the average emissions of mercury from the collection of BOPF Group control devices applied to the emissions from the BOPF Group, measured according to the performance test procedures in §63.7825, did not exceed 0.00026 lb/ton steel scrap input to the BOPF.
15. Each BOPF Group at a new BOPF shopIf demonstrating compliance through performance testing, the average emissions of mercury from the collection of BOPF Group control devices applied to the emissions from the BOPF Group, measured according to the performance test procedures in §63.7825, did not exceed 0.000081 lb/ton steel scrap input to the BOPF.
16. Each planned bleeder valve opening at a new or existing blast furnaceThe opacity of emissions, determined according to the performance test procedures in §63.7823(f), did not exceed 8 percent (6-minute average).
17. Each slag processing, handling and storage operation for a new or existing blast furnace or BOPFThe opacity of emissions, determined according to the performance test procedures in §63.7823(g), did not exceed 10 percent (6-minute average).
18. Each existing blast furnace stovea. The process-weighted mass rate of HCl from a windbox exhaust stream, measured according to the performance test procedures in §63.7825, did not exceed 0.0012 lb/MMBtu; and
b. The process-weighted mass rate of THC from a windbox exhaust stream, measured according to the performance test procedures in §63.7825, did not exceed 0.12 lb/MMBtu.
19. Each new blast furnace stovea. The process-weighted mass rate of HCl from a windbox exhaust stream, measured according to the performance test procedures in §63.7825, did not exceed 4.2e-4 lb/MMBtu; and
b. The process-weighted mass rate of THC from a windbox exhaust stream, measured according to the performance test procedures in §63.7825, did not exceed 0.0054 lb/MMBtu.

[Change Notice] [New Text]

Table 3 to Subpart FFFFF of Part 63 - Continuous Compliance With Emission and Opacity Limits

As required in §63.7833(a), you must demonstrate continuous compliance with the emission and opacity limits according to the following table:

