['Air Programs']
['Hazardous Air Pollutants']
01/21/2025
...
1. Applicability
These monitoring provisions apply to the measurement of EtO emissions from commercial sterilization facilities, using CEMS. The CEMS must be capable of measuring EtO in lb/hr.
2. Monitoring of EtO Emissions
2.1 Monitoring System Installation Requirements. Install EtO CEMS and any additional monitoring systems needed to convert pollutant concentrations to lb/hr in accordance with §63.365 and Performance Specification 19 (PS 19) of appendix B to part 60 of this chapter.
2.2 Primary and Backup Monitoring Systems. In the electronic monitoring plan described in section 10.1.1.2.1 of this appendix, you must designate a primary EtO CEMS. The primary EtO CEMS must be used to report hourly EtO concentration values when the system is able to provide quality-assured data, i.e., when the system is “in control”. However, to increase data availability in the event of a primary monitoring system outage, you may install, operate, maintain, and calibrate backup monitoring systems, as follows:
2.2.1 Redundant Backup Systems. A redundant backup monitoring system is a separate EtO CEMS with its own probe, sample interface, and analyzer. A redundant backup system is one that is permanently installed at the unit or stack location and is kept on “hot standby” in case the primary monitoring system is unable to provide quality-assured data. A redundant backup system must be represented as a unique monitoring system in the electronic monitoring plan. Each redundant backup monitoring system must be certified according to the applicable provisions in section 3 of this appendix and must meet the applicable on-going QA requirements in section 5 of this appendix.
2.2.2 Non-redundant Backup Monitoring Systems. A non-redundant backup monitoring system is a separate EtO CEMS that has been certified at a particular unit or stack location but is not permanently installed at that location. Rather, the system is kept on “cold standby” and may be reinstalled in the event of a primary monitoring system outage. A nonredundant backup monitoring system must be represented as a unique monitoring system in the electronic monitoring plan. Non-redundant backup EtO CEMS must complete the same certification tests as the primary monitoring system, with one exception. The 7-day calibration error test is not required for a non-redundant backup EtO CEMS. Except as otherwise provided in section 2.2.4.4 of this appendix, a non-redundant backup monitoring system may only be used for 720 hours per year at a particular unit or stack location.
2.2.3 Temporary Like-kind Replacement Analyzers. When a primary EtO analyzer needs repair or maintenance, you may temporarily install a like-kind replacement analyzer, to minimize data loss. Except as otherwise provided in section 2.2.4.4 of this appendix, a temporary like-kind replacement analyzer may only be used for 720 hours per year at a particular unit or stack location. The analyzer must be represented as a component of the primary EtO CEMS and must be assigned a 3-character component ID number, beginning with the prefix “LK”.
2.2.4 Quality Assurance Requirements for Non-redundant Backup Monitoring Systems and Temporary Like-kind Replacement Analyzers. To quality-assure the data from non-redundant backup EtO monitoring systems and temporary like-kind replacement EtO analyzers, the following provisions apply:
2.2.4.1 When a certified non-redundant backup EtO CEMS or a temporary like-kind replacement EtO analyzer is brought into service, a calibration error test and a linearity check must be performed and passed. A single point system integrity check is also required.
2.2.4.2 Each non-redundant backup EtO CEMS or temporary like-kind replacement EtO analyzer shall comply with all required daily, weekly, and quarterly quality-assurance test requirements in section 5 of this appendix, for as long as the system or analyzer remains in service.
2.2.4.3 For the routine, on-going quality-assurance of a non-redundant backup EtO monitoring system, a relative accuracy test audit (RATA) must be performed and passed at least once every 8 calendar quarters at the unit or stack location(s) where the system will be used.
2.2.4.4 To use a non-redundant backup EtO monitoring system or a temporary like-kind replacement analyzer for more than 720 hours per year at a particular unit or stack location, a RATA must first be performed and passed at that location.
2.3 Monitoring System Equipment, Supplies, Definitions, and General Operation.
The following provisions apply:
2.3.1 PS 19, Sections 3.0, 6.0, and 11.0 of appendix B to part 60 of this chapter.
3. Initial Certification Procedures
The initial certification procedures for the EtO CEMS used to provide data under this subpart are as follows:
3.1 Your EtO CEMS must be certified according to PS 19, section(s) 13.
3.2 Any additional stack gas flow rate monitoring system(s) needed to express pollutant concentrations in lb/hr must be certified according to part 75 of this chapter.
