['HAZWOPER']
['Hazardous Waste Cleanup Operations', 'Hazardous Waste Treatment, Storage, and/or Disposal', 'HAZWOPER', 'HAZWOPER Emergency Response']
08/29/2023
...
This appendix sets forth the non-mandatory examples of tests which may be used to evaluate compliance with §1910.120(g)(4) (ii) and (iii) . Other tests and other challenge agents may be used to evaluate compliance.
A. Totally-encapsulating chemical protective suit pressure test
1.0—Scope
1.1 This practice measures the ability of a gas tight totally-encapsulating chemical protective suit material, seams, and closures to maintain a fixed positive pressure. The results of this practice allow the gas tight integrity of a totally-encapsulating chemical protective suit to be evaluated.
1.2 Resistance of the suit materials to permeation, penetration, and degradation by specific hazardous substances is not determined by this test method.
2.0—Definition of terms
2.1 Totally-encapsulated chemical protective suit (TECP suit) means a full body garment which is constructed of protective clothing materials; covers the wearer’s torso, head, arms, legs and respirator; may cover the wearer’s hands and feet with tightly attached gloves and boots; completely encloses the wearer and respirator by itself or in combination with the wearer’s gloves and boots.
2.2 Protective clothing material means any material or combination of materials used in an item of clothing for the purpose of isolating parts of the body from direct contact with a potentially hazardous liquid or gaseous chemicals.
2.3 Gas tight means, for the purpose of this test method, the limited flow of a gas under pressure from the inside of a TECP suit to atmosphere at a prescribed pressure and time interval.
3.0—Summary of test method
3.1 The TECP suit is visually inspected and modified for the test. The test apparatus is attached to the suit to permit inflation to the pre-test suit expansion pressure for removal of suit wrinkles and creases. The pressure is lowered to the test pressure and monitored for three minutes. If the pressure drop is excessive, the TECP suit fails the test and is removed from service. The test is repeated after leak location and repair.
4.0—Required supplies
4.1 Source of compressed air.
4.2 Test apparatus for suit testing, including a pressure measurement device with a sensitivity of at least 1/4 inch water gauge.
4.3 Vent valve closure plugs or sealing tape.
4.4 Soapy water solution and soft brush.
4.5 Stop watch or appropriate timing device.
5.0—Safety precautions
5.1 Care shall be taken to provide the correct pressure safety devices required for the source of compressed air used.
6.0—Test procedure
6.1 Prior to each test, the tester shall perform a visual inspection of the suit. Check the suit for seam integrity by visually examining the seams and gently pulling on the seams. Ensure that all air supply lines, fittings, visor, zippers, and valves are secure and show no signs of deterioration.
6.1.1 Seal off the vent valves along with any other normal inlet or exhaust points (such as umbilical air line fittings or face piece opening) with tape or other appropriate means (caps, plugs, fixture, etc.). Care should be exercised in the sealing process not to damage any of the suit components.
6.1.2 Close all closure assemblies.
6.1.3 Prepare the suit for inflation by providing an improvised connection point on the suit for connecting an airline. Attach the pressure test apparatus to the suit to permit suit inflation from a compressed air source equipped with a pressure indicating regulator. The leak tightness of the pressure test apparatus should be tested before and after each test by closing off the end of the tubing attached to the suit and assuring a pressure of three inches water gauge for three minutes can be maintained. If a component is removed for the test, that component shall be replaced and a second test conducted with another component removed to permit a complete test of the ensemble.
6.1.4 The pre-test expansion pressure (A) and the suit test pressure (B) shall be supplied by the suit manufacturer, but in no case shall they be less than: (A) = three inches water gauge; and (B) = two inches water gauge. The ending suit pressure (C) shall be no less than 80 percent of the test pressure (B); i.e., the pressure drop shall not exceed 20 percent of the test pressure (B).
6.1.5 Inflate the suit until the pressure inside is equal to pressure (A), the pre-test expansion suit pressure. Allow at least one minute to fill out the wrinkles in the suit. Release sufficient air to reduce the suit pressure to pressure (B), the suit test pressure. Begin timing. At the end of three minutes, record the suit pressure as pressure (C), the ending suit pressure. The difference between the suit test pressure and the ending suit test pressure (B—C) shall be defined as the suit pressure drop.