Table 3 to Subpart FFFFF of Part 63—Continuous Compliance With Emission and Opacity Limits
For . . .You must demonstrate continuous compliance by . . .
1. Each windbox exhaust stream at an existing sinter planta. Maintaining emissions of particulate matter at or below 0.4 lb/ton of product sinter; b. Conducting subsequent performance tests at the frequencies specified in §63.7821;
c. Maintaining emissions of mercury at or below 0.000018 lb/ton of product sinter;
d. Maintaining emissions of hydrogen chloride at or below 0.025 lb/ton of product sinter;
e. Maintaining emissions of carbonyl sulfide at or below 0.064 lb/ton of product sinter;
f. Maintaining emissions of D/F TEQs at or below 1.1E-08 lb/ton of product sinter; and
g. Maintaining emissions of polycyclic aromatic hydrocarbons at or below 0.0018 lb/ton of product sinter.
2. Each windbox exhaust stream at a new sinter planta. Maintaining emissions of particulate matter at or below 0.3 lb/ton of product sinter; b. Conducting subsequent performance tests at the frequencies specified in §63.7821;
c. Maintaining emissions of mercury at or below 0.000012 lb/ton of product sinter;
d. Maintaining emissions of hydrogen chloride at or below 0.0012 lb/ton of product sinter;
e. Maintaining emissions of carbonyl sulfide at or below 0.030 lb/ton of product sinter;
f. Maintaining emissions of D/F TEQs at or below 1.1E-08 lb/ton of product sinter; and
g. Maintaining emissions of polycyclic aromatic hydrocarbons at or below 0.0015 lb/ton of product sinter.
3. Each discharge end at an existing sinter planta. Maintaining emissions of particulate matter from one or more control devices at or below 0.02 gr/dscf; and b. Maintaining the opacity of secondary emissions that exit any opening in the building or structure housing the discharge end at or below 20 percent (6-minute average); and
c. Conducting subsequent performance tests at the frequencies specified in §63.7821.
4. Each discharge end at a new sinter planta. Maintaining emissions of particulate matter from one or more control devices at or below 0.01 gr/dscf; and b. Maintaining the opacity of secondary emissions that exit any opening in the building or structure housing the discharge end at or below 10 percent (6-minute average); and
c. Conducting subsequent performance tests at the frequencies specified in §63.7821.
5. Each sinter cooler at an existing sinter planta. Maintaining the opacity of emissions that exit any sinter cooler at or below 10 percent (6-minute average); and b. Conducting subsequent performance tests at the frequencies specified in §63.7821.
6. Each sinter cooler at a new sinter planta. Maintaining emissions of particulate matter at or below 0.1 gr/dscf; and
b. Conducting subsequent performance tests at the frequencies specified in §63.7821.
7. Each casthouse at an existing blast furnacea. Maintaining emissions of particulate matter from a control device at or below 0.01 gr/dscf; b. Maintaining the opacity of secondary emissions that exit all openings in the casthouse or structure housing the casthouse at or below 20 percent (6-minute average);
c. Conducting subsequent performance tests at the frequencies specified in §63.7821;
d. Maintaining emissions of hydrogen chloride at or below 0.0056 lb/ton of iron;
e. Maintaining emissions of total hydrocarbons at or below 0.48 lb/ton of iron; and
f. Maintaining unplanned bleeder valve openings at or below 4 events per year for large blast furnaces or 15 events per year for small blast furnaces.
8. Each casthouse at a new blast furnacea. Maintaining emissions of particulate matter from a control device at or below 0.003 gr/dscf; b. Maintaining the opacity of secondary emissions that exit all openings in the casthouse or structure housing the casthouse at or below 15 percent (6-minute average);
c. Conducting subsequent performance tests at the frequencies specified in §63.7821;
d. Maintaining emissions of hydrogen chloride at or below 0.00059 lb/ton of iron;
e. Maintaining emissions of total hydrocarbons at or below 0.035 lb/ton of iron; and
f. Maintaining unplanned bleeder valve openings at zero events per year.
9. Each BOPF at a new or existing BOPF shopa. Maintaining emissions of particulate matter from the primary control system for a BOPF with a closed hood system at or below 0.03 gr/dscf;
b. Maintaining emissions of particulate matter from the primary control system for a BOPF with an open hood system at or below 0.02 gr/dscf for an existing BOPF shop or 0.01 gr/dscf for a new BOPF shop;