4. Recertification Procedures
Whenever the owner or operator makes a replacement, modification, or change to a certified CEMS that may significantly affect the ability of the system to accurately measure or record pollutant gas concentrations or stack gas flow rates, the owner or operator shall recertify the monitoring system. Furthermore, whenever the owner or operator makes a replacement, modification, or change to the flue gas handling system or the unit operation that may significantly change the concentration or flow profile, the owner or operator shall recertify the monitoring system. The same tests performed for the initial certification of the monitoring system shall be repeated for recertification, unless otherwise specified by the Administrator. Examples of changes that require recertification include: Replacement of a gas analyzer; complete monitoring system replacement, and changing the location or orientation of the sampling probe.
5. On-Going Quality Assurance Requirements
On-going QA test requirements for EtO CEMS must be implemented as follows:
5.1 The quality assurance/quality control procedures in Procedure 7 of appendix F to part 60 of this chapter shall apply.
5.2 Stack gas flow rate, diluent gas, and moisture monitoring systems must meet the applicable ongoing QA test requirements of part 75 of this chapter.
5.2.1 Out-of-Control Periods. A EtO CEMS that is used to provide data under this appendix is considered to be out-of-control, and data from the CEMS may not be reported as quality-assured, when any acceptance criteria for a required QA test is not met. The EtO CEMS is also considered to be out-of-control when a required QA test is not performed on schedule or within an allotted grace period. To end an out-of-control period, the QA test that was either failed or not done on time must be performed and passed. Out-of-control periods are counted as hours of monitoring system downtime.
5.2.2 Grace Periods. For the purposes of this appendix, a “grace period” is defined as a specified number of unit or stack operating hours after the deadline for a required quality-assurance test of a continuous monitor has passed, in which the test may be performed and passed without loss of data.
5.2.2.1 For the flow rate monitoring systems described in section 5.1 of this appendix, a 168 unit or stack operating hour grace period is available for quarterly linearity checks, and a 720 unit or stack operating hour grace period is available for RATAs, as provided, respectively, in sections 2.2.4 and 2.3.3 of appendix B to part 75 of this chapter.
5.2.2.2 For the purposes of this appendix, if the deadline for a required gas audit or RATA of a EtO CEMS cannot be met due to circumstances beyond the control of the owner or operator:
5.2.2.2.1 A 168 unit or stack operating hour grace period is available in which to perform the gas audit; or
5.2.2.2.2 A 720 unit or stack operating hour grace period is available in which to perform the RATA.
5.2.2.3 If a required QA test is performed during a grace period, the deadline for the next test shall be determined as follows:
5.2.2.3.1 For the gas audit of an EtO CEMS, the grace period test only satisfies the audit requirement for the calendar quarter in which the test was originally due. If the calendar quarter in which the grace period audit is performed is a QA operating quarter, an additional gas audit is required for that quarter.
5.2.2.3.2 For the RATA of an EtO CEMS, the next RATA is due within three QA operating quarters after the calendar quarter in which the grace period test is performed.
5.2.3 Conditional Data Validation. For recertification and diagnostic testing of the monitoring systems that are used to provide data under this appendix, and for the required QA tests when nonredundant backup monitoring systems or temporary like-kind replacement analyzers are brought into service, the conditional data validation provisions in §§75.20(b)(3)(ii) through (b)(3)(ix) of this chapter may be used to avoid or minimize data loss. The allotted window of time to complete calibration tests and RATAs shall be as specified in §75.20(b)(3)(iv) of this chapter; the allotted window of time to complete a gas audit shall be the same as for a linearity check ( i.e., 168 unit or stack operating hours).
5.3 Data Validation.
5.3.1 Out-of-Control Periods. An EtO CEMS that is used to provide data under this appendix is considered to be out-of-control, and data from the CEMS may not be reported as quality-assured, when any acceptance criteria for a required QA test is not met. The EtO CEMS is also considered to be out-of-control when a required QA test is not performed on schedule or within an allotted grace period. To end an out-of-control period, the QA test that was either failed or not done on time must be performed and passed. Out-of-control periods are counted as hours of monitoring system downtime.
5.3.2 Grace Periods. For the purposes of this appendix, a “grace period” is defined as a specified number of unit or stack operating hours after the deadline for a required quality-assurance test of a continuous monitor has passed, in which the test may be performed and passed without loss of data.