6.1.6 If the suit pressure drop is more than 20 percent of the suit test pressure (B) during the three-minute test period, the suit fails the test and shall be removed from service.
7.0—Retest procedure
7.1 If the suit fails the test check for leaks by inflating the suit to pressure (A) and brushing or wiping the entire suit (including seams, closures, lens gaskets, glove-to-sleeve joints, etc.) with a mild soap and water solution. Observe the suit for the formation of soap bubbles, which is an indication of a leak. Repair all identified leaks.
7.2 Retest the TECP suit as outlined in Test procedure 6.0.
8.0—Report
8.1 Each TECP suit tested by this practice shall have the following information recorded:
8.1.1 Unique identification number, identifying brand name, date of purchase, material of construction, and unique fit features, e.g., special breathing apparatus.
8.1.2 The actual values for test pressures (A), (B), and (C) shall be recorded along with the specific observation times. If the ending pressure (C) is less than 80 percent of the test pressure (B), the suit shall be identified as failing the test. When possible, the specific leak location shall be identified in the test records. Retest pressure data shall be recorded as an additional test.
8.1.3 The source of the test apparatus used shall be identified and the sensitivity of the pressure gauge shall be recorded.
8.1.4 Records shall be kept for each pressure test even if repairs are being made at the test location.
Caution
Visually inspect all parts of the suit to be sure they are positioned correctly and secured tightly before putting the suit back into service. Special care should be taken to examine each exhaust valve to make sure it is not blocked.
Care should also be exercised to assure that the inside and outside of the suit is completely dry before it is put into storage.
B. Totally-encapsulating chemical protective suit qualitative leak test
1.0—Scope
1.1 This practice semi-qualitatively tests gas tight totally-encapsulating chemical protective suit integrity by detecting inward leakage of ammonia vapor. Since no modifications are made to the suit to carry out this test, the results from this practice provide a realistic test for the integrity of the entire suit.
1.2 Resistance of the suit materials to permeation, penetration, and degradation is not determined by this test method. ASTM test methods are available to test suit materials for these characteristics and the tests are usually conducted by the manufacturers of the suits.
2.0—Definition of terms
2.1 Totally-encapsulated chemical protective suit (TECP suit) means a full body garment which is constructed of protective clothing materials; covers the wearer’s torso, head, arms, legs and respirator; may cover the wearer’s hands and feet with tightly attached gloves and boots; completely encloses the wearer and respirator by itself or in combination with the wearer’s gloves, and boots.
2.2 Protective clothing material means any material or combination of materials used in an item of clothing for the purpose of isolating parts of the body from direct contact with a potentially hazardous liquid or gaseous chemicals.
2.3 Gas tight means, for the purpose of this test method, the limited flow of a gas under pressure from the inside of a TECP suit to atmosphere at a prescribed pressure and time interval.
2.4 Intrusion Coefficient means a number expressing the level of protection provided by a gas tight totally-encapsulating chemical protective suit. The intrusion coefficient is calculated by dividing the test room challenge agent concentration by the concentration of challenge agent found inside the suit. The accuracy of the intrusion coefficient is dependent on the challenge agent monitoring methods. The larger the intrusion coefficient the greater the protection provided by the TECP suit.
3.0—Summary of recommended practice
3.1 The volume of concentrated aqueous ammonia solution (ammonia hydroxide NH 4 OH) required to generate the test atmosphere is determined using the directions outlined in 6.1. The suit is donned by a person wearing the appropriate respiratory equipment (either a positive pressure self-contained breathing apparatus or a positive pressure supplied air respirator) and worn inside the enclosed test room. The concentrated aqueous ammonia solution is taken by the suited individual into the test room and poured into an open plastic pan. A two-minute evaporation period is observed before the test room concentration is measured, using a high range ammonia length of stain detector tube. When the ammonia vapor reaches a concentration of between 1000 and 1200 ppm, the suited individual starts a standardized exercise protocol to stress and flex the suit. After this protocol is completed, the test room concentration is measured again. The suited individual exits the test room and his stand-by person measures the ammonia concentration inside the suit using a low range ammonia length of stain detector tube or other more sensitive ammonia detector. A stand-by person is required to observe the test individual during the test procedure; aid the person in donning and doffing the TECP suit; and monitor the suit interior. The intrusion coefficient of the suit can be calculated by dividing the average test area concentration by the interior suit concentration. A colorimetric ammonia indicator strip of bromophenol blue or equivalent is placed on the inside of the suit face piece lens so that the suited individual is able to detect a color change and know if the suit has a significant leak. If a color change is observed the individual shall leave the test room immediately.