c. Maintaining emissions of particulate matter from a control device applied solely to secondary emissions from a BOPF at or below 0.01 gr/dscf for an existing BOPF shop or 0.0052 gr/dscf for a new BOPF shop;
d. Conducting subsequent performance tests at the frequencies specified in §63.7821;
e. Maintaining emissions of hydrogen chloride from a primary emission control system for a BOPF at or below 0.058 lb/ton of steel for existing sources and 2.8E-04 lb/ton steel for new sources;
f. Maintaining emissions of THC from a primary emission control system for a BOPF at or below 0.04 lb/ton of steel for existing sources and 0.0017 lb/ton of steel for new sources; and
g. Maintaining emissions of D/F TEQs from a primary emission control system for a BOPF at or below 9.2E-10 lb/ton of steel.
10. Each hot metal transfer, skimming, and desulfurization operation at a new or existing BOPF shopa. Maintaining emissions of particulate matter from a control device at or below 0.01 gr/dscf at an existing BOPF or 0.003 gr/dscf for a new BOPF; and b. Conducting subsequent performance tests at the frequencies specified in §63.7821.
11. Each ladle metallurgy operation at a new or existing BOPF shopa. Maintaining emissions of particulate matter from a control device at or below 0.01 gr/dscf at an existing BOPF shop or 0.004 gr/dscf for a new BOPF shop; and
b. Conducting subsequent performance tests at the frequencies specified in §63.7821.
12. Each existing BOPF shopa. Maintaining the opacity of secondary emissions that exit any opening in the BOPF shop or other building housing the BOPF shop or shop operation at or below 20 percent (3-minute average); and
b. Conducting subsequent performance tests at the frequencies specified in §63.7821.
13. Each new BOPF shopa. Maintaining the opacity (for any set of 6-minute averages) of secondary emissions that exit any opening in the BOPF shop or other building housing a bottom-blown BOPF or shop operation at or below 10 percent, except that one 6-minute period greater than 10 percent but no more than 20 percent may occur once per steel production cycle;
b. Maintaining the opacity (for any set of 3-minute averages) of secondary emissions that exit any opening in the BOPF shop or other building housing a top-blown BOPF or shop operation at or below 10 percent, except that one 3-minute period greater than 10 percent but less than 20 percent may occur once per steel production cycle; and
c. Conducting subsequent performance tests at the frequencies specified in §63.7821.
14. Each BOPF Group at an existing BOPF shopa. Maintaining emissions of mercury from the collection of BOPF Group control devices at or below 0.00026 lb/ton steel scrap input to the BOPF; and
b. If demonstrating compliance through performance testing, conducting subsequent performance tests at the frequencies specified in §63.7821; and
c. If demonstrating compliance through §63.7791(c), (d), or (e), maintaining records pursuant to §63.7842(e).
15. Each BOPF Group at a new BOPF shopa. Maintaining emissions of mercury from the collection of BOPF Group control devices at or below 0.000081 lb/ton steel scrap input to the BOPF; and
b. If demonstrating compliance through performance testing, conducting subsequent performance tests at the frequencies specified in §63.7821; and
c. If demonstrating compliance through §63.7791(c), (d), or (e), maintaining records pursuant to §63.7842(e).
16. Each planned bleeder valve opening at a new or existing blast furnacea. Maintaining the opacity of emissions that exit any bleeder valve as a result of a planned opening at or below 8 percent (6-minute average); and
b. Conducting subsequent performance tests at the frequencies specified in §63.7821.
17. Each slag processing, handling and storage operation for a new or existing blast furnace or BOPFa. Maintaining the opacity of emissions that exit any slag processing, handling, or storage operation at or below 10 percent (6-minute average); and b. Conducting subsequent performance tests at the frequencies specified in §63.7821.
18. Each existing blast furnace stovea. Maintaining emissions of HCl at or below 0.0012 lb/MMBtu;
b. Maintaining emissions of THC at or below 0.12 lb/MMBtu; and
c. Conducting subsequent performance tests at the frequencies specified in §63.7821.
19. Each new blast furnace stovea. Maintaining emissions of HCl at or below 4.2e-4 lb/MMBtu;
b. Maintaining emissions of THC at or below 0.0054 lb/MMBtu; and
c. Conducting subsequent performance tests at the frequencies specified in §63.7821.