5.3.2.1 For the monitoring systems described in section 5.1 of this appendix, a 168 unit or stack operating hour grace period is available for quarterly linearity checks, and a 720 unit or stack operating hour grace period is available for RATAs, as provided, respectively, in sections 2.2.4 and 2.3.3 of appendix B to part 75 of this chapter.
5.3.2.2 For the purposes of this appendix, if the deadline for a required gas audit/data accuracy assessment or RATA of an EtO CEMS cannot be met due to circumstances beyond the control of the owner or operator:
5.3.2.2.1 A 168 unit or stack operating hour grace period is available in which to perform the gas audit or other quarterly data accuracy assessment; or
5.3.2.2.2 A 720 unit or stack operating hour grace period is available in which to perform the RATA.
5.3.2.3 If a required QA test is performed during a grace period, the deadline for the next test shall be determined as follows:
5.3.2.3.1 For a gas audit or RATA of the monitoring systems described in sections 5.1 and 5.2 of this appendix, determine the deadline for the next gas audit or RATA (as applicable) in accordance with section 2.2.4(b) or 2.3.3(d) of appendix B to part 75 of this chapter; treat a gas audit in the same manner as a linearity check.
5.3.2.3.2 For the gas audit or other quarterly data accuracy assessment of an EtO CEMS, the grace period test only satisfies the audit requirement for the calendar quarter in which the test was originally due. If the calendar quarter in which the grace period audit is performed is a QA operating quarter, an additional gas audit/data accuracy assessment is required for that quarter.
5.3.2.3.3 For the RATA of an EtO CEMS, the next RATA is due within three QA operating quarters after the calendar quarter in which the grace period test is performed.
5.3.3 Conditional Data Validation. For recertification and diagnostic testing of the monitoring systems that are used to provide data under this appendix, the conditional data validation provisions in §75.20(b)(3)(ii) through (ix) of this chapter may be used to avoid or minimize data loss. The allotted window of time to complete calibration tests and RATAs shall be as specified in §75.20(b)(3)(iv) of this chapter; the allotted window of time to complete a quarterly gas audit or data accuracy assessment shall be the same as for a linearity check ( i.e., 168 unit or stack operating hours).
6. Missing Data Requirements
For the purposes of this appendix, the owner or operator of an affected unit shall not substitute for missing data from EtO CEMS. Any process operating hour for which quality-assured EtO concentration data are not obtained is counted as an hour of monitoring system downtime.
7. Bias Adjustment
Bias adjustment of hourly emissions data from an EtO CEMS is not required.
8. QA/QC Program Requirements
The owner or operator shall develop and implement a quality assurance/quality control (QA/QC) program for the EtO CEMS that are used to provide data under this subpart. At a minimum, the program shall include a written plan that describes in detail (or that refers to separate documents containing) complete, step-by-step procedures and operations for the most important QA/QC activities. Electronic storage of the QA/QC plan is permissible, provided that the information can be made available in hard copy to auditors and inspectors. The QA/QC program requirements for the other monitoring systems described in section 5.2 of this appendix are specified in section 1 of appendix B to part 75 of this chapter.
8.1 General Requirements for EtO CEMS.
8.1.1 Preventive Maintenance. Keep a written record of procedures needed to maintain the EtO CEMS in proper operating condition and a schedule for those procedures. This shall, at a minimum, include procedures specified by the manufacturers of the equipment and, if applicable, additional or alternate procedures developed for the equipment.
8.1.2 Recordkeeping and Reporting. Keep a written record describing procedures that will be used to implement the recordkeeping and reporting requirements of this appendix.
8.1.3 Maintenance Records. Keep a record of all testing, maintenance, or repair activities performed on any EtO CEMS in a location and format suitable for inspection. A maintenance log may be used for this purpose. The following records should be maintained: Date, time, and description of any testing, adjustment, repair, replacement, or preventive maintenance action performed on any monitoring system and records of any corrective actions associated with a monitor outage period. Additionally, any adjustment that may significantly affect a system's ability to accurately measure emissions data must be recorded and a written explanation of the procedures used to make the adjustment(s) shall be kept.
8.2 Specific Requirements for EtO CEMS. The following requirements are specific to EtO CEMS:
8.2.1 Keep a written record of the procedures used for each type of QA test required for each EtO CEMS. Explain how the results of each type of QA test are calculated and evaluated.