4.0—Required supplies
4.1 A supply of concentrated aqueous ammonium hydroxide (58% by weight).
4.2 A supply of bromophenol/blue indicating paper or equivalent, sensitive to 5-10 ppm ammonia or greater over a two-minute period of exposure. [pH 3.0 (yellow) to pH 4.6 (blue)]
4.3 A supply of high range (0.5–10 volume percent) and low range (5-700 ppm) detector tubes for ammonia and the corresponding sampling pump. More sensitive ammonia detectors can be substituted for the low range detector tubes to improve the sensitivity of this practice.
4.4 A shallow plastic pan (PVC) at least 12”:14”:1” and a half pint plastic container (PVC) with tightly closing lid.
4.5 A graduated cylinder or other volumetric measuring device of at least 50 milliliters in volume with an accuracy of at least ± 1 milliliters.
5.0—Safety precautions
5.1 Concentrated aqueous ammonium hydroxide, NH 4 OH, is a corrosive volatile liquid requiring eye, skin, and respiratory protection. The person conducting the test shall review the SDS for aqueous ammonia.
5.2 Since the established permissible exposure limit for ammonia is 35 ppm, only persons wearing a positive pressure self-contained breathing apparatus or a positive pressure supplied air respirator shall be in the chamber. Normally only the person wearing the totally-encapsulating suit will be inside the chamber. A stand-by person shall have a positive pressure self-contained breathing apparatus, or a positive pressure supplied air respirator available to enter the test area should the suited individual need assistance.
5.3 A method to monitor the suited individual must be used during this test. Visual contact is the simplest but other methods using communication devices are acceptable.
5.4 The test room shall be large enough to allow the exercise protocol to be carried out and then to be ventilated to allow for easy exhaust of the ammonia test atmosphere after the test(s) are completed.
5.5 Individuals shall be medically screened for the use of respiratory protection and checked for allergies to ammonia before participating in this test procedure.
6.0—Test procedure
6.1.1 Measure the test area to the nearest foot and calculate its volume in cubic feet. Multiply the test area volume by 0.2 milliliters of concentrated aqueous ammonia solution per cubic foot of test area volume to determine the approximate volume of concentrated aqueous ammonia required to generate 1000 ppm in the test area.
6.1.2 Measure this volume from the supply of concentrated aqueous ammonia and place it into a closed plastic container.
6.1.3 Place the container, several high range ammonia detector tubes, and the pump in the clean test pan and locate it near the test area entry door so that the suited individual has easy access to these supplies.
6.2.1 In a non-contaminated atmosphere, open a pre-sealed ammonia indicator strip and fasten one end of the strip to the inside of the suit face shield lens where it can be seen by the wearer. Moisten the indicator strip with distilled water. Care shall be taken not to contaminate the detector part of the indicator paper by touching it. A small piece of masking tape or equivalent should be used to attach the indicator strip to the interior of the suit face shield.
6.2.2 If problems are encountered with this method of attachment, the indicator strip can be attached to the outside of the respirator face piece lense being used during the test.
6.3 Don the respiratory protective device normally used with the suit, and then don the TECP suit to be tested. Check to be sure all openings which are intended to be sealed (zippers, gloves, etc.) are completely sealed. DO NOT, however, plug off any venting valves.
6.4 Step into the enclosed test room such as a closet, bathroom, or test booth, equipped with an exhaust fan. No air should be exhausted from the chamber during the test because this will dilute the ammonia challenge concentrations.
6.5 Open the container with the premeasured volume of concentrated aqueous ammonia within the enclosed test room, and pour the liquid into the empty plastic test pan. Wait two minutes to allow for adequate volatilization of the concentrated aqueous ammonia. A small mixing fan can be used near the evaporation pan to increase the evaporation rate of the ammonia solution.