[Change Notice] [New Text]

Table 4 to Subpart FFFFF of Part 63 - Applicability of General Provisions to Subpart FFFFF

As required in §63.7850, you must comply with the requirements of the NESHAP General Provisions (subpart A of this part) shown in the following table:

Table 4 to Subpart FFFFF of Part 63—Applicability of General Provisions to Subpart FFFFF
CitationSubjectApplies to subpart FFFFFExplanation
§63.1ApplicabilityYes
§63.2DefinitionsYes
§63.3Units and AbbreviationsYes
§63.4Prohibited ActivitiesYes
§63.5Construction/ReconstructionYes
§63.6(a), (b), (c), (d), (e)(1)(iii), (f)(2)-(3), (g), (h)(2)(ii)-(h)(9)Compliance with Standards and Maintenance RequirementsYes
§63.6(e)(1)(i)General Duty to Minimize EmissionsNo, for new or reconstructed sources which commenced construction or reconstruction after August 16, 2019. For all other affected sources, Yes on or before January 11, 2021, and No thereafterSee §63.7810(d) for general duty requirement.
§63.6(e)(1)(ii)Requirement to Correct Malfunctions ASAPNo, for new or reconstructed sources which commenced construction or reconstruction after August 16, 2019. For all other affected sources, Yes, on or before January 11, 2021, and No thereafter
§63.6(e)(3)SSM Plan RequirementsNo, for new or reconstructed sources which commenced construction or reconstruction after August 16, 2019. For all other affected sources, Yes on or before January 11, 2021, and No thereafterSee §63.7810(c).
§63.6(f)(1)Compliance except during SSMNoSee §63.7810(a).
§63.6(h)(1)Compliance except during SSMNoSee §63.7810(a).
§63.6(h)(2)(i)Determining Compliance with Opacity and VE StandardsNoSubpart FFFFF specifies methods and procedures for determining compliance with opacity emission and operating limits.
§63.6(i)Extension of Compliance with Emission StandardsYes
§63.6(j)Exemption from Compliance with Emission StandardsYes
§63.7(a)(1)-(2)Applicability and Performance Test DatesNoSubpart FFFFF and specifies performance test applicability and dates.
§63.7(a)(3), (b)-(d), (e)(2)-(4), (f)-(h)Performance Testing RequirementsYes
§63.7(e)(1)Performance TestingNo, for new or reconstructed sources which commenced construction or reconstruction after August 16, 2019. For all other affected sources, Yes on or before January 11, 2021, and No thereafterSee §§63.7822(a), 63.7823(a), and 63.7825(a).
§63.8(a)(1)-(3), (b), (c)(1)(ii), (c)(2)-(3), (c)(4)(i)-(ii), (c)(5)-(6), (c)(7)-(8), (d)(1)-(2), (e), (f)(1)-(5), (g)(1)-(4)Monitoring RequirementsYesCMS requirements in §63.8(c)(4)(i)-(ii), (c)(5)-(6), (d)(1)-(2), and (e) apply only to COMS.
§63.8(a)(4)Additional Monitoring Requirements for Control Devices in §63.11NoSubpart FFFFF does not require flares.
§63.8(c)(1)(i)General Duty to Minimize Emissions and CMS OperationNo, for new or reconstructed sources which commenced construction or reconstruction after August 16, 2019. For all other affected sources, Yes on or before January 11, 2021, and No thereafter
§63.8(c)(1)(iii)Requirement to Develop SSM Plan for CMSNo, for new or reconstructed sources which commenced construction or reconstruction after August 16, 2019. For all other affected sources, Yes on or before January 11, 2021, and No thereafter
§63.8(c)(4)Continuous Monitoring System RequirementsNoSubpart FFFFF specifies requirements for operation of CMS.
§63.8(d)(3)Written procedures for CMSNo, for new or reconstructed sources which commenced construction or reconstruction after August 16, 2019. For all other affected sources, Yes on or before January 11, 2021, and No thereafterSee §63.7842(b)(3).
§63.8(f)(6)RATA AlternativeNo
§63.8(g)(5)Data ReductionNoSubpart FFFFF specifies data reduction requirements.
§63.9Notification RequirementsYesAdditional notifications for CMS in §63.9(g) apply only to COMS.
§63.10(a), (b)(1), (b)(2)(x), (b)(2)(xiv), (b)(3), (c)(1)-(6), (c)(9)-(14), (d)(1)-(4), (e)(1)-(2), (e)(4), (f)Recordkeeping and Reporting RequirementsYesAdditional records for CMS in §63.10(c)(1)-(6), (9)-(14), and reports in §63.10(d)(1)-(2) apply only to COMS.
§63.10(b)(2)(i)Recordkeeping of Occurrence and Duration of Startups and ShutdownsNo, for new or reconstructed sources which commenced construction or reconstruction after August 16, 2019. For all other affected sources, Yes on or before January 11, 2021, and No thereafter
§63.10(b)(2)(ii)Recordkeeping of Failures to Meet a StandardNo, for new or reconstructed sources which commenced construction or reconstruction after August 16, 2019. For all other affected sources, Yes on or before January 11, 2021, and No thereafterSee §63.7842(a)(2)-(4) for recordkeeping of (1) date, time, and duration of failure to meet the standard; (2) listing of affected source or equipment, and an estimate of the quantity of each regulated pollutant emitted over the standard; and (3) actions to minimize emissions and correct the failure.
§63.10(b)(2)(iii)Maintenance RecordsYes
§63.10(b)(2)(iv)Actions Taken to Minimize Emissions During SSMNo, for new or reconstructed sources which commenced construction or reconstruction after August 16, 2019. For all other affected sources, Yes on or before January 11, 2021, and No thereafterSee §63.7842(a)(4) for records of actions taken to minimize emissions.
§63.10(b)(2)(v)Actions Taken to Minimize Emissions During SSMNo, for new or reconstructed sources which commenced construction or reconstruction after August 16, 2019. For all other affected sources, Yes on or before January 11, 2021, and No thereafterSee §63.7842(a)(4) for records of actions taken to minimize emissions.
§63.10(b)(2)(vi)Recordkeeping for CMS MalfunctionsYes
§63.10(b)(2)(vii)-(ix)Other CMS RequirementsYes
§63.10(b)(2)(xiii)CMS Records for RATA AlternativeNo
§63.10(c)(7)-(8)Records of Excess Emissions and Parameter Monitoring Exceedances for CMSNoSubpart FFFFF specifies record requirements; see §63.7842.
§63.10(c)(15)Use of SSM PlanNo, for new or reconstructed sources which commenced construction or reconstruction after August 16, 2019. For all other affected sources, Yes on or before January 11, 2021, and No thereafter
§63.10(d)(5)(i)Periodic SSM ReportsNo, for new or reconstructed sources which commenced construction or reconstruction after August 16, 2019. For all other affected sources, Yes on or before January 11, 2021, and No thereafterSee §63.7841(b)(4) for malfunction reporting requirements.
§63.10(d)(5)(ii)Immediate SSM ReportsNo, for new or reconstructed sources which commenced construction or reconstruction after August 16, 2019. For all other affected sources, Yes on or before January 11, 2021, and No thereafter
§63.10(e)(3)Excess Emission ReportsNoSubpart FFFFF specifies reporting requirements; see §63.7841.
§63.11Control Device RequirementsNoSubpart FFFFF does not require flares.
§63.12State Authority and DelegationsYes
§63.13-§63.16Addresses, Incorporations by Reference, Availability of Information and Confidentiality, Performance Track ProvisionsYes
From threat to thrive: Why climate risk planning is essential for businesses
2024-04-01T05:00:00Z