8.2.2 Explain how each component of the EtO CEMS will be adjusted to provide correct responses to calibration gases after routine maintenance, repairs, or corrective actions.
9. Data Reduction and Calculations
9.1 Design and operate the EtO CEMS to complete a minimum of one cycle of operation (sampling, analyzing, and data recording) for each successive 15-minute period.
9.2 Reduce the EtO concentration data to hourly averages in accordance with §60.13(h)(2) of this chapter.
9.3 Convert each hourly average EtO concentration to an EtO mass emission rate (lb/hr) using an equation that has the general form of equation A-1 of this appendix:
Where:
E ho = EtO mass emission rate for the hour, lb/hr
K = Units conversion constant, 1.144E-10 lb/scf-ppbv,
Ch = Hourly average EtO concentration, ppbv,
Q h = Stack gas volumetric flow rate for the hour, scfh.
( Note: Use unadjusted flow rate values; bias adjustment is not required.)
9.4 Use equation A-2 of this appendix to calculate the daily total EtO emissions. Report each daily total to the same precision as the most stringent standard that applies to any affected source exhausting to the emission stream ( e.g., if the emission stream includes contributions from an SCV and ARV subject to 99.99% and 99.9% emission reduction standards, respectively, report to four significant figures), expressed in scientific notation.
Where:
E day = Total daily EtO emissions, lb.
E ho = Hourly EtO emission rate for unit or stack sampling hour “h” in the averaging period, from equation A-1 of this appendix, lb/hr.
9.5 Use equation A-3 of this appendix to calculate the 30-operating day rolling total EtO emissions. Report each 30-operating day rolling total to the same precision as the most stringent standard that applies to any affected source exhausting to the emission stream ( e.g., if the emission stream includes contributions from an SCV and ARV subject to 99.99% and 99.9% emission reduction standards, respectively, report to four significant figures), expressed in scientific notation.
Where:
E 30day = Total EtO emissions during the 30-operating day, lb.
E day,i = Total daily EtO emissions, in lbs, for each operating day i from equation A-2 of this appendix, lb.
i = Operating day index.
10. Recordkeeping Requirements
10.1 For each EtO CEMS installed at an affected source, and for any other monitoring system(s) needed to convert pollutant concentrations to units of the applicable emissions limit, the owner or operator must maintain a file of all measurements, data, reports, and other information required by this appendix in a form suitable for inspection, for 5 years from the date of each record, in accordance with §63.367. The file shall contain the information in paragraphs 10.1.1 through 10.1.8 of this section.
10.1.1 Monitoring Plan Records. For each affected source or group of sources monitored at a common stack, the owner or operator shall prepare and maintain a monitoring plan for the EtO CEMS and any other monitoring system(s) ( i.e., flow rate, diluent gas, or moisture systems) needed to convert pollutant concentrations to units of the applicable emission standard. The monitoring plan shall contain essential information on the continuous monitoring systems and shall explain how the data derived from these systems ensure that all EtO emissions from the unit or stack are monitored and reported.
10.1.1.1 Updates. Whenever the owner or operator makes a replacement, modification, or change in a certified continuous EtO monitoring system that is used to provide data under this subpart (including a change in the automated data acquisition and handling system or the flue gas handling system) which affects information reported in the monitoring plan ( e.g., a change to a serial number for a component of a monitoring system), the owner or operator shall update the monitoring plan.
10.1.1.2 Contents of the Monitoring Plan. For EtO CEMS, the monitoring plan shall contain the applicable electronic and hard copy information in sections 10.1.1.2.1 and 10.1.1.2.2 of this appendix. For stack gas flow rate, diluent gas, and moisture monitoring systems, the monitoring plan shall include the electronic and hard copy information required for those systems under §75.53(g) of this chapter. The electronic monitoring plan shall be evaluated using CEDRI.
10.1.1.2.1 Electronic. Record the unit or stack ID number(s); monitoring location(s); the EtO monitoring methodology used ( i.e., CEMS); EtO monitoring system information, including, but not limited to: unique system and component ID numbers; the make, model, and serial number of the monitoring equipment; the sample acquisition method; formulas used to calculate emissions; monitor span and range information (if applicable).
10.1.1.2.2 Hard Copy. Keep records of the following: schematics and/or blueprints showing the location of the monitoring system(s) and test ports; data flow diagrams; test protocols; monitor span and range calculations (if applicable); miscellaneous technical justifications.