6.6 After two minutes a determination of the ammonia concentration within the chamber should be made using the high range colorimetric detector tube. A concentration of 1000 ppm ammonia or greater shall be generated before the exercises are started.
6.7 To test the integrity of the suit the following four minute exercise protocol should be followed:
6.7.1 Raising the arms above the head with at least 15 raising motions completed in one minute.
6.7.2 Walking in place for one minute with at least 15 raising motions of each leg in a one-minute period.
6.7.3 Touching the toes with at least 10 complete motions of the arms from above the head to touching of the toes in a one-minute period.
6.7.4 Knee bends with at least 10 complete standing and squatting motions in a one-minute period.
6.8 If at any time during the test the colorimetric indicating paper should change colors, the test should be stopped and section 6.10 and 6.12 initiated (See paragraph 4.2).
6.9 After completion of the test exercise, the test area concentration should be measured again using the high range colorimetric detector tube.
6.10 Exit the test area.
6.11 The opening created by the suit zipper or other appropriate suit penetration should be used to determine the ammonia concentration in the suit with the low range length of stain detector tube or other ammonia monitor. The internal TECP suit air should be sampled far enough from the enclosed test area to prevent a false ammonia reading.
6.12 After completion of the measurement of the suit interior ammonia concentration the test is concluded and the suit is doffed and the respirator removed.
6.13 The ventilating fan for the test room should be turned on and allowed to run for enough time to remove the ammonia gas. The fan shall be vented to the outside of the building.
6.14 Any detectable ammonia in the suit interior (five ppm ammonia (NH 3 ) or more for the length of stain detector tube) indicates that the suit has failed the test. When other ammonia detectors are used a lower level of detection is possible, and it should be specified as the pass/fail criteria.
6.15 By following this test method, an intrusion coefficient of approximately 200 or more can be measured with the suit in a completely operational condition. If the intrusion coefficient is 200 or more, then the suit is suitable for emergency response and field use.
7.0—Retest procedures
7.1 If the suit fails this test, check for leaks by following the pressure test in test A above.
7.2 Retest the TECP suit as outlined in the test procedure 6.0.
8.0—Report
8.1 Each gas tight totally-encapsulating chemical protective suit tested by this practice shall have the following information recorded.
8.1.1 Unique identification number, identifying brand name, date of purchase, material of construction, and unique suit features; e.g., special breathing apparatus.
8.1.2 General description of test room used for test.
8.1.3 Brand name and purchase date of ammonia detector strips and color change data.
8.1.4 Brand name, sampling range, and expiration date of the length of stain ammonia detector tubes. The brand name and model of the sampling pump should also be recorded. If another type of ammonia detector is used, it should be identified along with its minimum detection limit for ammonia.
8.1.5 Actual test results shall list the two test area concentrations, their average, the interior suit concentration, and the calculated intrusion coefficient. Retest data shall be recorded as an additional test.
8.2 The evaluation of the data shall be specified as “suit passed” or “suit failed,” and the date of the test. Any detectable ammonia (five ppm or greater for the length of stain detector tube) in the suit interior indicates the suit has failed this test. When other ammonia detectors are used, a lower level of detection is possible and it should be specified as the pass fail criteria.
Caution
Visually inspect all parts of the suit to be sure they are positioned correctly and secured tightly before putting the suit back into service. Special care should be taken to examine each exhaust valve to make sure it is not blocked.
Care should also be exercised to assure that the inside and outside of the suit is completely dry before it is put into storage.
READ MORESHOW LESS
['HAZWOPER']
['Hazardous Waste Cleanup Operations', 'Hazardous Waste Treatment, Storage, and/or Disposal', 'HAZWOPER', 'HAZWOPER Emergency Response']
Load More
J. J. Keller is the trusted source for DOT / Transportation, OSHA / Workplace Safety, Human Resources, Construction Safety and Hazmat / Hazardous Materials regulation compliance products and services. J. J. Keller helps you increase safety awareness, reduce risk, follow best practices, improve safety training, and stay current with changing regulations.
Copyright 2025 J. J. Keller & Associate, Inc. For re-use options please contact copyright@jjkeller.com or call 800-558-5011.