From threat to thrive: Why climate risk planning is essential for businesses

Climate change is no longer an impending threat. It is here and it has tangible consequences. As industry professionals, we understand the scientific basis for climate change and its anticipated effects.

However, translating this knowledge into actionable strategies requires robust risk planning. A recent survey conducted by the J. J. Keller Center for Market Insights revealed that only 20 percent of facilities currently engage in risk planning related to climate change.

Related article: 5 easy ways to keep up with environmental regulatory changes

Several factors impact how and why a business plans for environmental risk.

Business continuity: The domino effect of climate disruption

Among facilities currently engaged in risk planning for climate change, 65 percent consider business continuity. Extreme weather events are becoming more frequent and severe due to climate change. Floods, droughts, wildfires, and heat waves can disrupt critical infrastructure, transportation networks, and power grids. This can have a cascading effect, impacting a company's ability to operate and deliver products or services.

Proactive risk planning involves identifying vulnerabilities in your operations — from reliance on suppliers in one area to outdated infrastructure vulnerable to flooding. By conducting vulnerability assessments and developing contingency plans, businesses can ensure a smoother transition during climate disruptions, minimizing downtime and financial losses.

Brand image and reputation: The price of inaction

More than ever before, consumers are holding organizations responsible for their environmental impact. Failure to act on climate change can significantly hurt an organization's brand image and reputation. Ignoring climate risks suggests a lack of foresight and responsibility, potentially leading to boycotts, negative press coverage, and difficulty attracting employees.

Conversely, demonstrating proactive risk planning by implementing sustainable practices and adapting to climate change can enhance a company's brand image. It can translate to increased customer support, greater investor trust, and an edge in the marketplace.

Physical damage to facilities and assets: Counting the cost of climate

Among facilities currently engaging in risk planning for climate change, 59 percent consider physical damage. Climate change is a physical threat to businesses, with increased and often extreme geological and meteorological events posing a risk to facilities and assets. Rising sea levels threaten coastal locations, while extreme weather events can damage infrastructure and equipment.

Risk planning helps identify these exposures and develops strategies to mitigate them, such as elevating critical infrastructure, investing in flood-protection measures, or expanding production facilities across different geographic areas. By proactively addressing physical risks, businesses can minimize the financial burden of repairs and potential reconstruction efforts.

Regulatory risk and noncompliance costs: Staying ahead of the curve

Governments are progressively implementing regulations to address climate change. These regulations may include stricter environmental standards for production processes and mandatory reporting of greenhouse gas emissions. Businesses that fail to adapt their operations to comply with necessary regulations risk hefty fines and legal penalties.

Risk planning involves staying informed about evolving regulations and developing a strategy for compliance. This can help businesses easily adapt and avoid costly fines or even operational shutdowns.