10.1.2 EtO Emissions Records. For EtO CEMS, the owner or operator must record the following information for each unit or stack operating hour:
10.1.2.1 The date and hour;
10.1.2.2 Monitoring system and component identification codes, as provided in the electronic monitoring plan, for each hour in which the CEMS provides a quality-assured value of EtO concentration (as applicable);
10.1.2.3 The pollutant concentration, for each hour in which a quality-assured value is obtained. Record the data in parts per billion by volume (ppbv), with one leading non-zero digit and one decimal place, expressed in scientific notation. Use the following rounding convention: If the digit immediately following the first decimal place is 5 or greater, round the first decimal place upward (increase it by one); if the digit immediately following the first decimal place is 4 or less, leave the first decimal place unchanged.
10.1.2.4 A special code, indicating whether or not a quality-assured EtO concentration value is obtained for the hour. This code may be entered manually when a temporary like-kind replacement EtO analyzer is used for reporting; and
10.1.2.5 Monitor data availability, as a percentage of unit or stack operating hours, calculated according to §75.32 of this chapter.
10.1.3 Stack Gas Volumetric Flow Rate Records.
10.1.3.1 Hourly measurements of stack gas volumetric flow rate during unit operation are required to demonstrate compliance with EtO emission standards.
10.1.3.2 Use a flow rate monitor that meets the requirements of part 75 of this chapter to record the required data. You must keep hourly flow rate records, as specified in §75.57(c)(2) of this chapter.
10.1.4 EtO Emission Rate Records. Record the following information for each affected unit or common stack:
10.1.4.1 The date and hour;
10.1.4.2 The hourly EtO emissions rate (lb/hr), for each hour in which valid values of EtO concentration and stack gas volumetric flow rate are obtained for the hour. Report each emission rate to the same precision as the most stringent standard that applies to any affected source exhausting to the emission stream ( e.g., if the emission stream includes contributions from an SCV and ARV subject to 99.99% and 99.9% emission reduction standards, respectively, report to four significant figures), expressed in scientific notation. Use the following rounding convention: If the digit immediately following the first decimal place is 5 or greater, round the first decimal place upward (increase it by one); if the digit immediately following the first decimal place is 4 or less, leave the first decimal place unchanged;
10.1.4.4 A code indicating that the EtO emission rate was not calculated for the hour, if valid data for EtO concentration and/or any of the other necessary parameters are not obtained for the hour. For the purposes of this appendix, the substitute data values required under part 75 of this chapter for stack gas flow rate are not considered to be valid data.
10.1.5 Certification and Quality Assurance Test Records. For the EtO CEMS used to provide data under this subpart at each affected unit (or group of units monitored at a common stack), record the following information for all required certification, recertification, diagnostic, and quality-assurance tests:
10.1.5.1 EtO CEMS.
10.1.5.1.1 For each required 7-day and daily calibration drift (CD) test or daily calibration error test (including daily calibration transfer standard tests) of the EtO CEMS, record the test date(s) and time(s), reference gas value(s), monitor response(s), and calculated calibration drift or calibration error value(s). If you use the dynamic spiking option for the mid-level calibration drift check under PS 19, you must also record the measured concentration of the native EtO in the flue gas before and after the spike and the spiked gas dilution factor.
10.1.5.1.2 or each required RATA of an EtO CEMS, record the beginning and ending date and time of each test run, the reference method(s) used, and the reference method and EtO CEMS run values. Keep records of stratification tests performed (if any), all of the raw field data, relevant process operating data, and all of the calculations used to determine the relative accuracy.
10.1.5.1.3 For each required measurement error (ME) test of an EtO monitor, record the date and time of each gas injection, the reference gas concentration (low, mid, or high) and the monitor response for each of the three injections at each of the three levels. Also record the average monitor response and the ME at each gas level and the related calculations.
10.1.5.1.4 For each required level of detection (LOD) test of an EtO monitor performed in a controlled environment, record the test date, the concentrations of the reference gas and interference gases, the results of the seven (or more) consecutive measurements of EtO, the standard deviation, and the LOD value. For each required LOD test performed in the field, record the test date, the three measurements of the native source EtO concentration, the results of the three independent standard addition (SA) measurements known as standard addition response (SAR), the effective spike addition gas concentration, the resulting standard addition detection level (SADL) value and all related calculations. For extractive CEMS performing the SA using dynamic spiking, you must record the spiked gas dilution factor.
10.1.5.1.5 For each required ME/level of detection response time test of an EtO monitor, record the test date, the native EtO concentration of the flue gas, the reference gas value, the stable reference gas readings, the upscale/downscale start and end times, and the results of the upscale and downscale stages of the test.
10.1.5.1.6 For each required interference test of an EtO monitor, record (or obtain from the analyzer manufacturer records of): The date of the test; the gas volume/rate, temperature, and pressure used to conduct the test; the EtO concentration of the reference gas used; the concentrations of the interference test gases; the baseline EtO responses for each interferent combination spiked; and the total percent interference as a function of span or EtO concentration.
10.1.5.1.7 For each quarterly relative accuracy audit (RAA) of an EtO monitor, record the beginning and ending date and time of each test run, the reference method used, the EtO concentrations measured by the reference method and CEMS for each test run, the average concentrations measured by the reference method and the CEMS, and the calculated relative accuracy. Keep records of the raw field data, relevant process operating data, and the calculations used to determine the relative accuracy.
10.1.5.1.8 For each quarterly cylinder gas audit (CGA) of an EtO monitor, record the date and time of each injection, and the reference gas concentration (zero, mid, or high) and the monitor response for each injection. Also record the average monitor response and the calculated ME at each gas level.
10.1.5.1.9 For each quarterly dynamic spiking audit (DSA) of an EtO monitor, record the date and time of the zero gas injection and each spike injection, the results of the zero gas injection, the gas concentrations (mid and high) and the dilution factors and the monitor response for each of the six upscale injections as well as the corresponding native EtO concentrations measured before and after each injection. Also record the average dynamic spiking error for each of the upscale gases, the calculated average DSA Accuracy at each upscale gas concentration, and all calculations leading to the DSA Accuracy.
10.1.5.2 Additional Monitoring Systems. For the stack gas flow rate monitoring systems described in section 3.2 of this appendix, you must keep records of all certification, recertification, diagnostic, and on-going quality-assurance tests of these systems, as specified in §75.59(a) of this chapter.
11. Reporting Requirements
11.1 General Reporting Provisions. The owner or operator shall comply with the following requirements for reporting EtO emissions from each affected unit (or group of units monitored at a common stack):
11.1.1 Notifications, in accordance with paragraph 11.2 of this section;
11.1.2 Monitoring plan reporting, in accordance with paragraph 11.3 of this section;
11.1.3 Certification, recertification, and QA test submittals, in accordance with paragraph 11.4 of this section; and
11.1.4 Electronic quarterly report submittals, in accordance with paragraph 11.5 of this section.
11.2 Notifications. The owner or operator shall provide notifications for each affected unit (or group of units monitored at a common stack) in accordance with §63.366.
11.3 Monitoring Plan Reporting. For each affected unit (or group of units monitored at a common stack) using EtO CEMS, the owner or operator shall make electronic and hard copy monitoring plan submittals as follows:
11.3.1 For a sterilization facility that begins reporting hourly EtO concentrations with a previously certified CEMS, submit the monitoring plan information in section 10.1.1.2 of this appendix prior to or concurrent with the first required quarterly emissions report. For a new sterilization facility, submit the information in section 10.1.1.2 of this appendix at least 21 days prior to the start of initial certification testing of the CEMS. Also submit the monitoring plan information in §75.53(g) of this chapter pertaining to any required flow rate monitoring systems within the applicable timeframe specified in this section, if the required records are not already in place.
11.3.2 Update the monitoring plan when required, as provided in paragraph 10.1.1.1 of this appendix. An electronic monitoring plan information update must be submitted either prior to or concurrent with the quarterly report for the calendar quarter in which the update is required.
11.3.3 All electronic monitoring plan submittals and updates shall be made to the Administrator using CEDRI. Hard copy portions of the monitoring plan shall be kept on record according to section 10.1 of this appendix.
11.4 Certification, Recertification, and Quality-Assurance Test Reporting Requirements. Use CEDRI to submit the results of all required certification, recertification, quality-assurance, and diagnostic tests of the monitoring systems required under this appendix electronically. Submit the test results concurrent with the quarterly electronic emissions report. However, for RATAs of the EtO monitor, if this is not possible, you have up to 60 days after the test completion date to submit the test results; in this case, you may claim provisional status for the emissions data affected by the test, starting from the date and hour in which the test was completed and continuing until the date and hour in which the test results are submitted. If the test is successful, the status of the data in that time period changes from provisional to quality-assured, and no further action is required. However, if the test is unsuccessful, the provisional data must be invalidated and resubmission of the affected emission report(s) is required.