Revenue loss: The bottom line of climate change

Climate change can negatively impact an organization's revenue stream in several ways. For example, droughts and floods can disrupt farming operations and supply chains, leading to shortages and price increases that can discourage customers. Severe weather events can damage attractions and infrastructure, impacting the tourism and hospitality industries. Additionally, regulations intended to address climate change, such as carbon taxing, can impact production costs, potentially leading to price increases and reduced end user demand. Risk planning helps businesses identify these potential losses and create approaches to mitigate them. Examples include investing in climate-smart agriculture, developing drought-resistant crops, or exploring alternative production methods that are less susceptible to climate disruptions.

Key to remember: Climate change is a complex challenge. Risk planning can help businesses protect their operations, reputation, and financial well-being.

See More

Most Recent Highlights In Human Resources

2024-03-28T05:00:00Z

EPA Final Rule: Clean Water Act Hazardous Substance Facility Response Plans

The U.S. Environmental Protection Agency (EPA or Agency) is finalizing facility response plan requirements for worst case discharges of Clean Water Act (CWA) hazardous substances for onshore non-transportation-related facilities that could reasonably be expected to cause substantial harm to the environment by discharging a CWA hazardous substance into or on the navigable waters, adjoining shorelines, or exclusive economic zone.

DATES: This final rule is effective on May 28, 2024, published in the Federal Register, page 21924.

View final rule.

Part 118—Clean Water Act Hazardous Substances Facility Response Plans
Entire partAddedView text
§300.185 Nongovernmental participation.
(a)RevisedView text
§300.211 OPA facility and vessel response plans.
(c)RevisedView text
§300.411 Response to CWA hazardous substance worst case discharges.
Entire sectionAddedView text

New Text

§300.185 Nongovernmental participation.

(a) Industry groups, academic organizations, and others are encouraged to commit resources for response operations. Specific commitments should be listed in the RCP and ACP. Those entities required to develop tank vessel and facility response plans under CWA section 311(j) must be able to respond to a worst case discharge to the maximum extent practicable, and shall commit sufficient resources to implement other aspects of those plans in accordance with the requirements of 30 CFR part 254, 33 CFR parts 150, 154, and 155; 40 CFR parts 112 and 118; and 49 CFR parts 171 and 194.

* * * * *

§300.211 OPA facility and vessel response plans.

* * * * *

(c) For non-transportation-related onshore facilities, these regulations are codified in 40 CFR 112.20 and 40 CFR part 118;

* * * * *

2024-03-28T05:00:00Z

EPA Final Rule: Chrysotile Asbestos; Regulation Under the Toxic Substances Control Act (TSCA)

The Environmental Protection Agency (EPA or the Agency) is issuing this final rule under the Toxic Substances Control Act (TSCA) to address to the extent necessary the unreasonable risk of injury to health presented by chrysotile asbestos based on the risks posed by certain conditions of use. The injuries to human health include mesothelioma and lung, ovarian, and laryngeal cancers resulting from chronic inhalation exposure to chrysotile asbestos.

DATES: This final rule is effective on May 28, 2024, published in the Federal Register March 28, 2024, page 21970.

View final rule.

Subpart F—Chrysotile Asbestos
Entire subpartAddedView text
2024-03-26T05:00:00Z

EPA Proposed Rule: Request To Submit Unpublished Health and Safety Data Under the Toxic Substances Control Act (TSCA)

The Environmental Protection Agency (EPA or the Agency) is proposing to require manufacturers (including importers) of 16 chemical substances to submit copies and lists of certain unpublished health and safety studies to EPA. Health and safety studies sought by this action will help inform EPA's responsibilities pursuant to TSCA, including prioritization, risk evaluation, and risk management.

DATES: This proposed rule is published in the Federal Register March 26, 2024, page 20918.

View proposed rule.

PFAS cleanup: Senators weigh CERCLA ‘liability shield’ for utilities/landfills
2024-03-25T05:00:00Z

PFAS cleanup: Senators weigh CERCLA ‘liability shield’ for utilities/landfills

An EPA final rule to designate two PFAS as hazardous substances under CERCLA is expected this year! However, a recent “standing-room-only” Senate hearing evaluated potential consequences of the rule. Much of the discussion was over liability concerns for “passive receivers” like water utilities and landfills. The upcoming rule may not provide EPA with flexibility to exempt them.