11.4.1 For each daily CD (or calibration error) assessment (including daily calibration transfer standard tests), and for each seven-day calibration drift (CD) test of an EtO monitor, report:
11.4.1.1 Facility ID information;
11.4.1.2 The monitoring component ID;
11.4.1.3 The instrument span and span scale;
11.4.1.4 For each gas injection, the date and time, the calibration gas level (zero or high-level), the reference gas value (ppbv), and the monitor response (ppbv);
11.4.1.5 A flag to indicate whether dynamic spiking was used for the high-level value;
11.4.1.6 Calibration drift (percent of span or reference gas, as applicable);
11.4.1.7 When using the dynamic spiking option, the measured concentration of native EtO before and after each mid-level spike and the spiked gas dilution factor; and
11.4.1.8 Reason for test.
11.4.2 For each RATA of an EtO CEMS, report:
11.4.2.1 Facility ID information;
11.4.2.2 Monitoring system ID number;
11.4.2.3 Type of test ( i.e., initial or annual RATA);
11.4.2.4 Reason for test;
11.4.2.5 The reference method used;
11.4.2.6 Starting and ending date and time for each test run;
11.4.2.7 Units of measure;
11.4.2.8 The measured reference method and CEMS values for each test run, on a consistent moisture basis, in appropriate units of measure;
11.4.2.9 Flags to indicate which test runs were used in the calculations;
11.4.2.10 Arithmetic mean of the CEMS values, of the reference method values, and of their differences;
11.4.2.11 Standard deviation, using equation 7 in section 12.6 of PS 19 in appendix B to part 60 of this chapter;
11.4.2.12 Confidence coefficient, using equation 8 in section 12.6 of PS 19 in appendix B to part 60 of this chapter;
11.4.2.13 t-value; and
11.4.2.14 Relative accuracy calculated using equation 11 in section 12.6 of PS 19 in appendix B to part 60 of this chapter.
11.4.3 For each measurement error (ME) test of an EtO monitor, report:
11.4.3.1 Facility ID information;
11.4.3.2 Monitoring component ID;
11.4.3.3 Instrument span and span scale;
11.4.3.4 For each gas injection, the date and time, the calibration gas level (zero, low, mid, or high), the reference gas value in ppbv and the monitor response.
11.4.3.5 For extractive CEMS, the mean reference value and mean of measured values at each reference gas level (ppbv).
11.4.3.6 ME at each reference gas level; and
11.4.3.7 Reason for test.
11.4.4 For each interference test of an EtO monitoring system, report:
11.4.4.1 Facility ID information;
11.4.4.2 Date of test;
11.4.4.3 Monitoring system ID;
11.4.4.4 Results of the test (pass or fail);
11.4.4.5 Reason for test; and
11.4.4.6 A flag to indicate whether the test was performed: On this particular monitoring system; on one of multiple systems of the same type; or by the manufacturer on a system with components of the same make and model(s) as this system.