Costs of PFAS

During the March 20 hearing, Senator Tom Carper (D-DE), Chairperson of the Senate Environment and Public Works Committee, made it a point that PFAS has proved useful. It has even saved many lives as a firefighting foam, he asserted. PFAS is short for per- and polyfluoroalkyl substances.

It’s also a pervasive threat to human health, Carper concluded. A health advocate who testified at the hearing warned the Senators that failing to address PFAS in drinking water will result in thousands of deaths. Cause-of-death examples he said include cancer, cardiovascular disease, and infant low birth weights.

Carper also brought up the millions of dollars to cleanup PFAS. He said it costs only $50 to $1,000 per pound to manufacture PFAS products. Yet, it costs $3M to $18M per pound to remove the compounds from wastewater, the lawmaker remarked. Testimony suggested that legal defense costs and technology investments can also add up to several million dollars for a facility.

Unprecedented direct designation

Everyone at the hearing agreed that EPA has never “directly” listed a substance as a CERCLA substance under 40 CFR 302. CERCLA is the Comprehensive Environmental Response, Compensation, and Liability Act.

Looking back, EPA has always defined CERCLA hazardous substances that were first regulated by other laws, like the Clean Water Act (CWA) or the Resource Conservation and Recovery Act (RCRA). In this case, PFAS compounds would be declared CERCLA hazardous substances. However, that would be without regulation under another law. This is called “CERCLA first.”

That means, for example, there are no federal water or waste permits for PFAS (yet) that could provide an exemption (or liability shield) from CERCLA. Moreover, CERCLA is retroactive. So, even if PFAS is covered by later permits, parties may be responsible for PFAS released to water, air, or land before the issuance of a permit.

The Cabinet Secretary for the New Mexico Environment Department testified that he favors listing discarded PFAS as a RCRA hazardous waste first.

Liability concerns for passive receivers

Carper stated that he has heard mounting concerns about the potential unintended impacts of the impending designation rule. Specifically, he mentioned entities that do not use these chemicals. The lawmaker explained that they could be held responsible for downstream PFAS contamination simply because the contamination traveled through their facility.

Senator and Ranking Member Shelley Capito (R-WV) agreed. “If an entity meets the definition of a ‘potentially responsible party,’ that entity is liable for all cleanup costs, regardless of intent or exercise of due care ... These entities are known as ‘passive receivers.” [They] did not manufacture or generate PFAS and were unknowingly, or required by law, to catch or to receive these contaminants.”

A legal expert for the Congressional Research Service revealed that under the upcoming rule, “Entities that have been involved in releases of PFAS could be held liable if the other preconditions to liability are met and no exemptions apply.” Her examples included:

  • Chemical manufacturers or processors,
  • Firefighting training operations that used fluorinated aqueous film-forming foam,
  • Landfills and incinerators,
  • Wastewater treatment facilities, and
  • Sites with land application or disposal of biosolids.

EPA enforcement discretion

Some testified that EPA has promised to focus enforcement efforts on PFAS manufacturers and industries that release significant amounts of PFAS. However, someone clarified that EPA would not be bound by this policy. Plus, states, tribes, and private parties can still bring litigation. A landfill association representative added, “If EPA chooses not to take any action, the passive receiver has no protection from a suit brought by another potentially responsible party.”

Options for Congress

Both Carper and Capito say they’re looking for a bipartisan legislative response to the concerns. Legislative options might include:

  • Barring EPA from designating PFAS as a hazardous substance;
  • Amending CERCLA to narrow the PFAS release types that could give rise to liability;
  • Listing the entity types that are exempt from liability for PFAS response costs;
  • Amending CERCLA so that federal EPA is solely responsible for its implementation; and
  • Listing PFAS as a RCRA hazardous waste first and increasing funding for state RCRA programs.

Congress could also go the other way. It could direct EPA to designate various PFAS as hazardous substances under CERCLA.

Key to remember

A recent Senate hearing on PFAS went over liability and a possible liability shield for passive receivers like water utilities and landfills.

GHG report checklist: 5 C’s for the GHGRP
2024-03-22T05:00:00Z

GHG report checklist: 5 C’s for the GHGRP

Each year, spring ushers in the season for green — budding trees, blooming plants, and the Greenhouse Gas Reporting Program (GHGRP). Okay, so the last item isn’t typically associated with thoughts of springtime. However, the March 31 deadline for the annual GHGRP report always springs up.

The GHGRP requires covered facilities, suppliers, and sites to submit an annual report of greenhouse gas (GHG) emissions data and other relevant information from the previous calendar year to the Environmental Protection Agency (EPA).

Although the reporting years change, the best practices for submitting accurate and timely reports don’t. Use the following checklist to help you comply with the GHG annual report requirements.

1. Confirm that you’re required to report.

The GHGRP generally applies to:

  • Certain facilities that directly emit 25,000 or more metric tons of carbon dioxide equivalent (or CO2e) per year through combustion or processing on-site;
  • Certain suppliers of fossil fuels, industrial GHGs, and GHG-containing products that result in GHG emissions when combusted, released, or oxidized; and
  • Facilities that inject carbon dioxide (CO2) underground.

See 40 CFR 98.2 for the complete eligibility requirements that facilities, suppliers, and CO2 injectors must meet to be subject to the GHG annual reporting requirements.

2. Classify all relevant source categories.

The GHGRP groups reporters by specific industry types known as source categories. Each facility must report GHG emissions for all source categories that apply.

The subparts under Part 98 list the requirements for each source category, such as:

  • Reporting thresholds,
  • The GHGs to report,
  • Calculation methods,
  • Monitoring requirements, and
  • Data reporting requirements.

For example, Part 98 Subpart Q lists the reporting requirements for the Iron and Steel Production category, while Part 98 Subpart MM lists the requirements for the Suppliers of Petroleum Products category.

Tables A-3, A-4, and A-5 under Part 98 Subpart A list the source categories and any specific reporting thresholds.

3. Calculate emissions with approved methodologies.

Reporters must use specific methodologies established in the regulations to determine GHG emissions from each source category. The subparts under Part 98 contain the approved calculation methodologies for each source category and generally include several options.

If you meet the method’s requirements, you can change emission calculation methods from year to year and within the same year.

4. Choose the designated representative.

A designated representative is the individual responsible for submitting the GHG reports on behalf of the owners and operators of the facility or supplier. The regulations at 98.4 allow (but don’t require) the designated representative to appoint an alternate designated representative and one or more agents who can act on their behalf.

EPA will not accept annual GHG emissions reports from a facility or supplier without a Certificate of Representation for a designated representative. This certificate must be submitted at least 60 days before the initial annual GHG emissions report deadline.

5. Create and prepare the reporting account ahead of time.

The GHG annual report is submitted electronically through EPA’s electronic Greenhouse Gas Reporting Tool (e-GGRT). To submit the annual report, you must first register as an e-GGRT user and create an account. If you already have an active EPA Central Data Exchange (CDX) account, log into e-GGRT with your existing CDX username and password. If you don’t have a CDX account or cannot log in with those credentials, create a new user account on e-GGRT.

All e-GGRT users must have the Electronic Signature Agreement (ESA) on file with EPA. You can electronically sign the agreement or submit a signed hard copy. Once EPA approves the agreement, the agency will send you an account activation notice, and you can begin registering a facility and the designated representative.

The designated representative must register as an e-GGRT user and, once EPA approves the representative’s ESA, accept the appointment as the designated representative and electronically sign the Certificate of Representation. The certificate allows the representative to certify, sign, and submit the annual GHG report to EPA. Resubmission of the certificate is required only when there are updates to the facility profile or information about the designated representative changes (including replacing the existing representative).

Key to remember: Annual reports for the Greenhouse Gas Reporting Program are due by March 31 and require reporters to include emissions data from all applicable source categories.

See More
New Network Poll
How are you performing safety inspections withing your organization?

How are you performing safety inspections withing your organization?


No active poll
Please come back soon!
See More
See More
See More
See More
Saved to my EVENT CALENDAR!
View your saved links by clicking the arrow next to your profile picture located in the header. Then, click “My Activity” to view the Event Calendar on your Activity page.