11.4.5 For each LOD test of an EtO monitor, report:
11.4.5.1 Facility ID information;
11.4.5.2 Date of test;
11.4.5.3 Reason for test;
11.4.5.4 Monitoring system ID;
11.4.5.5 A code to indicate whether the test was done in a controlled environment or in the field;
11.4.5.6 EtO reference gas concentration;
11.4.5.7 EtO responses with interference gas (seven repetitions);
11.4.5.8 Standard deviation of EtO responses;
11.4.5.9 Effective spike addition gas concentrations;
11.4.5.10 EtO concentration measured without spike;
11.4.5.11 EtO concentration measured with spike;
11.4.5.12 Dilution factor for spike;
11.4.5.13 The controlled environment LOD value (ppbv or ppbv-meters);
11.4.5.14 The field determined standard addition detection level (SADL in ppbv or ppbv-meters); and
11.4.5.15 Result of LOD/SADL test (pass/fail).
11.4.6 For each ME or LOD response time test of an EtO monitor, report:
11.4.6.1 Facility ID information;
11.4.6.2 Date of test;
11.4.6.3 Monitoring component ID;
11.4.6.4 The higher of the upscale or downscale tests, in minutes; and
11.4.6.5 Reason for test.
11.4.7 For each quarterly RAA of an EtO monitor, report:
11.4.7.1 Facility ID information;
11.4.7.2 Monitoring system ID;
11.4.7.3 Begin and end time of each test run;
11.4.7.4 The reference method used;
11.4.7.5 The reference method and CEMS values for each test run, including the units of measure;
11.4.7.6 The mean reference method and CEMS values for the three test runs;
11.4.7.7 The calculated relative accuracy, percent; and
11.4.7.8 Reason for test.
11.4.8 For each quarterly cylinder gas audit of an EtO monitor, report:
11.4.8.1 Facility ID information;
11.4.8.2 Monitoring component ID;
11.4.8.3 Instrument span and span scale;
11.4.8.4 For each gas injection, the date and time, the reference gas level (zero, mid, or high), the reference gas value in ppbv, and the monitor response.
11.4.8.5 For extractive CEMS, the mean reference gas value and mean monitor response at each reference gas level (ppbv).
11.4.8.6 ME at each reference gas level; and
11.4.8.7 Reason for test.
11.4.9 For each quarterly DSA of an EtO monitor, report:
11.4.9.1 Facility ID information;
11.4.9.2 Monitoring component ID;
11.4.9.3 Instrument span and span scale;
11.4.9.4 For the zero gas injection, the date and time, and the monitor response (Note: The zero gas injection from a calibration drift check performed on the same day as the upscale spikes may be used for this purpose.);
11.4.9.5 Zero spike error;
11.4.9.6 For the upscale gas spiking, the date and time of each spike, the reference gas level (mid- or high-), the reference gas value (ppbv), the dilution factor, the native EtO concentrations before and after each spike, and the monitor response for each gas spike;
11.4.9.7 Upscale spike error;
11.4.9.8 DSA at the zero level and at each upscale gas level; and
11.4.9.9 Reason for test.
11.4.10 Reporting Requirements for Diluent Gas, Flow Rate, and Moisture Monitoring Systems. For the certification, recertification, diagnostic, and QA tests of stack gas flow rate, moisture, and diluent gas monitoring systems that are certified and quality-assured according to part 75 of this chapter, report the information in section 10.1.8.2 of this appendix.
11.5 Quarterly Reports.
11.5.1 The owner or operator of any affected unit shall use CEDRI to submit electronic quarterly reports to the Administrator in an XML format specified by the Administrator, for each affected unit (or group of units monitored at a common stack). If the certified EtO CEMS is used for the initial compliance demonstration, EtO emissions reporting shall begin with the first operating hour of the 30-operating day compliance demonstration period. Otherwise, EtO emissions reporting shall begin with the first operating hour after successfully completing all required certification tests of the CEMS.
11.5.2 The electronic reports must be submitted within 30 days following the end of each calendar quarter, except for units that have been placed in long-term cold storage.
11.5.3 Each electronic quarterly report shall include the following information:
11.5.3.1 The date of report generation;
11.5.3.2 Facility identification information;
11.5.3.3 The information in sections 10.1.2 through 10.1.4 of this appendix, as applicable to the type(s) of monitoring system(s) used to measure the pollutant concentrations and other necessary parameters.
11.5.3.4 The results of all daily calibrations (including calibration transfer standard tests) of the EtO monitor as described in section 10.1.8.1.1 of this appendix; and
11.5.3.5 If applicable, the results of all daily flow monitor interference checks, in accordance with section 10.1.8.2 of this appendix.
11.5.4 Compliance Certification. Based on reasonable inquiry of those persons with primary responsibility for ensuring that all EtO emissions from the affected unit(s) have been correctly and fully monitored, the owner or operator shall submit a compliance certification in support of each electronic quarterly emissions monitoring report. The compliance certification shall include a statement by a responsible official with that official's name, title, and signature, certifying that, to the best of his or her knowledge, the report is true, accurate, and complete.
[89 FR 24172, April 5, 2024]
READ MORESHOW LESS
['Air Programs']
['Hazardous Air Pollutants']
Load More
J. J. Keller is the trusted source for DOT / Transportation, OSHA / Workplace Safety, Human Resources, Construction Safety and Hazmat / Hazardous Materials regulation compliance products and services. J. J. Keller helps you increase safety awareness, reduce risk, follow best practices, improve safety training, and stay current with changing regulations.
Copyright 2025 J. J. Keller & Associate, Inc. For re-use options please contact copyright@jjkeller.com or call 800-558-5011.